1,057 research outputs found

    Bandwidth-efficient threshold EC-DSA revisited: Online/Offline Extensions, Identifiable Aborts, Proactivity and Adaptive Security

    Get PDF
    Due to their use in crypto-currencies, threshold ECDSA signatures have received much attention in recent years. Though efficient solutions now exist both for the two party, and the full threshold scenario, there is still much room for improvement, be it in terms of protocol functionality, strengthening security or further optimising efficiency. In the past few months, a range of protocols have been published, allowing for a non interactive -- and hence extremely efficient -- signing protocol; providing new features, such as identifiable aborts (parties can be held accountable if they cause the protocol to fail), fairness in the honest majority setting (all parties receive output or nobody does) and other properties. In some cases, security is proven in the strong simulation based model. We combine ideas from the aforementioned articles with the suggestion of Castagnos \textit{et al.} (PKC 2020) to use the class group based CL\mathsf{CL} framework so as to drastically reduce bandwidth consumption. Building upon this latter protocol we present a new, maliciously secure, full threshold ECDSA protocol that achieving additional features without sacrificing efficiency. Our most basic protocol boasts a non interactive signature algorithm and identifiable aborts. We also propose a more advanced variant that also achieves adaptive security (for the nn-out-of-nn case) and proactive security. Our resulting constructions improve upon state of the art Paillier\u27s based realizations achieving similar goals by up to a 10 factor in bandwidth consumption

    Opportunistic Access in Frequency Hopping Cognitive Radio Networks

    Get PDF
    Researchers in the area of cognitive radio often investigate the utility of dynamic spectrum access as a means to make more efficient use of the radio frequency spectrum. Many studies have been conducted to find ways in which a secondary user can occupy spectrum licensed to a primary user in a manner which does not disrupt the primary user\u27s performance. This research investigates the use of opportunistic access in a frequency hopping radio to mitigate the interference caused by other transmitters in a contentious environment such as the unlicensed 2.4 GHz region. Additionally, this work demonstrates how dynamic spectrum access techniques can be used not only to prevent interfering with other users but also improve the robustness of a communication system

    Effective Capacity Analysis for Cognitive Networks under QoS Satisfaction

    Get PDF
    Spectrum sensing and dynamic spectrum access (DSA) techniques in cognitive radio networks (CRN) have been extensively investigated since last decade. Recently, satisfaction of quality-of-service (QoS) demands for secondary users (SU) has attracted great attention. The SU can not only discover the transmission opportunities, but also cognitively adapts the dynamic spectrum access strategies to its own QoS requirement and the environment variations. In this paper, we study how the delay QoS requirement affects the strategy on network performance. We first treat the delay-QoS in interference constrained cognitive radio network by applying the effective capacity concept, focusing on the two dominant DSA schemes: underlay and overlay. We obtain the effective capacity of the secondary network and determine the power allocation policies that maximize the throughput of the cognitive user. The underlay and overlay approaches may have their respective advantages under diverse propagation environment and system parameters. If the cognitive network can dynamically choose the DSA strategy under different environment, its performance could be further improved. We propose a selection criterion to determine whether to use underlay or overlay scheme under the given QoS constraint and the PUs’ spectrum-occupancy probability. Thus, the throughput of the CRN could be increased. Performance analysis and numerical evaluations are provided to demonstrate the effective capacity of CRN based on the underlay and the overlay schemes, taking into consideration the impact of delay QoS requirement and other related parameters

    Distributed-Proof-of-Sense: Blockchain Consensus Mechanisms for Detecting Spectrum Access Violations of the Radio Spectrum

    Get PDF
    The exponential growth in connected devices with Internet-of-Things (IoT) and next-generation wireless networks requires more advanced and dynamic spectrum access mechanisms. Blockchain-based approaches to Dynamic Spectrum Access (DSA) seem efficient and robust due to their inherited characteristics such as decentralization, immutability and transparency. However, conventional consensus mechanisms used in blockchain networks are expensive to be used due to the cost, processing and energy constraints. Moreover, addressing spectrum violations (i.e., unauthorized access to the spectrum) is not well-discussed in most blockchain-based DSA systems in the literature. In this work, we propose a newly tailored energyefficient consensus mechanism called “Distributed-Proof-of-Sense (DPoS)” that is specially designed to enable DSA and detect spectrum violations. The proposed consensus algorithm motivates blockchain miners to perform spectrum sensing, which leads to the collection of a full spectrum of sensing data. An elliptic curve cryptography-based zero-knowledge proof is used as the core of the proposed mechanism. We use MATLAB simulations to analyze the performance of the consensus mechanism and implement several consensus algorithms in a microprocessor to highlight the benefits of adopting the proposed system
    • …
    corecore