93 research outputs found

    13th SC@RUG 2016 proceedings 2015-2016

    Get PDF

    13th SC@RUG 2016 proceedings 2015-2016

    Get PDF

    Scalable exploration of highly detailed and annotated 3D models

    Get PDF
    With the widespread availability of mobile graphics terminals andWebGL-enabled browsers, 3D graphics over the Internet is thriving. Thanks to recent advances in 3D acquisition and modeling systems, high-quality 3D models are becoming increasingly common, and are now potentially available for ubiquitous exploration. In current 3D repositories, such as Blend Swap, 3D Café or Archive3D, 3D models available for download are mostly presented through a few user-selected static images. Online exploration is limited to simple orbiting and/or low-fidelity explorations of simplified models, since photorealistic rendering quality of complex synthetic environments is still hardly achievable within the real-time constraints of interactive applications, especially on on low-powered mobile devices or script-based Internet browsers. Moreover, navigating inside 3D environments, especially on the now pervasive touch devices, is a non-trivial task, and usability is consistently improved by employing assisted navigation controls. In addition, 3D annotations are often used in order to integrate and enhance the visual information by providing spatially coherent contextual information, typically at the expense of introducing visual cluttering. In this thesis, we focus on efficient representations for interactive exploration and understanding of highly detailed 3D meshes on common 3D platforms. For this purpose, we present several approaches exploiting constraints on the data representation for improving the streaming and rendering performance, and camera movement constraints in order to provide scalable navigation methods for interactive exploration of complex 3D environments. Furthermore, we study visualization and interaction techniques to improve the exploration and understanding of complex 3D models by exploiting guided motion control techniques to aid the user in discovering contextual information while avoiding cluttering the visualization. We demonstrate the effectiveness and scalability of our approaches both in large screen museum installations and in mobile devices, by performing interactive exploration of models ranging from 9Mtriangles to 940Mtriangles

    Visualization and analysis of diffusion tensor fields

    Get PDF
    technical reportThe power of medical imaging modalities to measure and characterize biological tissue is amplified by visualization and analysis methods that help researchers to see and understand the structures within their data. Diffusion tensor magnetic resonance imaging can measure microstructural properties of biological tissue, such as the coherent linear organization of white matter of the central nervous system, or the fibrous texture of muscle tissue. This dissertation describes new methods for visualizing and analyzing the salient structure of diffusion tensor datasets. Glyphs from superquadric surfaces and textures from reactiondiffusion systems facilitate inspection of data properties and trends. Fiber tractography based on vector-tensor multiplication allows major white matter pathways to be visualized. The generalization of direct volume rendering to tensor data allows large-scale structures to be shaded and rendered. Finally, a mathematical framework for analyzing the derivatives of tensor values, in terms of shape and orientation change, enables analytical shading in volume renderings, and a method of feature detection important for feature-preserving filtering of tensor fields. Together, the combination of methods enhances the ability of diffusion tensor imaging to provide insight into the local and global structure of biological tissue
    corecore