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Abstract

Learning to recognize, predict, and generate spatio–temporal patterns
and sequences of spikes is a key feature of nervous systems, and
essential for solving basic tasks like localization and navigation. How
this can be done by a spiking network, however, remains an open
question. Here we present a STDP-based framework extending a
previous model [1], that can simultaneously learn to abstract hidden
states from sensory inputs and learn transition probabilities [2] between
these states in recurrent connection weights.
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Each output neuron zk encodes a hidden cause over the input, where

p(zk fires at time t) ∝ exp(uk(t)− I(t))

uk(t) =
N∑
i=1

wff
ki · ỹi(t) +

K∑
k′=1

wrec
kk′ · z̃k′(t)

wff
ki = log p(ỹi = 1|zk = 1,w)

wrec
kk′ = log p(zk = 1|z̃k′ = 1,w).

Trained on input generated by a Hidden Markov Model, the activity of
the Winner-Take-All (WTA) network evolves as a single–sample
(unitary) particle filter [3].

Recurrent Learning Rule

Depression on every presynaptic spike; weight– and time– dependent
potentiation if postsynaptic neuron fires within a time window.

∆wrec
kk′ ∝

{
−1 after presynaptic spike, and
e−wkk′·z̃k′(t) after pre–post pair

E[∆wrec
kk′] = 0⇔ wrec

kk′ = log p(zk = 1|z̃k′ = 1,w)

Learning a Hidden Markov Model

A four–state HMM was presented to the network, with states defined
by differing Poisson firing statistics over 225 input neurons.
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State–dependent Inference

A network model with additional transition neurons for encoding and
learning Finite State Machines (FSMs) was trained on observations
from a four–state maze traversal task. After training, the network
resolved the current state given only transition symbols.
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Inference Results
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Temporal Replay

The network was trained on input defined by a spatio–temporal pattern
with two stochastically branching trajectories.
I Input neurons indicated the current color (black or white) of the pixels
I Network learned both the spatial attributes (feedforward weights) and the temporal progression

(recurrent weights) of the input pattern
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After training, the network produced samples of states corresponding to
a stochastic “replay” of observed trajectories.
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Conclusions

We have presented a recurrent spiking neural network architecture,
which can be trained to perform dynamical Bayesian inference of hidden
states. The same network can be used to generate random sample
trajectories through the state space by spontaneous activity in the WTA
(using the recurrent connections as a generative Bayesian model) or can
be used as a probabilistic FSM in which transitions are actively
triggered by movement signals.
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