52,493 research outputs found

    Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach

    Get PDF
    The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber: radiation, convection and conduction of heat over walls. A staggered approach is used to couple the reactive flow field to the heat conduction through the solid and both domains are solved using two implementations of the same code. Numerical results are compared against experimental data and an assessment of thermal boundary conditions to improve the prediction of the reactive flow field is given.The research leading to these results has received funding through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7, 2007–2013) under the Grant agreement No. FP7-290042 for the project COPA-GT as well as the European Union’s Horizon 2020 Programme (2014–2020) and from Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP) under the HPC4E Project, Grant agreement No. 689772. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación (RES). Finally, the authors would like to thank O. Lammel for the useful discussions and kindly providing the data for the comparison.Peer ReviewedPostprint (published version

    Preliminary analysis of fuel tank impact

    Get PDF
    Following the accident involving the Air France Concorde in 2000 the effects of fluid structure interactions resulting from the impact of a fluid filled tank has become a cause for concern. The work reported here relates to the design of a series of experiments loosely based upon the Concorde incident which aimed to assess whether the probable failure mode in the Concorde accident could occur in land based vessels. Preliminary numerical analyses were undertaken for two of the nine cases that were investigated experimentally in which an empty tank was impacted by a projectile with a velocity of 14m/s and 21.9m/s Initial numerical results for the acceleration at two points on the tank surface and the deformation at the impact zone showed good agreement with test data. Future work is discussed including further numerical modelling incorporating fluid structure interactions for the analysis of the cases when the tank is partially full or completely full

    Shear-thinning in dense colloidal suspensions and its effect on elastic instabilities: from the microscopic equations of motion to an approximation of the macroscopic rheology

    Full text link
    In the vicinity of their glass transition, dense colloidal suspensions acquire elastic properties over experimental timescales. We investigate the possibility of a visco-elastic flow instability in curved geometry for such materials. To this end, we first present a general strategy extending a first-principles approach based on projections onto slow variables (so far restricted to strictly homogeneous flow) in order to handle inhomogeneities. In particular, we separate the advection of the microstructure by the flow, at the origin of a fluctuation advection term, from the intrinsic dynamics. On account of the complexity of the involved equations, we then opt for a drastic simplification of the theory, in order to establish its potential to describe instabilities. These very strong approximations lead to a constitutive equation of the White-Metzner class, whose parameters are fitted with experimental measurements of the macroscopic rheology of a glass-forming colloidal dispersion. The model properly accounts for the shear-thinning properties of the dispersions, but, owing to the approximations, the description is not fully quantitative. Finally, we perform a linear stability analysis of the flow in the experimentally relevant cylindrical (Taylor-Couette) geometry and provide evidence that shear-thinning strongly stabilises the flow, which can explain why visco-elastic instabilities are not observed in dense colloidal suspensions

    A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes

    Full text link
    A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on co-located computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study

    The XDEM Multi-physics and Multi-scale Simulation Technology: Review on DEM-CFD Coupling, Methodology and Engineering Applications

    Get PDF
    The XDEM multi-physics and multi-scale simulation platform roots in the Ex- tended Discrete Element Method (XDEM) and is being developed at the In- stitute of Computational Engineering at the University of Luxembourg. The platform is an advanced multi- physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose the simulation framework relies on coupling various predictive tools based on both an Eulerian and Lagrangian approach. Eulerian approaches represent the wide field of continuum models while the Lagrange approach is perfectly suited to characterise discrete phases. Thus, continuum models include classical simulation tools such as Computa- tional Fluid Dynamics (CFD) or Finite Element Analysis (FEA) while an ex- tended configuration of the classical Discrete Element Method (DEM) addresses the discrete e.g. particulate phase. Apart from predicting the trajectories of individual particles, XDEM extends the application to estimating the thermo- dynamic state of each particle by advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either CFD or FEA opens up a wide range of applications as diverse as pharmaceutical industry e.g. drug production, agriculture food and processing industry, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology

    A variational framework for flow optimization using semi-norm constraints

    Full text link
    When considering a general system of equations describing the space-time evolution (flow) of one or several variables, the problem of the optimization over a finite period of time of a measure of the state variable at the final time is a problem of great interest in many fields. Methods already exist in order to solve this kind of optimization problem, but sometimes fail when the constraint bounding the state vector at the initial time is not a norm, meaning that some part of the state vector remains unbounded and might cause the optimization procedure to diverge. In order to regularize this problem, we propose a general method which extends the existing optimization framework in a self-consistent manner. We first derive this framework extension, and then apply it to a problem of interest. Our demonstration problem considers the transient stability properties of a one-dimensional (in space) averaged turbulent model with a space- and time-dependent model "turbulent viscosity". We believe this work has a lot of potential applications in the fluid dynamics domain for problems in which we want to control the influence of separate components of the state vector in the optimization process.Comment: 30 page
    • …
    corecore