53 research outputs found

    A Reduced Complexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO

    Full text link
    Employing low resolution analog-to-digital converters in massive multiple-input multiple-output (MIMO) has many advantages in terms of total power consumption, cost and feasibility of such systems. However, such advantages come together with significant challenges in channel estimation and data detection due to the severe quantization noise present. In this study, we propose a novel iterative receiver for quantized uplink single carrier MIMO (SC-MIMO) utilizing an efficient message passing algorithm based on the Bussgang decomposition and Ungerboeck factorization, which avoids the use of a complex whitening filter. A reduced state sequence estimator with bidirectional decision feedback is also derived, achieving remarkable complexity reduction compared to the existing receivers for quantized SC-MIMO in the literature, without any requirement on the sparsity of the transmission channel. Moreover, the linear minimum mean-square-error (LMMSE) channel estimator for SC-MIMO under frequency-selective channel, which do not require any cyclic-prefix overhead, is also derived. We observe that the proposed receiver has significant performance gains with respect to the existing receivers in the literature under imperfect channel state information.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    FCFGS-CV-Based Channel Estimation for Wideband MmWave Massive MIMO Systems with Low-Resolution ADCs

    Full text link
    In this paper, the fully corrective forward greedy selection-cross validation-based (FCFGS-CV-based) channel estimator is proposed for wideband millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with low-resolution analog-to-digital converters (ADCs). The sparse nature of the mmWave virtual channel in the angular and delay domains is exploited to convert the maximum a posteriori (MAP) channel estimation problem to an optimization problem with a concave objective function and sparsity constraint. The FCFGS algorithm, which is the generalized orthogonal matching pursuit (OMP) algorithm, is used to solve the sparsity-constrained optimization problem. Furthermore, the CV technique is adopted to determine the proper termination condition by detecting overfitting when the sparsity level is unknown.Comment: to appear in IEEE Wireless Communications Letter

    Gradient Pursuit-Based Channel Estimation for MmWave Massive MIMO Systems with One-Bit ADCs

    Full text link
    In this paper, channel estimation for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems with one-bit analog-to-digital converters (ADCs) is considered. In the mmWave band, the number of propagation paths is small, which results in sparse virtual channels. To estimate sparse virtual channels based on the maximum a posteriori (MAP) criterion, sparsity-constrained optimization comes into play. In general, optimizing objective functions with sparsity constraints is NP-hard because of their combinatorial complexity. Furthermore, the coarse quantization of one-bit ADCs makes channel estimation a challenging task. In the field of compressed sensing (CS), the gradient support pursuit (GraSP) and gradient hard thresholding pursuit (GraHTP) algorithms were proposed to approximately solve sparsity-constrained optimization problems iteratively by pursuing the gradient of the objective function via hard thresholding. The accuracy guarantee of these algorithms, however, breaks down when the objective function is ill-conditioned, which frequently occurs in the mmWave band. To prevent the breakdown of gradient pursuit-based algorithms, the band maximum selecting (BMS) technique, which is a hard thresholder selecting only the "band maxima," is applied to GraSP and GraHTP to propose the BMSGraSP and BMSGraHTP algorithms in this paper.Comment: to appear in PIMRC 2019, Istanbul, Turke
    • …
    corecore