
Planning under Uncertainty using Nonparametric

Bayesian Models

Trevor Campbell∗, Sameera Ponda†, Girish Chowdhary‡, Jonathan P. How§

Laboratory for Information and Decision Systems (LIDS), MIT, Cambridge, MA

The ability to plan actions autonomously to achieve predefined objectives in the

presence of environmental uncertainties is critical to the success of many Unmanned

Aerial Vehicle missions. One way to plan in the presence of such uncertainties is

by learning a model of the environment through Bayesian inference, and using this

model to improve the predictive capability of the planning algorithm. Traditional

parametric models of the environment however, can be ineffective if the data cannot

be explained using an a priori fixed set of parameters. In nonparametric Bayesian

models (NPBMs), on the other hand, the number of parameters grows in response

to the data. This paper investigates the use of NPBMs in the context of planning

under uncertainty. Two illustrative planning examples are used to demonstrate

that the additional flexibility of NPBMs over their parametric counterparts can be

leveraged to improve planning performance, and to provide a capability to identify

and respond to unforeseen anomalous behaviours within the environment.

I. Introduction

The ability to autonomously plan missions in the presence of uncertainty is critical for ensuring

the success of Unmanned Aerial Systems (UASs). Autonomous planning typically involves selecting

actions that maximize the mission objectives given available information, such as models of the

agent dynamics, environment, available resources and mission constraints. Uncertainty can enter

the problem at various levels, e.g., at the vehicle level, it may appear as modelling uncertainty

resulting from inaccurate models of the vehicle. Adaptive control and robust control are examples

of methods that have been widely studied to handle modelling uncertainties1–4.

Uncertainty also enters at the mission level as a result of limited prior knowledge about the

environment. For example, an accurate model of the environment may not be available a priori, or

the environment might change, making it difficult to decide on the best course of action. A classic

approach employed throughout the literature is to start with a prior model, and adapt the model

∗S.M. candidate, Dept. of Aeronautics and Astronautics, MIT tdjc@mit.edu
†Ph.D. candidate, Dept. of Aeronautics and Astronautics, MIT sponda@mit.edu
‡Postdoctoral Associate, Dept. of Aeronautics and Astronautics, MIT girishc@mit.edu
§Richard C. Maclaurin Professor of Aeronautics and Astronautics, MIT jhow@mit.edu

1 of 25

American Institute of Aeronautics and Astronautics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4433439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to the environment as the agent executes its mission. This approach relies on machine learning

techniques, and is in many ways similar to indirect adaptive control. The classical approach to

handling mission level uncertainties is to assume the environment has a certain structure and may

be modelled by a parametric model. The parameters of this model are then adapted in response to

data as it becomes available using Bayesian inference5–8. These methods however, can be ineffective

when the data cannot be modelled accurately with the a priori assumed model structure.

Consider for example a canonical target tracking and pursuit problem, where the goal is to

track and/or catch a maneuvering target with an autonomous agent. If an accurate model of the

target dynamics is available, it can be used to improve tracking by predicting target behaviour, but

in most scenarios, such a model will not be available. Furthermore, even if a good model of the

target dynamics exists, the inputs, maneuver modes, behaviours or, more generally, intents of the

target are typically not known. In such a situation, a parametric model of the environment with a

fixed structure may prove to be too inflexible, and therefore may not be effective in classifying and

predicting the target behaviour.

Nonparametric Bayesian models (NPBMs) yield a class of Bayesian inference techniques in

which the number of parameters grows in response to observed data. NPBMs have a flexible

structure, and therefore, are particularly useful in situations where it is not clear what the model

structure should be a priori. For example, for the pursuit problem, these inference approaches

can be particularly useful as they provide the flexibility to accommodate unforeseen system modes

on the fly (e.g. vehicle types, behaviour modes, intents, etc.) as new information is acquired.

Several authors have explored NPBM techniques within machine learning (see e.g. [9–20]). For

example, Fox et al. explored NPBMs for speaker diarization21, Teh and Jordan used NPBMs for

document classification12, and Hjort et al. showed that NPBMs can be used for classifying life

history data16. NPBMs have also been explored in the robotics community for regression and

classification. Rasmussen et al. have explored Gaussian Process (GP) based models for regression

and classification20, Ko et al. used GP observation and process models for Kalman filtering22,

and Murray-Smith et al. proposed a class of indirect adaptive control problems using GPs23,24.

However, NPBMs in general do not appear to have been used extensively in the context of planning.

This paper attempts to bridge this gap by investigating how NPBMs can be integrated into typical

planning frameworks. In particular, it is shown that planning frameworks employing NPBMs can

result in improved planning performance when planning under uncertainty.

Section II presents an overview of some NPBM techniques that can be used for planning.

In Section III, NPBMs are applied to two example planning problems and the performance of

planners employing NPBMs is compared to that of planners using parametric models. Conclusions

and suggestions for future work are discussed in Section IV.

II. Introduction to Nonparametric Bayesian Modelling

This section begins by motivating the use of NPBMs through a discussion of two common

problems in planning and control whose performance can be enhanced through the use of nonpara-

metric models as opposed to fixed parameter models. These problems serve to highlight the need

2 of 25

American Institute of Aeronautics and Astronautics

for models whose complexity changes in response to observed data. A short survey of a number of

NPBMs is then presented, and their applicability to the motivating examples is discussed.

II.A. Motivating Examples

The first planning scenario considered involves performing surveillance and tracking of targets in

the environment using an unmanned aerial vehicle (UAV). Traditional target tracking methods

are typically reactive, where the surveillance UAV uses the current available information about

the target states to plan its trajectory accordingly. In many instances it is desirable, however, to

pursue more intelligent planning strategies that can leverage complex target models to enhance the

predictive capabilities of the planning algorithms. These models are not limited to capturing target

dynamics; they could encode other useful information that can be exploited within the planning

framework, such as behavior modes, transitions between behaviors, and even target intents. For

example, in scenarios where one UAV is tasked with tracking multiple targets, resources may be

better spent focusing on targets that are exhibiting interesting or anomalous behaviors, rather than

spending equal amounts of effort on all targets, including those that are operating as expected. It is

beneficial from a planning perspective, therefore, to be able to detect what is considered anomalous

behavior and to predict when modes flagged as interesting are likely to occur.

There are several types of models that are useful for predicting complex target behavior within

planning algorithms. Typical examples used throughout the literature include parametric models

such as Hidden Markov Models (HMMs)25 and Gaussian Mixture Models (GMMs)26. For example,

for vehicles that exhibit a number of behaviors and switch between them over time, an HMM can

be used to characterize the observed behavior modes and their transition dynamics. Similarly,

GMMs can be used to describe distributions over multiple possible stochastic models that describe

the target’s current state. Even though these types of parametric models have been successfully

used within planning strategies, there are several assumptions and modelling inaccuracies that

limit their effectiveness. The most crucial limitation is that these models assume a fixed number of

behavior modes, a quantity that is not often known a priori and may be subject to change over time

(e.g. targets can learn new behaviors). Other assumptions typically involve specifying parameters

such as transition distributions and estimated mode parameters that are often inaccurate. This

motivates the use of more flexible modelling strategies, such as NPBMs, that can autonomously

learn the target behavior modes, transition dynamics, and model parameters given the available

target data. Using NPBMs in conjunction with the planning algorithms can lead to more accurate

target behavior predictions and anomaly detections, thus increasing the performance of surveillance

and tracking missions.

The second example of interest considers a multi-agent task allocation problem27,28. In this

problem, the goal is to allocate several tasks amongst members of a team of autonomous agents

such that there are no conflicts, while maximizing the (possibly stochastic) reward received for

performing the tasks. If we allow the tasks to involve uncontrolled agents (i.e. dynamic agents

that are external to the planning system), two issues arise: the reward distributions for tasks

can no longer be assumed known a priori, because the uncontrolled agents may have an influence

3 of 25

American Institute of Aeronautics and Astronautics

upon them; and further, the reward received for doing a task involving one uncontrolled agent

may not contain any information about a future task involving another uncontrolled agent, as each

uncontrolled agent may have a different influence on the received reward distribution.

In order to predict the actions of uncontrolled agents with which a planning system has not yet

interacted, information from previous interactions with uncontrolled agents must be used effectively.

One way to do this is by sorting uncontrolled agents into groups or classifications by examining

the behaviours they exhibit; for example, if the team of agents observes that uncontrolled agents

which move aggressively are often hostile to the team during surveillance tasks, the planner should

learn a negative reward for completing tasks involving such aggressive uncontrolled agents, if the

preservation of the system is a key objective. Thus, by classifying the uncontrolled agents based

on observations of the behaviors they exhibit, and by assuming that uncontrolled agents of the

same classification have the same influence on the reward distribution for tasks, both the first and

second issues are resolved; the planning algorithm can use past tasks completed involving one type

of uncontrolled agent to predict the reward for a future task involving an uncontrolled agent of that

type.

The identification of behaviors in the presence of measurement and process noise introduces

the need for a clustering procedure. Clustering can be performed by using observed data to learn

the latent parameters of a mixture model. However, all parametric mixture models require the

specification of the number of mixture components (in this case, the number of behaviors exhibited

by the uncontrolled agents), and in realistic scenarios this quantity is generally not known. Hence,

a model which can be learned without this information a priori would be more applicable in realistic

scenarios.

These two examples illustrate that a major issue with the use of a parametric model in a

planning system is that the number of parameters in the model must be specified in advance, and

cannot be inferred from the observed data. This issue is alleviated through the use of NPBMs,

where the number of parameters may grow in response to the observed data and needs not be

known a priori.

II.B. Nonparametric Bayesian Models

Bayesian modelling and inference generally involves using measurements to improve a probabilistic

model of an observed phenomena. The two major components of a Bayesian probabilistic model are

the likelihood and the prior: the likelihood represents the probability of the generated data given

a set of parameters, while the prior represents the probability distribution over those parameters

(sometimes referred to as latent variables, as they are unknowns whose value must be inferred)

before any measurements are made. As measurements become available, the prior is combined

with the likelihood of those measurements using Bayes’ rule resulting in a posterior distribution,

which is an updated distribution over the unobservable quantities given the observations. For

4 of 25

American Institute of Aeronautics and Astronautics

example, consider a mixture model consisting of K components:

π|α ∼ Dir(α1, ..., αK),

zi|π ∼ Categorical(π), (1)

θk|H ∼ H, k = 1...K,

yi|zi, {θk} ∼ F (θzi).

In this model, each data point is assumed to be generated by rolling a K-sided die with outcome

probabilities π, and based on that outcome, sampling from one of K distributions. Typically, those

K distributions are of the same family (e.g. Gaussian) but have different parametrization (e.g. the

mean). In this case, the Dirichlet distribution is the prior over the K unknown mixing probabilities

π, H is the prior over the unknown {θk}, F (x) is the likelihood parametrized by a single value, and

the yi are the observations. As measurements become available, the estimates of π and {θk} can

be improved through Bayesian inference techniques.

Eq. (1) is an example of a parametric Bayesian model. In such models, the number of parameters

or latent variables in the model are fixed a priori (in this case, the K mixing probabilities and

parameters), and are often chosen through expert judgment. Due to the fixed number of parameters

chosen, parametric models cannot change their size to better fit data that is not well explained by

the existing set of parameters. This can lead to some common issues in traditional inference, such

as under-fitting.

Nonparametric Bayesian models, on the other hand, do not require the expert specification

of the number of parameters; instead, the number of parameters in such models is infinite, while

a finite quantity of observed data is assumed to be generated using only a finite subset of those

parameters. Table 1 presents a list of standard and recently developed nonparametric Bayesian

models29. The Gaussian process (GP) is perhaps the most well known example of an NPBM, and

is typically used as a model for continuous functions. This model has seen use in geo-surveying and

emerging applications in system identification and other regression related areas (see e.g. [20,22]).

The Dirichlet process (DP) and Beta process (BP), on the other hand, are popular nonparametric

models in the machine learning community (e.g., Switching Linear Dynamical Systems (SLDS)

and Autoregressive (AR) models have been used by Fox et al. for modelling various physical

phenomena whose number of modes are not known a priori21) but have seen very little application

in planning and control30,31, despite their ability to robustly capture the complexity of a system

solely from data measured therein. Therefore, we focus our attention on these two models and their

hierarchical extensions, such as the hierarchical Dirichlet process (HDP), and the hierarchical beta

process (HBP).

The Dirichlet Process

The Dirichlet process, developed formally in [32], is a stochastic process whose realizations are

probability distributions. Before introducing it formally, we first provide an intuitive understanding

using the notion of an infinite extension of the Dirichlet distribution. Let the k-dimensional simplex

5 of 25

American Institute of Aeronautics and Astronautics

Table 1. Typical applications of some NPBMs29. Acronyms are defined in the text.

Model Typical Application

GP Learning continuous functions

DP Data clustering with an unknown number of clusters

BP Learning shared latent features with an unknown number of features

HDP-HMM Learning a Markov model with an unknown number of states

HDP-SLDS-HMM
HDP-AR-HMM

Learning hybrid system dynamics (switched linear or autoregressive) with an un-
known number of modes

BP-AR-HMM Learning multiple hybrid systems’ dynamics with an unknown number of shared
modes

HBP Classification based on shared latent features

be defined as x ∈ Rk such that
∑k

i=1 xi = 1, and xi ≥ 0 for all i. Then, the Dirichlet distribution

is a probability distribution over this k-dimensional simplex whose density is given by:

p(x) = P (x1, ..., xk) =
Γ(
∑k

i=1 αi)∑k
i=1 Γ(αi)

k∏
i=1

(xi)
αi−1, (2)

where Γ(·) is the Gamma function, and α = (α1, ..., αk) is a parameter vector. A draw from the

Dirichlet distribution is denoted x1, ..., xk ∼ Dir(α1, ..., αk). Because the components in any draw

from a Dirichlet distribution sum to 1, it is often used as a prior over mixing probabilities in a

mixture model, such as (1).

If we let (α1, ..., αk) = (ak , ...,
a
k) for some a > 0 and let k → ∞, we arrive at a Dirichlet

distribution whose draws contain an infinite number of components which sum to 1. If used in a

mixture model, such as in [33], this prior expresses the fact that data is generated from an infinite

number of mixing components. Of course, it would be intractable to conduct inference with the

infinite set of these components; instead, we note that a finite number of observed data points

must have been generated from a finite number of clusters, and conduct inference over only these

components. This results in a model in which the number of clusters responsible for generating

the observed data may increase as more data are observed. The infinite extension to the Dirichlet

distribution is similar to the Dirichlet process in an important way: draws from both contain an

infinite number of components whose sum is 1, and thus they can be used similarly in the role of

prior for a mixture model. However, unlike the Dirichlet distribution, the Dirichlet process is not

a distribution over a simplex; rather, it is a distribution over probability distributions.

The definition of a Dirichlet process is as follows: Let H be a probability distribution on a space

X, and let α > 0 be a real number. Then, G ∼ DP(α,H) is a probability measure drawn from a

Dirichlet process if for any finite partition {B1, ..., BN} of X (i.e. Bi
⋂
Bj = ∅ for all i 6= j and

N⋃
i=1

Bi = X)32,

(G(B1), ..., G(BN))|H,α ∼ Dir(αH(B1), ..., αH(BN)). (3)

From this definition, it can be shown that E [G(B)] = H(B), and that V [G(B)] = H(B)(1 −
H(B))/(α+ 1). This provides a sense of how H and α influence G: H, called the base distribution,

is essentially the mean of G; and α, called the concentration parameter, controls the variance of

6 of 25

American Institute of Aeronautics and Astronautics

π1π2 π3π4

H

G

X

Figure 1. A pictorial representation of G ∼ DP(α,H).

π1 π2 π3 π4

Figure 2. A pictorial representation of the stick
breaking procedure.

G about its mean. Further, it can be shown that G is discrete with probability 1, and has the

following form34:

G =

∞∑
i=1

πiδθi , (4)

where the weights πi satisfy
∑∞

i=1 πi = 1, δx is a Kronecker delta at x, and θi ∼ H are the locations

of the deltas. A representation of G is shown in Figure 1. This provides a very clear mental picture

of what a DP is; it can be thought of as a probability distribution, which, when sampled, yields

another probability distribution G having a countably infinite number of Kronecker deltas, each

with independent and identically distributed (i.i.d.) location within X with distribution H, where

the weights πi on the deltas can be thought of as being drawn from an infinite dimensional Dirichlet

distribution.

In order to sample G from a DP, the stick breaking construction is typically used21. The

stick breaking construction (sometimes denoted π ∼ GEM(α)) provides an iterative procedure for

sampling the weights of (4), given by:

πi = βi

i−1∏
j=1

(1− βj), (5)

where βi ∼ Beta(1, α) is the Beta distribution. As shown in Figure 2, this corresponds to taking a

stick of unit length, repeatedly breaking off Beta distributed pieces, and assigning them to locations

θi in X. Thus, to sample a draw from a DP, we simply alternately sample θi from H, and calculate

the corresponding πi by sampling βi. Of course, there are theoretically an infinite number of (πi, θi)

pairs, but the stick breaking process can be terminated to obtain an approximation after a finite

number of steps by re-normalizing the weights to sum to 1, or by assigning whatever remaining

probability mass there is to the last θi.

Due to the form of draws from a DP shown in (4), we are now able to address some of the issues

mentioned in the example problems of Section II.A. To perform clustering on behavior data in

the example task allocation problem without assuming that the uncontrolled agents exhibit a fixed

number of behaviors, we can just replace the Dirichlet distribution prior on the mixing probabilities

of the Gaussian mixture model with the Dirichlet process as follows35:

G ∼ DP(α,H)

θi|G ∼ G, i = 1...N (6)

yi|θi ∼ N (yi; θi), i = 1...N

7 of 25

American Institute of Aeronautics and Astronautics

Ω

ω1

ω3

ω2

ω1

ω3

ω2

ω1

ω3

ω2

a) b) c)

Figure 3. a) The measurements made of behaviors in an ideal scenario. Here, it is easy to tell that there are
3 behaviors exhibited by the agents. b) The measurements made of behaviors in a realistic scenario involving
noise. c) The result of clustering those behavior measurements to reveal the 3 underlying behaviors.

where the N observed data points yi are i.i.d. with a Gaussian distribution with mean θi and

known variance (this model can be easily extended to the case where the variance of each cluster is

also unknown). Nowhere in this model is a number of behaviors assumed; because the θi are drawn

from G =
∑∞

i=1 πiδθi , the number of distinct clusters exhibited in a finite set of observed data can

instead be learned through Bayesian inference, as illustrated in Figure 3.

θ1

θ2 θ3

π11
π22 π33

π12

π21

π32

π23

π13
π31

πj1

π2j π3j

π1j

πj3πj2

Figure 4. A representation of the HDP-

HMM.

The target surveillance example problem requires

learning an HMM with an unknown number of states.

Drawing from concepts in the data clustering example,

we might expect that an HMM including an infinite num-

ber of states is an appropriate choice of model when the

actual number of states is unknown. In constructing such

a model, we first note that a single draw Gj ∼ DP(αj , H)

from the Dirichlet process could be used as the transition

distribution from a single state to the infinite set of other

states. To have an infinite number of states, we therefore

need to draw an infinite number of Gj . Further, to enforce that all draws Gj ∼ DP(αj , H) share

the same Kronecker delta locations θi (such that each state i corresponds to one of the parameters

θi), we require that H is discrete with an infinite number of components. Thus, it seems that H

should also be drawn from a Dirichlet process. This results in the hierarchical Dirichlet process

(HDP)36, which is written as:

H ∼ DP(α0, H0) with Gj |H ∼ DP(αj , H), j = 1, 2...,∞

where the distributions Gj are given by Gj =
∑∞

i=1 πjiδθi . The HDP can be used as a prior over the

transition probabilities in an infinite state HMM, thus leading directly to the HDP-HMM21 listed

in Table 1 and shown in Figure 4. This model can then be easily used as the discrete switching

component of a hybrid system, such as in an SLDS or AR process21. A known issue with the

HDP-HMM regarding its practical implementation is that it tends to result in learning multiple

redundant states during inference; however, the Sticky HDP-HMM (developed in [21]), which adds

a probabilistic bias to states undergoing self-transitions, has been shown to mitigate this issue

8 of 25

American Institute of Aeronautics and Astronautics

significantly.

The Beta Process

The beta process, like the Dirichlet process, is a stochastic process whose realizations are discrete

functions with an infinite number of components. If A is drawn from a beta process, it is typically

denoted A ∼ BP(c,B), where c ∈ R, c > 0 is the concentration parameter, and B is some non-

negative function on a space X. Unlike the base distribution H of the Dirichlet process, B does not

have to be a probability distribution; it only has to have a finite total mass b. A has been shown

to have the following form17:

A =

∞∑
i=1

qiδθi , (7)

where qi ∈ [0, 1] are the Kronecker delta weights and θi are the locations of the deltas. Note that

realizations from a beta process are very similar to realizations from a Dirichlet process, except for

one key detail: while the weights πi in a Dirichlet process realization must sum to 1, the weights

qi in a beta process realization must each individually fall within [0, 1] and may sum to a number

greater than 1. It has been shown that the expectation of this sum is actually finite if b is finite,

despite the infinite number of qi
16.

Algorithm 1 Beta Process Sampling Algorithm

Let n = 1 and Â0 = 0

loop

Sample Kn ∼ Poi
(

cb
c+n−1

)
Sample Kn new locations θi from B/b

Sample Kn weights qi ∼ Beta(1, c+ n− 1)

Ân ← Ân−1 +
∑Kn

i=1 qiδθi
n← n+ 1

end loop

An analog to the Dirichlet process stick

breaking procedure for approximately sampling

from a beta process was developed in [17], given

by algorithm 1, where Ân is an approximation

of A ∼ BP(c,B). In this algorithm, rather than

breaking an infinite number of beta-distributed

pieces off a single stick, an infinite number of

sticks are broken a single time, each with a beta-

distributed resulting length. In addition, unlike

the DP stick breaking procedure, there is no re-

quirement for A to be a probability distribution; thus, this algorithm can be terminated at any

point without further modification to the current best estimate Ân.

Because of the requirement that the weights qi of the beta process realization lie within [0, 1],

the beta process has been used as a prior over the probabilities for the Bernoulli process17. That is

to say, if each observed data point can be represented as an infinite sequence of 1’s and 0’s which

are modelled as being generated by an infinite sequence of Bernoulli trials, the beta process may be

used as a prior over the infinite sequence of probabilities for these trials. A major advantage of using

the beta process in this way is that the number of 1’s in the infinite sequence of any data point is

guaranteed to be finite (as long as the total mass b of B is finite), which allows this beta-Bernoulli

model to be computationally tractable through a sparse representation of data. Further, if the

locations θi are seen as features which are either included or not included in each data point (via

a 1 or 0 in that index of the sequence, respectively), the beta process can be used as a prior over

both the features exhibited by a set of data and the probability that any observation will exhibit

9 of 25

American Institute of Aeronautics and Astronautics

B0

B

X

A1

A2

y11: 0 0 1 1 0 1 1 0 0 ...
y12: 0 0 1 0 0 1 1 1 0 ...
y13: 0 1 1 1 0 1 0 0 0 ...

y21: 0 1 0 1 0 1 1 1 0 ...
y22: 1 1 0 1 0 1 1 1 0 ...
y23: 0 0 1 1 0 1 1 0 0 ...

 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

 1 2 3 4 5 6 7 8 9

Figure 5. Pictorial representation of a draw from an HBP with two classes, resulting in binary feature vectors
that represent behaviors exhibited by uncontrolled agents. Inference with this model essentially aims to learn
the heights of each of the Kronecker deltas in A1, and A2.

each feature.

Referring back to the task allocation example problem in Section II.A, we note that each

uncontrolled agent exhibits some subset of an overall shared set of behaviors; this can be represented

as a binary feature vector, with a 1 entry representing a behavior exhibited by that agent, and a 0

representing a behavior not exhibited. Using the beta process as a prior over the probabilities of an

agent exhibiting each behavior, we can learn a probabilistic model of the behaviors without having

to know the number of behaviors exhibited a priori. However, our goal was to classify uncontrolled

agents based on the behaviors they exhibit, and therefore we should use a model having a separate

beta process prior Ak for each type k of uncontrolled agent. This allows uncontrolled agents within

a classification to share the probabilities of exhibiting each behavior, while allowing for different

probabilities across different classes.

As in the case of the HDP, we require that B is discrete with a countably infinite number of

components, such that each Ak contains the same features (i.e. models the probabilities of the same

overall set of behaviors). Thus, B should also be drawn from a beta process; this model is called

the hierarchical beta process (HBP)17,37, shown in Figure 5. Using the HBP model (8), Bayesian

inference can be performed as data becomes available to estimate a posterior distribution of the

classification of objects.

Highest Level Weights and Overall Set of Features B ∼ BP(c0, B0)

Class k with Class-Specific Weights and Same Features Ak ∼ BP(ck, B) ∀k ≤ n (8)

Binary Feature Vector Drawn from Class k ykj ∼ BeP(Ak) ∀j ≤ nk

10 of 25

American Institute of Aeronautics and Astronautics

Nonparametric Bayesian Inference

Bayesian inference involves finding the posterior distribution p(D|y) of model parameters D given

data y. This is typically formulated using Bayes’ rule,

p(D|y) =
p(y|D)p(D)

p(y)
(9)

For example, in the case of the parametric Gaussian mixture model in (1), we would have

p(z, π, θ|y) =
p(y|z, π, θ)p(z|π, θ)p(π)p(θ)

p(y)
(10)

=

∏
i [F (yi; θzi)πzi]

∏
k [H(θk)] Dir(π;α1, ..., αK)

p(y)
.

Even in simple cases such as this, the posterior distribution may be impossible to calculate analyt-

ically because of the normalization term in the denominator; although we can easily write down an

integral formulation of p(y), this integral can be impossible to solve. However, if the prior is con-

jugate to the likelihood, the posterior has the same distribution family as the prior, with different

parameters. The Dirichlet distribution is conjugate to the Categorical distribution, and if we pick

H(θ) to be Gaussian, it is conjugate to the Gaussian likelihood F (y; θ). This avoids the calculation

of the integral p(y) in (10), as we already know the normalization term based on the fact that the

posterior is a product of a Dirichlet distribution and Gaussian distribution.

If the prior is not conjugate to the likelihood, or if we don’t have an explicit form of p(D) as is

often the case with nonparametric Bayesian models (such as the Dirichlet process Gaussian mixture

model in (6) where we do not have p(G)), there are a number of approximate methods for posterior

inference available. The most common inference procedures involving NPBMs are Markov Chain

Monte-Carlo (MCMC) methods, such as Gibbs sampling and the Metropolis-Hastings algorithm35.

Although it can be hard to tell if or when such algorithms have converged, they are simple to

implement and have been successfully used in a number of studies21. In order to ameliorate the

difficulties of using MCMC inference, other methods (such as variational Bayesian methods38) have

been developed, though these have not been as extensively studied.

The basic idea of Gibbs sampling is straightforward: if we have access to the conditional distribu-

tions of the parameters we wish to learn, we can approximate sampling from their joint distribution

by iteratively sampling from each parameter’s conditional distribution. For example, if we have

a model with three parameters θ1, θ2, θ3 and we wish to sample from the posterior p(θ1, θ2, θ3|y)

given the data y, we can approximate this by iteratively sampling p(θ1|y, θ2, θ3), p(θ2|y, θ1, θ3), and

p(θ3|y, θ1, θ2). By doing this, we create a Markov chain whose equilibrium probability distribution

is that of the full joint probability distribution that we wish to sample from. Therefore, we first let

the Markov chain reach its equilibrium distribution by sampling from the conditional distributions

T1 times without recording any of the samples, and then take a sample every T2 iterations from

the algorithm to be a sample from the joint distribution. With the approximate joint distribution

samples, we can estimate whatever statistics we might be interested in, such as the mean of the

11 of 25

American Institute of Aeronautics and Astronautics

θ1 θ2 θ3

p(zn+1=1|α,z1...n)∝ 5

n+1

p(zn+1=2|α,z1...n)∝ 3 p(zn+1=3|α,z1...n)∝ α

Figure 6. A pictorial representation of the CRP.

distribution.

This is particularly useful in the context of inference for the DP(α,H) mixture model due

to another construction of the Dirichlet process, the Chinese Restaurant process (CRP). This

stochastic process models data as being generated sequentially, and upon generation of each data

point, it is assigned a cluster. The name of the CRP comes from an analogy often used to describe

it, which is illustrated in Figure 6. If we consider a restaurant with an infinite line of tables, where

customers enter and either sit at a previously selected table with probability proportional to the

number of customers sitting at that table, or start a new table with probability proportional to α,

the table assignments are said to be drawn from a Chinese Restaurant Process. The equivalence

of the CRP and the DP is made through de Finetti’s theorem39: as each sequential data point is

observed, it is impossible to tell whether it was sampled i.i.d. from the distribution G ∼ DP(α,H)

or whether it was generated from the sequential cluster assignment rules of the CRP.

The CRP gives us the conditional distribution of the cluster assignments for Gibbs sampling

with a DP mixture model. If we expand the mixture model (6) using the stick breaking procedure

to make the cluster assignments zi for observations yi explicit, we arrive at the following model:

π ∼ GEM(α)

θk ∼ H
zi|π ∼ Categorical(π)

yi|zi, θzi ∼ N (yi; θzi)

k = 1, 2, ...,∞, i = 1, 2, ...N,

and the CRP provides us with the following probability distribution:

P (zn+1 = k|α, z1...n) =

 nk
n+α k ≤ K
α

n+α k = K + 1
(11)

where nk is the number of observations in cluster k. Then, we can sample from the posterior

p(z, θ|y) to obtain estimates of the cluster assignments z and parameters θ by iteratively sampling

from p(zi|y, z−i, θ) and p(θk|y, z, θ−k), where z−j or θ−j are the set of z or θ with the jth entry

12 of 25

American Institute of Aeronautics and Astronautics

removed. These two distributions are shown mathematically in (12),

p(zi = k|y, z−i, θ) =
p(y|zi, z−i, θ)p(zi|z−i, θ)

p(y|z−i, θ)
∝

 nk
N+α−1N (yi; θk) k ≤ K

α
N+α−1

∫
N (yi; θk)H(θk)dθk k = K + 1

(12)

p(θk|y, z, θ−k) =
p(y|z, θ)p(θk|z, θ−k)

p(y|z, θ−k)
∝
∏
i|zi=k

[N (yi|θk)]H(θk),

where the first is a discrete distribution, and the second is a Gaussian if H is the Gaussian conjugate

prior, which are both easily sampled using well known methods.

III. Planning with Nonparametric Bayesian Models

In a planning system that uses a probabilistic model of the environment in which it operates, the

stochasticity of the model provides a means for observations to influence its underlying parameters

through inference, allowing it to improve and provide more accurate predictions regarding the

outcomes of possible actions. Nonparametric Bayesian models enhance this flexibility by removing

the constraint that the number of such underlying parameters must be specified a priori. This

provides two advantages within the context of planning: NPBMs can attain a higher fidelity than

their parametric counterparts, providing better predictive capability to the planning system; and

perhaps more subtly, as NPBMs are able to change their structure in response to observations

they can identify anomalous data, which may actually represent a new characteristic within the

environment.

Planner

Agents

World

Planner

Nonparametric
Bayesian

Model

Model
Learning

Policy
Learning

NPBM-Based Planning
& Learning Framework

Figure 7. NPBM planning and learning

framework.

These new capabilities lead to several challenges

within the planning problem. Key amongst these are the

need to be able to perform efficient real-time (and plan

time) inference, which typically involves some form of

sampling. Further challenges are developing methods to

validate the accuracy of the models and determining how

to appropriately respond within the planner to anomalous

occurrences when detected. In the motivating problems

discussed in Section II.A, two approaches are taken to this last problem: in the task allocation

scenario, uncontrolled agents exhibiting anomalous behaviors within their set of behaviors are clas-

sified by relating them to previously observed agents exhibiting a similar set of behaviors; and in

the target surveillance scenario, the planning algorithm actively learns about anomalous behaviors

by preferentially directing agents to observe such behaviors upon their occurrence.

Figure 7 illustrates the general planning framework we use in this work (a version with specific

components is shown in each of the example problem sections in Figures 8 and 14). The model

learning algorithm provides the planner with a nonparametric Bayesian model of the environment,

while the policy learning algorithm provides the planner with an estimate of the utility of each of

the possible actions to take based on previous experience.

13 of 25

American Institute of Aeronautics and Astronautics

III.A. Target Tracking and Surveillance

This section describes the implementation and results for the UAV surveillance and target tracking

example introduced in Section II.A. The objective is to illustrate how NPBM models can be learned

from target data and leveraged within the planning framework to improve mission performance. In

particular, this example involves collecting time-series data associated with a maneuvering target,

and using a Sticky-HDP-HMM, as described in Section II.B, to learn an underlying Markov model

that describes the observed target behaviors. Figure 8 shows a general block diagram of the system,

specifying how the planning and learning components interact.

Planner

Agent

World

Future
Reward
Maximization

HDP-HMMGibbs
Sampling

Surveillance Example
Problem Framework

Figure 8. NPBM planning and learning

framework, with components specified for

the surveillance problem.

The objectives of the UAV surveillance mission consist

of two components: to collect data obtained from track-

ing a ground target, and use this data to build a complex

target model including observed behaviors, underlying ve-

hicle dynamics, and transitions between behavior modes;

and to embed this learned model into the planning frame-

work so as to enhance mission performance. Two partic-

ular example missions were executed and are described

in detail below. The first involved using a learned model

to predict anomalous target behavior and elicit an appropriate planning response. The second

involved maximizing the mission reward given a reward function that depended on the underlying

target dynamics and behaviors. For both examples, a ground target simulation was created and

used to drive the target vehicles using the underlying Markov model shown in Figure 11. For the

first mission, a simple 5-state Markov model was used (excluding the anomaly state), and for the

second mission, a 6-state Markov model including the suspicious anomalous behavior mode was

used to drive the target. The learning for both examples consisted of collecting target data and

running Gibbs sampling to learn a Sticky HDP-HMM of the observed target behavior. Figure 9

shows the output and progress of the learning algorithm for the first example. Figure 9(a) shows

the learned behavior modes and classification labels for the observationsa, (b) shows the true obser-

vation clusters, where the observations are enumerated on the vertical axis, and the colors represent

the particular clusters, and (c) shows the algorithm clustering results as a function of the number

of iterations. Note that the first half of the clustering sample iterations displayed are thrown away

as part of the burn-in period, and only the latter half are used in the final cluster assignments.

Results

For the first example, the planning task was to use a UAV to perform surveillance on multiple

ground targets, and to predict what behavior mode the targets were exhibiting, using the estimated

target states and mode parameters provided by the learned model. If an anomaly was detected,

aNote that the learning algorithm discovers modes through clustering of observations, but the clusters do not have
a pre-specified ID or index. Therefore the label numbers for the learned clusters may be different than the label
numbers for the true classification labels. This has no impact on the correctness of the model, since the metric of
interest is whether the same observations are clustered together in the learned model and the true case, independent
of the particular cluster IDs used.

14 of 25

American Institute of Aeronautics and Astronautics

0 50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time [sec]

M
od

e
N

um
be

r

Sticky−HDP−HMM Output Classifications

True
HDP−HMM

(a) Sticky-HDP-HMM Output (b) True Observation Labels (c) Sticky-HDP-HMM Labeling

Figure 9. Sticky-HDP-HMM Learning: Results illustrating the performance of the Sticky-HDP-HMM algo-
rithm for learning underlying Markov models from vehicle time-series data. (a) Sticky-HDP-HMM output
labels vs. true vehicle mode history. (b-c) Image plots of observation labels vs. algorithm iterations: (b) true
observation labels, and (c) Sticky-HDP-HMM observation labels.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

X [m]

Y
 [m

]

Vehicle Trajectories

Target 1
Target 2
UAV

(a) UAV and Target trajectories

0 10 20 30 40 50 60
−2

−1

0

1

Time [sec]

X
 [m

]

Vehicle Trajectories

Target 1
Target 2
UAV

0 10 20 30 40 50 60
−2

0

2

4

Time [sec]

Y
 [m

]

Target 1
Target 2
UAV

(b) Trajectories vs. Time

0 10 20 30 40 50 60

0

1

2

3

4

5

6

Time [sec]
T

ar
ge

t M
od

es

Planner Internal State and Decision

Target 1
Target 2
UAV Decision

(c) Target Modes and Planner
Decisions

Figure 10. Surveillance and tracking example showing anomaly detections and planning responses using a
learned target behavior model.

then the planned UAV response was to create a target following task to track the anomalous

vehicle mode closely (directly overhead), in order to obtain finer resolution data about the newly

detected behavior mode. If no anomalies were detected, then the UAV resumed normal surveillance

operation. A simulation involving a surveillance UAV tracking two ground vehicles was used to test

the performance of this algorithm. The results for this example are shown in Figure 10. Figures

10(a)-(b) show the UAV and target trajectories (top view and trajectories vs. time respectively).

Figure 10(c) shows the target mode history for both targets, where mode 6 was the anomalous

mode, and the corresponding planner decisions, where 1 implied “Follow Target 1”, likewise for 2,

and 0 represented resuming normal surveillance. As shown in the trajectory plots, the UAV remains

equidistant between both targets when the vehicles are behaving as expected, so as to minimize the

time-to-target for either vehicle. When the planner detects an anomaly however, the UAV tracks

the anomalous target more closely, following a trajectory directly overhead the suspicious vehicle.

Once the anomalous target resumes normal operation, the surveillance UAV returns to a position

between both targets.

15 of 25

American Institute of Aeronautics and Astronautics

Forward
Slow

Left
Turn

Stop

Right
Turn

Forward
Fast

Anomaly

Figure 11. Markov model describing target

behavior modes and transitions.

A particularly useful property associated with learn-

ing an HMM as opposed to alternative NPBM models

is that Markov models allow for the prediction of time-

series data. This can be leveraged within the planning

framework to predict future target behavior mode tran-

sitions based on the current observed behavior modes.

This second example serves to illustrate the benefits as-

sociated with behavior predictions. The planning task in

this case was to track ground targets using a surveillance

UAV flying overhead, where rewards were obtained for

being within tracking radius of the targets. However, in

this scenario, the reward function was dependent upon the underlying behavior mode parameters,

where the basic reward was 1, a reward of 2 was obtained when the targets were tracked while ex-

hibit turning modes, and a high reward of 100 was obtained if the targets were caught speeding and

turning erratically (e.g. possible evasive maneuver detected). To test the performance of this algo-

rithm, ground targets were driven using the 6-mode Markov model shown in Figure 11 (including

the anomalous mode), and the Sticky-HDP-HMM was relearned using target data simulated from

this new model. The results for a mission involving a UAV and two ground targets are presented

in Figure 12, where (a) and (b) show the UAV and target trajectories, and (c) shows the estimated

target modes and planning decisions (top) and the planner discounted reward function for both

targets (bottom). Looking closely at plot (c), one can see that at around 32 seconds the planner

switches from tracking Target 2 to tracking Target 1. This corresponds to Target 1 entering “Mode

4”, which corresponds to “Forward Fast” mode in the Markov model. This is because, as observed

in Figure 11, the target can only enter the suspicious mode from the “Forward Fast” mode. The

planner therefore leverages this information to sacrifice immediate gains in favor of potential fu-

ture higher rewards. In particular, in this example, the turning modes have higher rewards than

the forward and stop modes, but the probability of reaching the anomalous mode in the future is

highest when the current target is in “Forward Fast”, therefore, the predictive planner chooses this

mode over the turning modes.

To evaluate the performance of the planning algorithms described above using the learned

Sticky-HDP-HMMs, a set of Monte Carlo simulations were run. For comparison with the Sticky-

HDP-HMM, a Baum-Welch learning algorithm40 was implemented, which learns observation labels,

mode parameters, and transition probabilities, assuming a fixed number of modes. The results for

both example scenarios described above are displayed in Figure 13. As shown in the plots, the

system performance using a Baum-Welch algorithm with a lower number of modes than the actual

is quite poor. As the number of fixed modes used for training the Baum-Welch algorithm approaches

the correct number of modes, the performance of the system increases. In contrast, the Sticky-

HDP-HMM algorithm does not require the specification of a fixed number of modes a priori, but

learns these from the data, achieving comparable performance to the Baum-Welch which uses the

true number of modes. This motivates the use of NPBM strategies that are more flexible than their

16 of 25

American Institute of Aeronautics and Astronautics

−4 −2 0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

1

2

X [m]

Y
 [m

]

Vehicle Trajectories

Target 1
Target 2
UAV

(a) UAV and Target trajectories

0 20 40 60 80 100 120
−5

0

5

10

Time [sec]

X
 [m

]

Vehicle Trajectories

Target 1
Target 2
UAV

0 20 40 60 80 100 120
−10

−5

0

5

Time [sec]

Y
 [m

]

Target 1
Target 2
UAV

(b) Trajectories vs. Time

0 20 40 60 80 100 120
0

2

4

6

8

Time [sec]

E
st

im
at

ed
 M

od
es

Planner Internal State and Decision

Target 1
Target 2
UAV Decision

0 20 40 60 80 100 120
0

1000

2000

3000

Time [sec]

P
re

di
ct

ed
 R

ew
ar

d

Target 1
Target 2

(c) Target Modes and Planner
Decisions

Figure 12. Surveillance and tracking example where the planning algorithm leverages target behavior predic-
tions over a time horizon to improve mission rewards.

parametric counterparts, especially for situations in which the true number of modes is typically

not known well. An interesting observation in Figure 13(a) is that the performance of the system

does not monotonically increase as the number of assumed modes approaches the true value. In

particular, in this example, using 3 modes produces consistently higher performance than using 4

modes. Even though this seems counterintuitive, the reason is that the HMM using Baum-Welch is

forced to cluster multiple true modes into a single modelled mode, and thus learns parameters which

model multiple clusters as well as possible but does not accurately capture the true underlying

model. In the 4 mode model the “Forward Slow” and “Stop” modes were combined, and the

resulting parameters for that mode led to the “Forward Slow” mode erroneously being identified

as anomalous. The 3 mode model consistently combined different modes and generally correctly

identified the “Forward Slow” mode as being normal. Because of how frequently the targets entered

that mode, the effect that the correct identification of this mode had on the score was sufficient to

cause the 3 mode model to perform better than the 4 mode model.

This demonstrates that in these stochastic settings, pursuing a heuristic learning strategy, such

as increasing the number of assumed modes until the performance stops increasing, is not always

advisable since the score using different numbers of fixed modes may exhibit local maxima. This

motivates the use of nonparameteric Bayesian models that can learn the number of modes within

a mathematically consistent framework.

III.B. Task Allocation

We return now to the task allocation example introduced in Section II.A. Even the simplest forms

of the multi-agent task allocation problem in general are combinatorial problems41, for which the

optimal solution can be very difficult to find efficiently. One formulation of this problem is as

17 of 25

American Institute of Aeronautics and Astronautics

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Number of Modes

M
is

si
on

 R
ew

ar
d

Scores Using Different Learned Models

Baum Welch
Sticky−HDP−HMM

(a) Anomaly Detection and Tracking

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Number of Modes

M
is

si
on

 R
ew

ar
d

Scores Using Different Learned Models

Baum Welch
Sticky−HDP−HMM

(b) Behavior Prediction

Figure 13. Monte Carlo results comparing the performance of the planner using an HMM with a fixed number
of modes vs. using a Sticky HDP-HMM.

follows:

max
x,τ

Na∑
i=1

Nt∑
j=1

cij(x, τ ,θ) xij (13)

s.t. G(x, τ ,θ) ≤ b

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where x ∈ {0, 1}Na×Nt , is a set of Na×Nt binary decision variables, xij , which are used to indicate

whether or not task j is assigned to agent i; τ ∈ {R+ ∪ ∅}Na×Nt is the set of real-positive decision

variables τij indicating when agent i will execute its assigned task j (where τij = ∅ if task j is not

assigned to agent i); θ is the set of planning parameters, such as the classification of an uncontrolled

agent; cij is the reward agent i receives for task j given the overall assignment and parameters;

and G = [g1 . . .gNc]
T , with b = [b1 . . . bNc]

T , is a set of Nc possibly nonlinear constraints of the

form gk(x, τ ,θ) ≤ bk that capture transition dynamics, resource limitations, etc.

Planner

Agents

World

Sequential
Greedy
Allocator

DP Mixture &
HBP Model

Gibbs Sampling
& HBP Monte

Carlo

UCB

Task Allocation Example
Problem Framework

Figure 14. NPBM planning and learning

framework, with components specified for

the task allocation problem.

A common approach to dealing with this complexity

is to use a sequential greedy allocation algorithm, where

tasks are allocated by iteratively finding the task/agent

pair which results in the greatest net reward increase,

and allocating that task to that agent. Sequential greedy

solutions have been shown to provide acceptable approxi-

mations which are typically much faster to compute than

the optimal solution42. However, in our task allocation

example problem, there are two added complexities: the

desirability of completing a certain task is stochastic with unknown distribution a priori, as we do

not know how the uncontrolled agents will affect the scores of the tasks; and we would like the

18 of 25

American Institute of Aeronautics and Astronautics

planning algorithm to classify the uncontrolled agents by the behaviors they exhibit, but we do not

know what those behaviors are or how many there are a priori.

Given the identification of behaviors with a DP mixture model and the classification of the

uncontrolled agents based on these behaviors with the HBP, as discussed in Section II, this problem

is transformed into a concurrent reward learning and task allocation problem; essentially, we must

solve the task allocation problem as stated above, except we are no longer given cij for each

uncontrolled agent classification θ. In other words, we have transformed the problem statement

expressed in (13) to the following:

max
x,τ

Na∑
i=1

Nt∑
j=1

Er [cij(x, τ , r(θ))] xij (14)

s.t. G(x, τ ,θ) ≤ b

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where r(θ) is the base reward of doing a task involving an uncontrolled agent of classification θ

with probability distribution p(r|θ), and Er [·] is the expectation over r. This introduces an extra

level of complexity to the task allocation process, because we are not given p(r|θ) and must now

include some notion of our uncertainty in the expectation of cij for each task to be allocated.

This is a problem of deciding between exploitation and exploration; that is to say, the planner

now must decide whether to complete a task because it has a high expected reward or because we

want to reduce the uncertainty in its reward. This question has been studied extensively in the

reinforcement learning community, particularly in the context of the N-armed Bandit problem43.

In that scenario, an autonomous agent is presented with a number of possible actions to take, each

with an unknown but stationary reward distribution, and the agent’s goal is to repeatedly select

actions to take which maximize its reward over time. At each step, the agent can choose to exploit

what it has learned by selecting what it believes to be the highest reward action, or to explore by

selecting what appears to be a suboptimal action for the purpose of reducing its uncertainty in the

reward provided by that action to ensure that it has correctly identified the optimal action. There

are a number of solutions to that problem43, but one which appears useful in the present context,

the UCB algorithm44, is shown in algorithm 2. There are two major advantages to adapting this

algorithm for task allocation over the alternatives. First, the algorithm has a logarithmic upper

bound on regret (the difference between the optimal score and the received one)44; and second, the

selection of which action to take next is deterministic and greedy, which makes it easy to integrate

in common sequential greedy-based task allocation algorithms.

Thus, in this example, we use a sequential greedy task allocation algorithm coupled with UCB

as a policy learning algorithm in the planning framework shown in Figure 14.

Results

In our task allocation simulation, a homogeneous team of three agents with Dubins’ car dynamics

operating in a rectangular 2D domain were responsible for completing uniformly spatially dis-

19 of 25

American Institute of Aeronautics and Astronautics

tributed static surveillance tasks whose creation was modelled as Poisson process events. The

agents used proportional controllers on their turn rates and speeds to direct them to the task lo-

cations. There were 10 classes of uncontrolled agent and 150 different behaviors in the behavior

space Ω = R, where observations of the behaviors were Gaussian distributed. As each task was

created, the involved uncontrolled agent selected some subset of 150 different behaviors through

a hierarchical beta process model, and exhibited this subset by emitting a observation for each

selected behavior.

Algorithm 2 UCB

Try all actions j = 1...J once.

n← number of actions

nj ← 1, ∀j
x̄j ← reward obtained from action j, ∀j
loop

k ← argmax
j

(
x̄j +

√
2 lnn
nj

)
Try action k, receive reward R

x̄k ← x̄knk +R

nk ← nk + 1

x̄k ← x̄k/nk

n← n+ 1

end loop

For 5 of the 10 classes, the reward for com-

pleting a task was Gaussian distributed with

mean sampled from a uniform distribution over

the set [5, 20], while the other 5 classes had re-

ward means sampled from a uniform distribu-

tion over the set [−20,−5]. These reward means

were not revealed to the 3 agents. The cost for

each task was revealed to the agents prior to

completing the task, and as each task was cre-

ated the cost was sampled from a uniform dis-

tribution over [5, 20]. The agents were able to

reject tasks for which the net reward was ex-

pected to be negative.

Before starting the simulation, the 3 agents

were provided with a class-labeled training data set of behavior observations generated by 20 uncon-

trolled agents. To illustrate the effectiveness of nonparametric Bayesian models, both parametric

Gaussian mixture models and Dirichlet process mixture models were used to cluster the behavior

observations. When using the parametric models, the assumed number of clusters was varied be-

tween 0% and 150% of the correct number, and the observations were clustered using Expectation

Maximization to identify cluster parameters and maximum likelihood to assign the observations to

individual clusters. When the nonparametric model was used, observations were clustered using

Gibbs sampling. Using the cluster assignments of the behavior observations for each training ex-

ample, a binary feature vector was constructed. The resulting 20 binary feature vectors were used

to train an HBP classification model, with the method presented in [17].

As each task was created, the team first identified the behaviors exhibited by the involved

uncontrolled agent using the aforementioned clustering procedures, and classified the agent with the

trained HBP model. Note that the uncontrolled agents created during the simulation occasionally

exhibited behaviors not seen in the training data; these were accounted for properly by the DP Gibbs

sampling inference, but the maximum likelihood method used in the parametric model inference

was forced to assign these behaviors to clusters observed in the training data.

Figure 15 shows the mean and standard deviation of the classification accuracy of the para-

metric model as the assumed number of observed behaviors is varied between 1% and 150% of the

actual number of observed behaviors, and of the nonparametric model. While the accuracy of clas-

20 of 25

American Institute of Aeronautics and Astronautics

0 0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Assumed Number of Clusters, % of Correct

M
ea

n
A

cc
ur

ac
y

GMM, EM ML Clustering

DP, Gibbs Sampling Clustering

Figure 15. Mean (in black) and 1 standard deviation away from the mean (in grey) of the classification
accuracy (higher is better) using a) the parametric Gaussian mixture model with Expectation Maximization
and maximum likelihood clustering, assuming a number of clusters between 1% and 150% of the actual number
of clusters, and b) the nonparametric Dirichlet process mixture model with Gibbs sampling clustering. For
case a), this accuracy was calculated at each 5% increment over 20 trials of 1000 classification attempts, each
trial using a random sample of the HBP agent generation model. For case b), the accuracy was calculated
over 45 trials of 1000 classification attempts, each trial using a random sample of the HBP agent generation
model.

sification using a parametric model depends heavily on the assumed number of behavior clusters,

the nonparametric model does not require the specification of this quantity and the classification

accuracy is independent of it.

Given the estimated classifications of the agents, the team used UCB and a sequential greedy

procedure to concurrently allocate and learn the expected reward for the surveillance tasks involving

each of the 10 classes. This resulted in a mean overall team regret over 100 trials shown in Figure

16, calculated as the difference in score between the case where rewards and classifications were

known and where rewards and classifications were unknown and had to be learned. The regret is

shown for a number parametric Gaussian mixture models of behavior observations (as before, where

the assumed number of behaviors exhibited in the training data was 25%, 50%, 75% and 100% of

the actual number of behaviors), for the Dirichlet process mixture model, and for a case where the

agents did not try to classify uncontrolled agents and instead randomly guessed the classification of

each uncontrolled agent. This test once again illustrates the effectiveness of using NPBMs instead

of their parametric counterparts when an appropriate choice of model complexity is unknown a

priori. It may be noted that at the beginning of the simulation, each of the cases performed equally

well on average; this is because UCB is a reinforcement learning algorithm, and therefore made

mistakes early on as it learned what the expected rewards were for conducting surveillance on the

10 uncontrolled agent classes.

21 of 25

American Institute of Aeronautics and Astronautics

0 500 1000 1500
−500

0

500

1000

1500

2000

2500

Time (s)

R
eg

re
t

No Classification

0.25

0.5

0.75

1.00

DP

Figure 16. Means of regrets (lower is better) versus time over 100 trials for the task allocation scenario,
where a) a parametric Gaussian mixture model with an assumed number of behaviors was used for clustering
behavior observations in the training data, b) a Dirichlet process Gaussian mixture model was used for the
same purpose, and c) no classification or behavior clustering was done, and the classifications of agents was
randomly guessed. For case a), the assumed number of behaviors was 25% (red), 50% (magenta), 75% (green),
and 100% (blue).

IV. Conclusion

This paper investigates the use of nonparametric Bayesian models (NPBMs) for multi-agent

planning. Through two illustrative example problems in target surveillance and task allocation,

we have demonstrated that the capability of NPBMs to adapt the model size based on observed

data provides two advantages over their parametric counterparts when used for planning. The first

is that the increased fidelity leads directly to improvements in the performance of the planning

system due to its enhanced predictive capability; and the second is that they enable the planning

algorithms to identify and explicitly deal with uncontrolled agents exhibiting anomalous behaviors,

either by directing agents to learn about those anomalous behaviors to reduce the model uncertainty

in them, or by using previous experience with similar uncontrolled agents to infer an appropriate

response.

Although promising, there are technical challenges associated with the use of NPBMs within a

planning system. Many current inference methods, such as Markov chain Monte Carlo methods,

are computationally intensive and are not incremental. If a nonparametric model is built using an

initial set of data, each time new data is observed these algorithms use the entire set of observed

data to build an updated model. While some amount of computational resources could be saved by

initializing the algorithms intelligently using the previous result, they are not meant for real-time

data collection situations commonly found in planning and control problems, as computation time

increases with the amount of data. Therefore, a current research goal is to develop incremental

inference algorithms for NPBMs.

22 of 25

American Institute of Aeronautics and Astronautics

Further, if such an online inference algorithm were available, it would be advantageous to have a

planning algorithm which could adapt its response alongside the continually evolving model without

having to recompute entire plans, or even possibly adapt its set of known responses and actions to

better accomodate new and changing circumstances. Therefore, another current research goal is to

develop a flexible planner that can adjust its planning strategies within a framework that allows

incremental adjustments to plans.

Acknowledgments

This research was supported by ONR MURI Grant N000141110688. Trevor Campbell is also

supported in part by a Natural Sciences and Engineering Research Council of Canada PGS-M grant.

The authors thank Daniel Levine at MIT for his insights on the example problems considered in

this work and the rest of the MURI team for the illuminating discussions.

References

1 Johnson, E. and Kannan, S., “Adaptive Trajectory Control for Autonomous Helicopters,” Journal of Guidance

Control and Dynamics, Vol. 28, No. 3, May 2005, pp. 524–538.
2 Frazzoli, E., Dahleh, M. A., and Feron, E., “Real-Time Motion Planning for Agile Autonomous Vehicles,” AIAA

Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 116–129.
3 Ioannou, P. A. and Sun, J., Robust Adaptive Control , Prentice-Hall, Upper Saddle River, 1996.
4 Calise, A. J. and Rysdyk, R. T., “Nonlinear adaptive flight control using neural networks,” IEEE Control Systems

Magzine, Vol. 18, No. 6, December 1998, pp. 14–25.
5 Haykin, S., Neural Networks a Comprehensive Foundation, Prentice Hall, USA, Upper Saddle River, 2nd ed.,

1998.
6 Alpaydin, E., Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press,

2004.
7 Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, 1st ed.,

2007.
8 Korb, K. and Nicholson, A., Bayesian Artificial Intelligence, CRC Press, Boca-Raton, FL, 2nd ed., 2011.
9 Fox, E., Choi, D., and Willsky, A., “Nonparametric Bayesian Methods for Large Scale Multi-Target Tracking,”

Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC ’06), Nov 2006, pp. 2009 –2013.
10 Fox, E., Sudderth, E., and Willsky, A., “Hierarchical Dirichlet processes for tracking maneuvering targets,”

Information Fusion, 2007 10th International Conference on, IEEE, 2007, pp. 1–8.
11 Fox, E., Sudderth, E., Jordan, M., and Willsky, A., “Nonparametric Bayesian learning of switching linear dynam-

ical systems,” Advances in Neural Information Processing Systems (NIPS), 2009.
12 Teh, Y. W. and Jordan, M. I., “Hierarchical Bayesian nonparametric models with applications,” Bayesian Non-

parametrics: Principles and Practice, edited by N. Hjort, C. Holmes, P. Mueller, and S. Walker, Cambridge

University Press, Cambridge, UK, 2010.
13 Jordan, M. I., “Hierarchical models, nested models and completely random measures,” Frontiers of Statistical

Decision Making and Bayesian Analysis: In Honor of James O. Berger , edited by M.-H. Chen, D. Dey, P. Mueller,

D. Sun, and K. Ye, Springer-Verlag, New York, 2010.
14 Xu, Z., Tresp, V., Yu, K., and Kriegel, H. P., “Infinite Hidden Relational Models,” Uncertainty in Artificial

Intelligence (UAI), 2006.
15 Antoniak, C., “Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems,” The Annals

of Statistics, , No. 2, 1974, pp. 1152–1174.

23 of 25

American Institute of Aeronautics and Astronautics

16 Hjort, N. L., “Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data,” The

Annals of Statistics, Vol. 18, No. 3, 1990, pp. 1259–1294.
17 Thibaux, R. and Jordan, M. I., “Hierarchical beta processes and the Indian buffet process,” Proc. International

Conference on Artificial Intelligence and Statistics, 2007.
18 Zhou, M., Chen, H., Paisley, J., Ren, L., Sapiro, G., and Carin, L., “Non-Parametric Bayesian Dictionary Learning

for Sparse Image Representations,” Proc. Neural Information Processing Systems, 2009.
19 Rai, P. and III, H. D., “Nonparametric Bayesian Sparse Hierarchical Factor Modeling and Regression,” Proc.

Neural Information Processing Systems, 2008.
20 Rasmussen, C. and Williams, C., Gaussian Processes for Machine Learning , MIT Press, Cambridge, MA, 2006.
21 Fox, E. B., Bayesian Nonparametric Learning of Complex Dynamical Phenomena, Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge MA, December 2009.
22 Ko, J., Klein, D., Fox, D., and Haehnel, D., “GP-UKF: Unscented kalman filters with Gaussian process prediction

and observation models,” Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference

on, 29 2007-nov. 2 2007, pp. 1901 –1907.
23 Murray-Smith, R. and Sbarbaro, D., “Nonlinear adaptive control using non-parametric Gaussian Process prior

models,” 15th Triennial World Congress of the International Federation of Automatic Control , International

Federation of Automatic Control (IFAC), 2002.
24 Murray-Smith, R., Sbarbaro, D., Rasmussen, C., and Girard, A., “Adaptive, cautious, predictive control with

Gaussian process priors,” 13th IFAC Symposium on System Identification, edited by P. V. de Hof, B. Wahlberg,

and S. Weiland, IFAC proceedings volumes, Elsevier Science, 2003, pp. 1195–1200.
25 Zhu, Q., “Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation,” Robotics and Au-

tomation, IEEE Transactions on, Vol. 7, No. 3, jun 1991, pp. 390 –397.
26 Miyajima, C., Nishiwaki, Y., Ozawa, K., Wakita, T., Itou, K., Takeda, K., and Itakura, F., “Driver Modeling

Based on Driving Behavior and Its Evaluation in Driver Identification,” Proceedings of the IEEE , Vol. 95, No. 2,

2007, pp. 427 –437.
27 How, J. P., Fraser, C., Kulling, K. C., Bertuccelli, L. F., Toupet, O., Brunet, L., Bachrach, A., and Roy, N.,

“Increasing autonomy of UAVs,” Robotics and Automation Magazine, IEEE , Vol. 16, No. 2, June 2009, pp. 43–

51.
28 Rasmussen, S. and Shima, T., UAV Cooperative Decision and Control: Challenges and Practical Approaches,

Society for Industrial Mathematics, 2009.
29 Fox, E., Sudderth, E., Jordan, M., and Willsky, A., “Bayesian Nonparametric Methods for Learning Markov

Switching Processes,” IEEE Signal Processing Magazine, Vol. 27, No. 6, 2010, pp. 43 –54.
30 Joseph, J. M., Nonparametric Bayesian Behavior Modeling , Master’s thesis, Massachusetts Institute of Technology,

2008.
31 Joseph, J., Doshi-Velez, F., Huang, A. S., and Roy, N., “A Bayesian Nonparametric Approach to Modeling Motion

Patterns,” Autonomous Robots (accepted), 2011.
32 Ferguson, T., “A Bayesian Analysis of Some Nonparametric Problems,” The Annals of Statistics, Vol. 1, No. 2,

1973, pp. 209–230.
33 Rasmussen, C., “The infinite Gaussian mixture model,” Advances in neural information processing systems,

Vol. 12, 2000, pp. 554–560.
34 Sethuraman, J., “A Constructive Definition of Dirichlet Priors,” Statistia Sinica, Vol. 4, 1994, pp. 639–650.
35 Neal, R., “Markov chain sampling methods for Dirichlet process mixture models,” Journal of computational and

graphical statistics, 2000, pp. 249–265.
36 Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M., “Hierarchical Dirichlet Processes,” Journal of the American

Statistical Association, Vol. 101, No. 476, 2006, pp. 1566–1581.
37 Teh, Y. W. and Jordan, M., Bayesian Nonparametrics in Practice, chap. Hierarchical Bayesian Nonparametric

Models with Applications, 2009.
38 Blei, D. and Jordan, M. I., “Variational Inference for Dirichlet Process Mixtures,” Bayesian Analysis, Vol. 1,

24 of 25

American Institute of Aeronautics and Astronautics

No. 1, 2006, pp. 121–144.
39 Teh, Y. W., Dirichlet Process, Encyclopedia of Machine Learning, Springer-Verlag New York Inc, 2011, pp.

280–290.
40 Baum, L. E., Petrie, T., Soules, G., and Weiss, N., “A Maximization Technique Occurring in the Statistical

Analysis of Probabilistic Functions of Markov Chains,” The Annals of Mathematical Statistics, Vol. 41, No. 1,

1970, pp. 164–171.
41 Johnson, L. B., Ponda, S., Choi, H.-L., and How, J. P., “Asynchronous Decentralized Task Allocation for Dynamic

Environments,” Proceedings of the AIAA Infotech@Aerospace Conference, St. Louis, MO, March 2011.
42 Choi, H.-L., Brunet, L., and How, J. P., “Consensus-Based Decentralized Auctions for Robust Task Allocation,”

IEEE Transactions on Robotics, Vol. 25, No. 4, August 2009, pp. 912–926.
43 Sutton, R. S. and Barto, A. G., Reinforcement Learning: An Introduction, The MIT Press, 1998.
44 Auer, P., Cesa-Bianchi, N., and Fischer, P., “Finite-time Analysis of the Multiarmed Bandit Problem,” Machine

Learning , Vol. 47, 2002, pp. 235–256.

25 of 25

American Institute of Aeronautics and Astronautics

	Introduction
	Introduction to Nonparametric Bayesian Modelling
	Motivating Examples
	Nonparametric Bayesian Models

	Planning with Nonparametric Bayesian Models
	Target Tracking and Surveillance
	Task Allocation

	Conclusion

