21,221 research outputs found

    Bayesian Inference on Matrix Manifolds for Linear Dimensionality Reduction

    Full text link
    We reframe linear dimensionality reduction as a problem of Bayesian inference on matrix manifolds. This natural paradigm extends the Bayesian framework to dimensionality reduction tasks in higher dimensions with simpler models at greater speeds. Here an orthogonal basis is treated as a single point on a manifold and is associated with a linear subspace on which observations vary maximally. Throughout this paper, we employ the Grassmann and Stiefel manifolds for various dimensionality reduction problems, explore the connection between the two manifolds, and use Hybrid Monte Carlo for posterior sampling on the Grassmannian for the first time. We delineate in which situations either manifold should be considered. Further, matrix manifold models are used to yield scientific insight in the context of cognitive neuroscience, and we conclude that our methods are suitable for basic inference as well as accurate prediction.Comment: All datasets and computer programs are publicly available at http://www.ics.uci.edu/~babaks/Site/Codes.htm

    Web news classification using neural networks based on PCA

    Get PDF
    In this paper, we propose a news web page classification method (WPCM). The WPCM uses a neural network with inputs obtained by both the principal components and class profile-based features (CPBF). The fixed number of regular words from each class will be used as a feature vectors with the reduced features from the PCA. These feature vectors are then used as the input to the neural networks for classification. The experimental evaluation demonstrates that the WPCM provides acceptable classification accuracy with the sports news datasets

    Latent Fisher Discriminant Analysis

    Full text link
    Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and classification. Previous studies have also extended the binary-class case into multi-classes. However, many applications, such as object detection and keyframe extraction cannot provide consistent instance-label pairs, while LDA requires labels on instance level for training. Thus it cannot be directly applied for semi-supervised classification problem. In this paper, we overcome this limitation and propose a latent variable Fisher discriminant analysis model. We relax the instance-level labeling into bag-level, is a kind of semi-supervised (video-level labels of event type are required for semantic frame extraction) and incorporates a data-driven prior over the latent variables. Hence, our method combines the latent variable inference and dimension reduction in an unified bayesian framework. We test our method on MUSK and Corel data sets and yield competitive results compared to the baseline approach. We also demonstrate its capacity on the challenging TRECVID MED11 dataset for semantic keyframe extraction and conduct a human-factors ranking-based experimental evaluation, which clearly demonstrates our proposed method consistently extracts more semantically meaningful keyframes than challenging baselines.Comment: 12 page

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Dimensionality reduction of clustered data sets

    Get PDF
    We present a novel probabilistic latent variable model to perform linear dimensionality reduction on data sets which contain clusters. We prove that the maximum likelihood solution of the model is an unsupervised generalisation of linear discriminant analysis. This provides a completely new approach to one of the most established and widely used classification algorithms. The performance of the model is then demonstrated on a number of real and artificial data sets
    corecore