1,976 research outputs found

    Bayesian Optimization Approaches for Massively Multi-modal Problems

    Get PDF
    The optimization of massively multi-modal functions is a challenging task, particularly for problems where the search space can lead the op- timization process to local optima. While evolutionary algorithms have been extensively investigated for these optimization problems, Bayesian Optimization algorithms have not been explored to the same extent. In this paper, we study the behavior of Bayesian Optimization as part of a hybrid approach for solving several massively multi-modal functions. We use well-known benchmarks and metrics to evaluate how different variants of Bayesian Optimization deal with multi-modality.TIN2016-78365-

    Parallelized Acquisition for Active Learning using Monte Carlo Sampling

    Full text link
    Bayesian inference remains one of the most important tool-kits for any scientist, but increasingly expensive likelihood functions are required for ever-more complex experiments, raising the cost of generating a Monte Carlo sample of the posterior. Recent attention has been directed towards the use of emulators of the posterior based on Gaussian Process (GP) regression combined with active sampling to achieve comparable precision with far fewer costly likelihood evaluations. Key to this approach is the batched acquisition of proposals, so that the true posterior can be evaluated in parallel. This is usually achieved via sequential maximization of the highly multimodal acquisition function. Unfortunately, this approach parallelizes poorly and is prone to getting stuck in local maxima. Our approach addresses this issue by generating nearly-optimal batches of candidates using an almost-embarrassingly parallel Nested Sampler on the mean prediction of the GP. The resulting nearly-sorted Monte Carlo sample is used to generate a batch of candidates ranked according to their sequentially conditioned acquisition function values at little cost. The final sample can also be used for inferring marginal quantities. Our proposed implementation (NORA) demonstrates comparable accuracy to sequential conditioned acquisition optimization and efficient parallelization in various synthetic and cosmological inference problems.Comment: 21 pages, 10 figure

    Bayesian factorizations of big sparse tensors

    Full text link
    It has become routine to collect data that are structured as multiway arrays (tensors). There is an enormous literature on low rank and sparse matrix factorizations, but limited consideration of extensions to the tensor case in statistics. The most common low rank tensor factorization relies on parallel factor analysis (PARAFAC), which expresses a rank kk tensor as a sum of rank one tensors. When observations are only available for a tiny subset of the cells of a big tensor, the low rank assumption is not sufficient and PARAFAC has poor performance. We induce an additional layer of dimension reduction by allowing the effective rank to vary across dimensions of the table. For concreteness, we focus on a contingency table application. Taking a Bayesian approach, we place priors on terms in the factorization and develop an efficient Gibbs sampler for posterior computation. Theory is provided showing posterior concentration rates in high-dimensional settings, and the methods are shown to have excellent performance in simulations and several real data applications

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Algorithms and architectures for MCMC acceleration in FPGAs

    Get PDF
    Markov Chain Monte Carlo (MCMC) is a family of stochastic algorithms which are used to draw random samples from arbitrary probability distributions. This task is necessary to solve a variety of problems in Bayesian modelling, e.g. prediction and model comparison, making MCMC a fundamental tool in modern statistics. Nevertheless, due to the increasing complexity of Bayesian models, the explosion in the amount of data they need to handle and the computational intensity of many MCMC algorithms, performing MCMC-based inference is often impractical in real applications. This thesis tackles this computational problem by proposing Field Programmable Gate Array (FPGA) architectures for accelerating MCMC and by designing novel MCMC algorithms and optimization methodologies which are tailored for FPGA implementation. The contributions of this work include: 1) An FPGA architecture for the Population-based MCMC algorithm, along with two modified versions of the algorithm which use custom arithmetic precision in large parts of the implementation without introducing error in the output. Mapping the two modified versions to an FPGA allows for more parallel modules to be instantiated in the same chip area. 2) An FPGA architecture for the Particle MCMC algorithm, along with a novel algorithm which combines Particle MCMC and Population-based MCMC to tackle multi-modal distributions. A proposed FPGA architecture for the new algorithm achieves higher datapath utilization than the Particle MCMC architecture. 3) A generic method to optimize the arithmetic precision of any MCMC algorithm that is implemented on FPGAs. The method selects the minimum precision among a given set of precisions, while guaranteeing a user-defined bound on the output error. By applying the above techniques to large-scale Bayesian problems, it is shown that significant speedups (one or two orders of magnitude) are possible compared to state-of-the-art MCMC algorithms implemented on CPUs and GPUs, opening the way for handling complex statistical analyses in the era of ubiquitous, ever-increasing data.Open Acces
    • …
    corecore