526 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Segmentation of Optic Disc in Fundus Images using Convolutional Neural Networks for Detection of Glaucoma

    Full text link
    The condition of the vascular network of human eye is an important diagnostic factor in ophthalmology. Its segmentation in fundus imaging is a difficult task due to various anatomical structures like blood vessel, optic cup, optic disc, macula and fovea. Blood vessel segmentation can assist in the detection of pathological changes which are possible indicators for arteriosclerosis, retinopathy, microaneurysms and macular degeneration. The segmentation of optic disc and optic cup from retinal images is used to calculate an important indicator, cup-to disc ratio( CDR) accurately to help the professionals in the detection of Glaucoma in fundus images.In this proposed work, an automated segmentation of anatomical structures in fundus images such as blood vessel and optic disc is done using Convolutional Neural Networks (CNN) . A Convolutional Neural Network is a composite of multiple elementary processing units, each featuring several weighted inputs and one output, performing convolution of input signals with weights and transforming the outcome with some form of nonlinearity. The units are arranged in rectangular layers (grids), and their locations in a layer correspond to pixels in an input image. The spatial arrangement of units is the primary characteristics that makes CNNs suitable for processing visual information; the other features are local connectivity, parameter sharing and pooling of hidden units. The advantage of CNN is that it can be trained repeatedly so more features can be found. An average accuracy of 95.64% is determined in the classification of blood vessel or not. Optic cup is also segmented from the optic disc by Fuzzy C Means Clustering (FCM). This proposed algorithm is tested on a sample of hospital images and CDR value is determined. The obtained values of CDR is compared with the given values of the sample images and hence the performance of proposed system in which Convolutional Neural Networks for segmentation is employed, is excellent in automated detection of healthy and Glaucoma images

    Unsupervised Retinal Blood Vessel Segmentation Technique using pdAPSO and Difference Image Methods for Detection of Diabetic Retinopathy

    Get PDF
    Retinal vessel segmentation is a practice that has the potential of enhancing accuracy in the diagnosis and timely prevention of illnesses that are related to blood vessels. Acute damage to the retinal vessel has been identified to be the main cause of blindness and impaired vision. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. However, the manual protocol for such detection is laborious and although autonomous methods have been recommended, the accuracy of these methods is often unreliable. We propose the utilization of the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO) and differential image methods in addressing the drawbacks associated with segmentation of retinal vessels in this study. The fusion of pdAPSO and differential image (which focuses on the median filter) produced a significant enhancement in the segmentation of huge and miniscule retinal vessels. In addition, the method also decreased erroneous detection near the edge of the retinal (that is not sensitive to light). The results are favourable for the median filter when compared to mean filter and Gaussian filter. The accuracy rate of 0.9559 (with a specificity of sensitivity rate of 0.9855), and a sensitivity rate of 0.7218 were obtained when tested using the Digital Retinal Images for Vessel Extraction database. The above result is a pointer that our approach will help in detecting and diagnosing the damage done to the retinal and thereby preventing loss of sight

    Advanced Artery / Vein Classification System in Retinal Images for Diabetic Retinopathy

    Get PDF
    Diabetic retinopathy is that the single largest explanation for sight loss and visual impairment in eighteen to sixty five year olds. Screening programs for the calculable 1 to 6 % of the diabetic population are incontestable to be value and sight saving, but unfortunately there are inadequate screening resources. An automatic screening system might facilitate to solve this resource short fall.The retinal vasculature consists of the arteries and veins with their tributaries that are visible at intervals in the retinal images.This paper proposes a graphbased artery vein classification system inretinal images for diabetic retinopathybased on the structural informationextracted from the retinalvasculature. The method at first extracts agraph from the vascular tree and then makes a decision on the typeof each intersection point (graph node).Based on this node types one of the twolabels are assigned to each vessel segment.Finally, the A/V classes are assigned tothe sub graph labels by extracting a set ofintensity features and using artificialneural network. DOI: 10.17762/ijritcc2321-8169.15017

    Fusion based analysis of ophthalmologic image data

    Get PDF
    summary:The paper presents an overview of image analysis activities of the Brno DAR group in the medical application area of retinal imaging. Particularly, illumination correction and SNR enhancement by registered averaging as preprocessing steps are briefly described; further mono- and multimodal registration methods developed for specific types of ophthalmological images, and methods for segmentation of optical disc, retinal vessel tree and autofluorescence areas are presented. Finally, the designed methods for neural fibre layer detection and evaluation on retinal images, utilising different combined texture analysis approaches and several types of classifiers, are shown. The results in all the areas are shortly commented on at the respective sections. In order to emphasise methodological aspects, the methods and results are ordered according to consequential phases of processing rather then divided according to individual medical applications

    Topology-Aware Uncertainty for Image Segmentation

    Full text link
    Segmentation of curvilinear structures such as vasculature and road networks is challenging due to relatively weak signals and complex geometry/topology. To facilitate and accelerate large scale annotation, one has to adopt semi-automatic approaches such as proofreading by experts. In this work, we focus on uncertainty estimation for such tasks, so that highly uncertain, and thus error-prone structures can be identified for human annotators to verify. Unlike most existing works, which provide pixel-wise uncertainty maps, we stipulate it is crucial to estimate uncertainty in the units of topological structures, e.g., small pieces of connections and branches. To achieve this, we leverage tools from topological data analysis, specifically discrete Morse theory (DMT), to first capture the structures, and then reason about their uncertainties. To model the uncertainty, we (1) propose a joint prediction model that estimates the uncertainty of a structure while taking the neighboring structures into consideration (inter-structural uncertainty); (2) propose a novel Probabilistic DMT to model the inherent uncertainty within each structure (intra-structural uncertainty) by sampling its representations via a perturb-and-walk scheme. On various 2D and 3D datasets, our method produces better structure-wise uncertainty maps compared to existing works.Comment: 19 pages, 13 figures, 5 table

    Automated Detection of Retinal Hemorrhage based on Supervised Classifiers

    Get PDF
    Supervised machine learning algorithm based retinal hemorrhage detection and classification is presented. For developing an automated diabetic retinopathy screening system, efficient detection of retinal hemorrhage is important. Splat, which is a high level entity in image segmentation is used to mark out hemorrhage in the pre-processed fundus image. Here, color images of retina are portioned into different segments (splats) covereing the whole image. With the help of splat level and GLCM features extracted from the splats, three classifiers are trained and tested using the relevant features. The ground-truth is established with the help of a retinal expert and using dataset and clinical images the validation was done. The output obtained using the three classifiers had more than 96 % sensitivity and accuracy
    corecore