468 research outputs found

    Bases of T-meshes and the refinement of hierarchical B-splines

    Get PDF
    In this paper we consider spaces of bivariate splines of bi-degree (m, n) with maximal order of smoothness over domains associated to a two-dimensional grid. We define admissible classes of domains for which suitable combinatorial technique allows us to obtain the dimension of such spline spaces and the number of tensor-product B-splines acting effectively on these domains. Following the strategy introduced recently by Giannelli and Juettler, these results enable us to prove that under certain assumptions about the configuration of a hierarchical T-mesh the hierarchical B-splines form a basis of bivariate splines of bi-degree (m, n) with maximal order of smoothness over this hierarchical T-mesh. In addition, we derive a sufficient condition about the configuration of a hierarchical T-mesh that ensures a weighted partition of unity property for hierarchical B-splines with only positive weights

    Bivariate hierarchical Hermite spline quasi--interpolation

    Full text link
    Spline quasi-interpolation (QI) is a general and powerful approach for the construction of low cost and accurate approximations of a given function. In order to provide an efficient adaptive approximation scheme in the bivariate setting, we consider quasi-interpolation in hierarchical spline spaces. In particular, we study and experiment the features of the hierarchical extension of the tensor-product formulation of the Hermite BS quasi-interpolation scheme. The convergence properties of this hierarchical operator, suitably defined in terms of truncated hierarchical B-spline bases, are analyzed. A selection of numerical examples is presented to compare the performances of the hierarchical and tensor-product versions of the scheme

    Characterization of bivariate hierarchical quartic box splines on a three-directional grid

    Get PDF
    International audienceWe consider the adaptive refinement of bivariate quartic C 2-smooth box spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quar-tic polynomials, which will be called the space of special quartics. Given a bounded domain ℩ ⊂ R 2 and finite sequence (G ℓ) ℓ=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells from all levels such that their union covers the entire domain. Using a suitable selection procedure allows to define a basis spanning the hierarchical box spline space. The paper derives a characterization of this space. Under certain mild assumptions on the hierarchical grid, the hierarchical spline space is shown to contain all C 2-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this case we can give an affirmative answer to the completeness questions for the hierarchical box spline basis

    Multilevel refinable triangular PSP-splines (Tri-PSPS)

    Get PDF
    A multi-level spline technique known as partial shape preserving splines (PSPS) (Li and Tian, 2011) has recently been developed for the design of piecewise polynomial freeform geometric surfaces, where the basis functions of the PSPS can be directly built from an arbitrary set of polygons that partitions a giving parametric domain. This paper addresses a special type of PSPS, the triangular PSPS (Tri-PSPS), where all spline basis functions are constructed from a set of triangles. Compared with other triangular spline techniques, Tri-PSPS have several distinctive features. Firstly, for each given triangle, the corresponding spline basis function for any required degree of smoothness can be expressed in closed-form and directly written out in full explicitly as piecewise bivariate polynomials. Secondly, Tri-PSPS are an additive triangular spline technique, where the spline function built from a given triangle can be replaced with a set of refined spline functions built on a set of smaller triangles that partition the initial given triangle. In addition, Tri-PSPS are a multilevel spline technique, Tri-PSPS surfaces can be designed to have a continuously varying levels of detail, achieved simply by specifying a proper value for the smoothing parameter introduced in the spline functions. In terms of practical implementation, Tri-PSPS are a parallel computing friendly spline scheme, which can be easily implemented on modern programmable GPUs or on high performance computer clusters, since each of the basis functions of Tri-PSPS can be directly computed independent of each other in parallel

    Adaptive isogeometric analysis with hierarchical box splines

    Get PDF
    Isogeometric analysis is a recently developed framework based on finite element analysis, where the simple building blocks in geometry and solution space are replaced by more complex and geometrically-oriented compounds. Box splines are an established tool to model complex geometry, and form an intermediate approach between classical tensor-product B-splines and splines over triangulations. Local refinement can be achieved by considering hierarchically nested sequences of box spline spaces. Since box splines do not offer special elements to impose boundary conditions for the numerical solution of partial differential equations (PDEs), we discuss a weak treatment of such boundary conditions. Along the domain boundary, an appropriate domain strip is introduced to enforce the boundary conditions in a weak sense. The thickness of the strip is adaptively defined in order to avoid unnecessary computations. Numerical examples show the optimal convergence rate of box splines and their hierarchical variants for the solution of PDEs

    Skewed Factor Models Using Selection Mechanisms

    Get PDF
    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-t, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset

    On the dimension of spline spaces on planar T-meshes

    Get PDF
    We analyze the space of bivariate functions that are piecewise polynomial of bi-degree \textless{}= (m, m') and of smoothness r along the interior edges of a planar T-mesh. We give new combinatorial lower and upper bounds for the dimension of this space by exploiting homological techniques. We relate this dimension to the weight of the maximal interior segments of the T-mesh, defined for an ordering of these maximal interior segments. We show that the lower and upper bounds coincide, for high enough degrees or for hierarchical T-meshes which are enough regular. We give a rule of subdivision to construct hierarchical T-meshes for which these lower and upper bounds coincide. Finally, we illustrate these results by analyzing spline spaces of small degrees and smoothness
    • 

    corecore