1,673 research outputs found

    Characterizing and Predicting Blocking Bugs in Open Source Projects

    Get PDF
    Software engineering researchers have studied specific types of issues such reopened bugs, performance bugs, dormant bugs, etc. However, one special type of severe bugs is blocking bugs. Blocking bugs are software bugs that prevent other bugs from being fixed. These bugs may increase maintenance costs, reduce overall quality and delay the release of the software systems. In this paper, we study blocking bugs in eight open source projects and propose a model to predict them early on. We extract 14 different factors (from the bug repositories) that are made available within 24 hours after the initial submission of the bug reports. Then, we build decision trees to predict whether a bug will be a blocking bugs or not. Our results show that our prediction models achieve F-measures of 21%-54%, which is a two-fold improvement over the baseline predictors. We also analyze the fixes of these blocking bugs to understand their negative impact. We find that fixing blocking bugs requires more lines of code to be touched compared to non-blocking bugs. In addition, our file-level analysis shows that files affected by blocking bugs are more negatively impacted in terms of cohesion, coupling complexity and size than files affected by non-blocking bugs

    Understanding the Impact of Diversity in Software Bugs on Bug Prediction Models

    Get PDF
    Nowadays, software systems are essential for businesses, users and society. At the same time such systems are growing both in complexity and size. In this context, developing high-quality software is a challenging and expensive activity for the software industry. Since software organizations are always limited by their budget, personnel and time, it is not a trivial task to allocate testing and code-review resources to areas that require the most attention. To overcome the above problem, researchers have developed software bug prediction models that can help practitioners to predict the most bug-prone software entities. Although, software bug prediction is a very popular research area, yet its industrial adoption remains limited. In this thesis, we investigate three possible issues with the current state-of-the-art in software bug prediction that affect the practical usability of prediction models. First, we argue that current bug prediction models implicitly assume that all bugs are the same without taking into consideration their impact. We study the impact of bugs in terms of experience of the developers required to fix them. Second, only few studies investigate the impact of specific type of bugs. Therefore, we characterize a severe type of bug called Blocking bugs, and provide approaches to predict them early on. Third, false-negative files are buggy files that bug prediction models incorrectly as non-buggy files. We argue that a large number of false-negative files makes bug prediction models less attractive for developers. In our thesis, we quantify the extent of false-negative files, and manually inspect them in order to better understand their nature

    Analysis of Data mining based Software Defect Prediction Techniques

    Get PDF
    Software bug repository is the main resource for fault prone modules. Different data mining algorithms are used to extract fault prone modules from these repositories. Software development team tries to increase the software quality by decreasing the number of defects as much as possible. In this paper different data mining techniques are discussed for identifying fault prone modules as well as compare the data mining algorithms to find out the best algorithm for defect prediction
    • …
    corecore