42 research outputs found

    Learning, Inference, and Replay of Hidden State Sequences in Recurrent Spiking Neural Networks

    Get PDF
    Learning to recognize, predict, and generate spatio-temporal patterns and sequences of spikes is a key feature of nervous systems, and essential for solving basic tasks like localization and navigation. How this can be done by a spiking network, however, remains an open question. Here we present a STDP-based framework extending a previous model [1], that can simultaneously learn to abstract hidden states from sensory inputs and learn transition probabilities [2] between these states in recurrent connection weights

    A learning rule balancing energy consumption and information maximization in a feed-forward neuronal network

    Get PDF
    Information measures are often used to assess the efficacy of neural networks, and learning rules can be derived through optimization procedures on such measures. In biological neural networks, computation is restricted by the amount of available resources. Considering energy restrictions, it is thus reasonable to balance information processing efficacy with energy consumption. Here, we studied networks of non-linear Hawkes neurons and assessed the information flow through these networks using mutual information. We then applied gradient descent for a combination of mutual information and energetic costs to obtain a learning rule. Through this procedure, we obtained a rule containing a sliding threshold, similar to the Bienenstock-Cooper-Munro rule. The rule contains terms local in time and in space plus one global variable common to the whole network. The rule thus belongs to so-called three-factor rules and the global variable could be related to a number of biological processes. In neural networks using this learning rule, frequent inputs get mapped onto low energy orbits of the network while rare inputs aren't learned

    Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.

    Get PDF
    Resistive RAM crossbar arrays offer an attractive solution to minimize off-chip data transfer and parallelize on-chip computations for neural networks. Here, we report a hardware/software co-design approach based on low energy subquantum conductive bridging RAM (CBRAM®) devices and a network pruning technique to reduce network level energy consumption. First, we demonstrate low energy subquantum CBRAM devices exhibiting gradual switching characteristics important for implementing weight updates in hardware during unsupervised learning. Then we develop a network pruning algorithm that can be employed during training, different from previous network pruning approaches applied for inference only. Using a 512 kbit subquantum CBRAM array, we experimentally demonstrate high recognition accuracy on the MNIST dataset for digital implementation of unsupervised learning. Our hardware/software co-design approach can pave the way towards resistive memory based neuro-inspired systems that can autonomously learn and process information in power-limited settings
    corecore