1,323 research outputs found

    L\"uders' and quantum Jeffrey's rules as entropic projections

    Full text link
    We prove that the standard quantum mechanical description of a quantum state change due to measurement, given by Lueders' rules, is a special case of the constrained maximisation of a quantum relative entropy functional. This result is a quantum analogue of the derivation of the Bayes--Laplace rule as a special case of the constrained maximisation of relative entropy. The proof is provided for the Umegaki relative entropy of density operators over a Hilbert space as well as for the Araki relative entropy of normal states over a W*-algebra. We also introduce a quantum analogue of Jeffrey's rule, derive it in the same way as above, and discuss the meaning of these results for quantum bayesianism

    Laboratory Games and Quantum Behaviour: The Normal Form with a Separable State Space

    Get PDF
    The subjective expected utility (SEU) criterion is formulated for a particular four-person “laboratory game” that a Bayesian rational decision maker plays with Nature, Chance, and an Experimenter who influences what quantum behaviour is observable by choosing an orthonormal basis in a separable complex Hilbert space of latent variables. Nature chooses a state in this basis, along with an observed data series governing Chance's random choice of consequence. When Gleason's theorem holds, imposing quantum equivalence implies that the expected likelihood of any data series w.r.t. prior beliefs equals the trace of the product of appropriate subjective density and likelihood operators.

    Quantum Cognition based on an Ambiguous Representation Derived from a Rough Set Approximation

    Full text link
    Over the last years, in a series papers by Arrechi and others, a model for the cognitive processes involved in decision making has been proposed and investigated. The key element of this model is the expression of apprehension and judgement, basic cognitive process of decision making, as an inverse Bayes inference classifying the information content of neuron spike trains. For successive plural stimuli, it has been shown that this inference, equipped with basic non-algorithmic jumps, is affected by quantum-like characteristics. We show here that such a decision making process is related consistently with ambiguous representation by an observer within a universe of discourse. In our work ambiguous representation of an object or a stimuli is defined by a pair of maps from objects of a set to their representations, where these two maps are interrelated in a particular structure. The a priori and a posteriori hypotheses in Bayes inference are replaced by the upper and lower approximation, correspondingly, for the initial data sets each derived with respect to a map. We show further that due to the particular structural relation between the two maps, the logical structure of such combined approximations can only be expressed as an orthomodular lattice and therefore can be represented by a quantum rather than a Boolean logic. To our knowledge, this is the first investigation aiming to reveal the concrete logic structure of inverse Bayes inference in cognitive processes.Comment: 23 pages, 8 figures, original research pape

    Quantum mechanics as a theory of probability

    Get PDF
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". We apply the approach to the analysis of entanglement, Bell inequalities, and the quantum theory of macroscopic objects. We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.Comment: 37 pages, 3 figures. Forthcoming in a Festschrift for Jeffrey Bub, ed. W. Demopoulos and the author, Springer (Kluwer): University of Western Ontario Series in Philosophy of Scienc
    • 

    corecore