14 research outputs found

    Robot Introspection with Bayesian Nonparametric Vector Autoregressive Hidden Markov Models

    Full text link
    Robot introspection, as opposed to anomaly detection typical in process monitoring, helps a robot understand what it is doing at all times. A robot should be able to identify its actions not only when failure or novelty occurs, but also as it executes any number of sub-tasks. As robots continue their quest of functioning in unstructured environments, it is imperative they understand what is it that they are actually doing to render them more robust. This work investigates the modeling ability of Bayesian nonparametric techniques on Markov Switching Process to learn complex dynamics typical in robot contact tasks. We study whether the Markov switching process, together with Bayesian priors can outperform the modeling ability of its counterparts: an HMM with Bayesian priors and without. The work was tested in a snap assembly task characterized by high elastic forces. The task consists of an insertion subtask with very complex dynamics. Our approach showed a stronger ability to generalize and was able to better model the subtask with complex dynamics in a computationally efficient way. The modeling technique is also used to learn a growing library of robot skills, one that when integrated with low-level control allows for robot online decision making.Comment: final version submitted to humanoids 201

    Recovering from External Disturbances in Online Manipulation through State-Dependent Revertive Recovery Policies

    Full text link
    Robots are increasingly entering uncertain and unstructured environments. Within these, robots are bound to face unexpected external disturbances like accidental human or tool collisions. Robots must develop the capacity to respond to unexpected events. That is not only identifying the sudden anomaly, but also deciding how to handle it. In this work, we contribute a recovery policy that allows a robot to recovery from various anomalous scenarios across different tasks and conditions in a consistent and robust fashion. The system organizes tasks as a sequence of nodes composed of internal modules such as motion generation and introspection. When an introspection module flags an anomaly, the recovery strategy is triggered and reverts the task execution by selecting a target node as a function of a state dependency chart. The new skill allows the robot to overcome the effects of the external disturbance and conclude the task. Our system recovers from accidental human and tool collisions in a number of tasks. Of particular importance is the fact that we test the robustness of the recovery system by triggering anomalies at each node in the task graph showing robust recovery everywhere in the task. We also trigger multiple and repeated anomalies at each of the nodes of the task showing that the recovery system can consistently recover anywhere in the presence of strong and pervasive anomalous conditions. Robust recovery systems will be key enablers for long-term autonomy in robot systems. Supplemental info including code, data, graphs, and result analysis can be found at [1].Comment: 8 pages, 8 figures, 1 tabl

    A flat Dirichlet process switching model for Bayesian estimation of hybrid systems

    Get PDF
    AbstractHybrid systems are often used to describe many complex dynamic phenomena by combining multiple modes of dynamics into whole systems. In this paper, we present a flat Dirichlet process switching (FDPS) model that defines a prior on mode switching dynamics of hybrid systems. Compared with the classical Markovian jump system (MJS) models, the FDPS model is nonparametric and can be applied to the hybrid systems with an unbounded number of potential modes. On the other hand, the probability structure of the new model is simpler and more flexible than the recently proposed hierarchical Dirichlet process (HDP) based MJS. Furthermore, we develop a Markov chain Monte Carlo (MCMC) method for estimating the states of hybrid systems with FDPS prior. And the numerical simulations of a hybrid system in different conditions are employed to show the effectiveness of the proposed approach

    Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments

    Get PDF
    Optical microscopy provides rich spatio-temporal information characterizing in vivo molecular motion. However, effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study focuses on techniques for analyzing Single Particle Tracking (SPT) data experiencing abrupt state changes. We demonstrate the approach on GFP tagged chromatids experiencing metaphase in yeast cells and probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes are induced by factors such as microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, etc. Simulations are used to demonstrate the relevance of the approach in more general SPT data analyses. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and subjective information.Comment: 25 pages, 6 figures. Differs only typographically from PLoS One publication available freely as an open-access article at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.013763

    Spatio-Temporal Low Count Processes with Application to Violent Crime Events

    Full text link
    There is significant interest in being able to predict where crimes will happen, for example to aid in the efficient tasking of police and other protective measures. We aim to model both the temporal and spatial dependencies often exhibited by violent crimes in order to make such predictions. The temporal variation of crimes typically follows patterns familiar in time series analysis, but the spatial patterns are irregular and do not vary smoothly across the area. Instead we find that spatially disjoint regions exhibit correlated crime patterns. It is this indeterminate inter-region correlation structure along with the low-count, discrete nature of counts of serious crimes that motivates our proposed forecasting tool. In particular, we propose to model the crime counts in each region using an integer-valued first order autoregressive process. We take a Bayesian nonparametric approach to flexibly discover a clustering of these region-specific time series. We then describe how to account for covariates within this framework. Both approaches adjust for seasonality. We demonstrate our approach through an analysis of weekly reported violent crimes in Washington, D.C. between 2001-2008. Our forecasts outperform standard methods while additionally providing useful tools such as prediction intervals

    Modeling and Prediction of Driving Behaviors Using a Nonparametric Bayesian Method with AR Models

    Get PDF
    To develop a new generation advanced driver assistance system that avoids a dangerous condition in advance, we need to predict driving behaviors. Since a nonparametric Bayesian method with a two-level structure successfully predicted the symbolized behaviors only, we applied a nonparametric Bayesian method with linear dynamical systems to predicting the driving behavior. The method called the beta process autoregressive hidden Markov model (BP-AR-HMM) segments driving behaviors into states each of which corresponds to an AR model and it predicts future behaviors using the estimated future state sequence and the dynamical systems therein. Here, the segmentation as well as the parameters of the dynamical systems are determined using given training data in an unsupervised way. We carried out experiments with real driving data and found that the BP-AR-HMM predicted driving behaviors better than other methods

    Multiagent planning with Bayesian nonparametric asymptotics

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 95-105).Autonomous multiagent systems are beginning to see use in complex, changing environments that cannot be completely specified a priori. In order to be adaptive to these environments and avoid the fragility associated with making too many a priori assumptions, autonomous systems must incorporate some form of learning. However, learning techniques themselves often require structural assumptions to be made about the environment in which a system acts. Bayesian nonparametrics, on the other hand, possess structural flexibility beyond the capabilities of past parametric techniques commonly used in planning systems. This extra flexibility comes at the cost of increased computational cost, which has prevented the widespread use of Bayesian nonparametrics in realtime autonomous planning systems. This thesis provides a suite of algorithms for tractable, realtime, multiagent planning under uncertainty using Bayesian nonparametrics. The first contribution is a multiagent task allocation framework for tasks specified as Markov decision processes. This framework extends past work in multiagent allocation under uncertainty by allowing exact distribution propagation instead of sampling, and provides an analytic solution time/quality tradeoff for system designers. The second contribution is the Dynamic Means algorithm, a novel clustering method based upon Bayesian nonparametrics for realtime, lifelong learning on batch-sequential data containing temporally evolving clusters. The relationship with previous clustering models yields a modelling scheme that is as fast as typical classical clustering approaches while possessing the flexibility and representational power of Bayesian nonparametrics. The final contribution is Simultaneous Clustering on Representation Expansion (SCORE), which is a tractable model-based reinforcement learning algorithm for multimodel planning problems, and serves as a link between the aforementioned task allocation framework and the Dynamic Means algorithmby Trevor D. J. Campbell.S.M
    corecore