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Abstract  

Spectrum sensing and dynamic spectrum access (DSA) techniques in cognitive radio networks (CRN) have 
been extensively investigated since last decade. Recently, satisfaction of quality-of-service (QoS) demands for 
secondary users (SU) has attracted great attention. The SU can not only discover the transmission 
opportunities, but also cognitively adapts the dynamic spectrum access strategies to its own QoS requirement 
and the environment variations. In this paper, we study how the delay QoS requirement affects the strategy on 

network performance. We first treat the delay-QoS in interference constrained cognitive radio network by 
applying the effective capacity concept, focusing on the two dominant DSA schemes: underlay and overlay. 
We obtain the effective capacity of the secondary network and determine the power allocation policies that 
maximize the throughput of the cognitive user. The underlay and overlay approaches may have their 
respective advantages under diverse propagation environment and system parameters. If the cognitive 
network can dynamically choose the DSA strategy under different environment, its performance could be 
further improved. We propose a selection criterion to determine whether to use underlay or overlay scheme 
under the given QoS constraint and the PUs’ spectrum-occupancy probability. Thus, the throughput of the 
CRN could be increased. 

Performance analysis and numerical evaluations are provided to demonstrate the effective capacity of CRN 
based on the underlay and the overlay schemes, taking into consideration the impact of delay QoS 
requirement and other related parameters. 

Keywords: Underlay; Overlay; Effective capacity; 𝑄𝑜𝑆 requirement; Selection criterion.   

 
1.  Introduction 

 Recent advances in spectrum-sharing techniques have enabled different wireless communication technologies to coexist 

and cooperate towards achieving a better gain from the limited spectrum resources. This has been motivated by the fact 

that most of the allocated spectrum experiences low utilization [1]. Certain authorities, as Federal Communications 

Commission (FCC) for radio spectrum regulation, divide the radio spectrum into many frequency bands. Licenses are 

provided to operators, typically for long time such as one or two decades. Depending on the type of radio service that is 

then provided by the licensees, frequency bands are often idle in many areas, and inefficiently used. Moreover, radio 

systems can dynamically use and release spectrum wherever and whenever they are available (“spectrum agile radios"). 

This dynamic spectrum access by spectral agile radios helps to minimize unused spectral bands (“white spaces"). The 

main challenge for the cognitive users (CUs) is to control their interference levels and to guarantee their own quality of 

service requirement by transmitting at the desired rates and limiting the delay experienced by the data in the buffers [2]. 

Among several dynamic spectrum access (DSA) schemes, overlay, underlay, and sensing-based spectrum sharing, are 

three dominant schemes in cognitive radio networks. Under the overlay scheme [3,4], the CUs can only access the PUs’ 

spectrum that are idle,  i.e. , not currently used by PUs, where the activities of the PUs are monitored through spectrum 

sensing. For the underlay scheme [4-6] the CUs are allowed to use the PUs’ spectrum even when PUs are active, but 

needed to control the transmit power of CUs to make the interference to PUs to a tolerable level. The sensing-based 

spectrum sharing [7,8] is a combination of underlay and overlay, in which CUs should adapt their transmit power to the 
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spectrum sensing results. While the sensing-based approach usually imposes high implementation complexity. 

Recently, the problem of quality-of-service (QoS) satisfaction for cognitive users has attracted lots of research attention. 

The functions of cognition radio networks have been broadened such that the CUs can not only detect the transmission 

opportunities under the specific DSA approach, but also cognitively adapt the dynamic spectrum access strategies to the 

QoS requirement and the channel variations. In this paper, we focus on the QoS driven underlay and overlay schemes. 

Resource allocation in cognitive network has been investigated extensively. The joint bandwidth and power allocation has 

been considered in [6], and the optimal resource allocation schemes are investigated under all possible combinations of 

the average/peak transmit and interference power constraints. In [6,9], the underlay and overlay schemes are compared. 

Capacity analysis indicates that the overlay scheme offers higher network throughput. Moreover the authors in [9] indicate 

that in the presence of the primary users, the interference temperature constraint limits network capacity in the overlay 

scheme more than its underlay capacity counterpart. The impact of the secondary service on the primary systems in the 

overlay and underlay schemes is studied in [10] using stochastic geometry approach. The authors conclude that by 

combining the underlay and overlay schemes, the negative impacts on the primary service could be decreased. 

Sensing-based spectrum sharing is introduced in [9], in which a heuristic algorithm to find the optimal power allocation is 

proposed. Two different power allocation strategies for the secondary service transmitter based on the spectrum sensing 

output are introduced. 

These works have not taken into consideration the requirement on QoS constraints in mixed access CRNs, thus the 

developed schemes may cause performance degradation for CUs. In this paper, the concept of effective capacity proposed 

in [11], which is the maximum constant arrival rate that can be supported by the given time-varying service process is 

applied. In [12,13], the maximization of effective capacity is studied given that the delay QoS is satisfied. The underlay 

scheme is assumed in [6]. While in [13] the analysis of the effective capacity is mainly based on channel estimation and 

sensing results of the overlay strategy. Efficient resource allocation with statistically guaranteed delay QoS for the hybrid 

DSA schemes to achieve maximum capacity of the CUs is needed. We present a systematic approach which suggests the 

best access scheme for a given system requirement. The mixed strategy proposed in this paper is similar in spirit to the 

sensing-based spectrum sharing proposed in [7] except that, in this paper, the effective capacity is adopted instead of 

ergodic capacity and the general case of Gamma distribution is assumed for the channel fading. Also in [7], just overlay 

scheme is analyzed. In this study, both DSA schemes are studied. We further introduce a new selection criterion to obtain 

the best access scheme. 

For the overlay strategy, we consider the spectrum sensing errors and observe that an optimal sensing time exists under a 

given QoS constraint. This optimal sensing time increases as the QoS constraint is more stringent. Moreover, how the 

transmit power and interference power of both underlay and overlay strategies vary with the primary user activities is 

investigated. It is found that the transmit power of the overlay strategy and the interference power of the underlay strategy 

always remain unchanged. However, the transmit power of the underlay strategy and the interference power of the overlay 

strategy vary with PU’s spectrum-occupancy probabilities. Specifically, as the spectrum-idle probability increases, both 

the transmit power of the underlay strategy and the interference power of the overlay strategy are reduced. 

Both underlay and overlay approaches may have their respective advantages under diverse propagation environment and 

system parameters. For example, the less busy the primary channel with loose QoS requirement, it is preferred to use the 

overlay scheme for higher achievable capacity regardless of its higher complexity in implementation. While, when the 

system is more harsh ( i.e. , low idle periods and more stringent QoS constraint), underlay scheme is preferred to maintain 

the achievable capacity performance. We propose a selection criterion to make the cognitive network dynamically choose 

the DSA strategy under different environments. 

The rest of this paper is organized as follows. The system model, assumptions, and the concept of the statistical delay QoS 

requirement and its reflections on the effective capacity are presented in Section 2. In Section 3 the effective capacity 

optimization and optimal resource allocation for the underlay scheme are studied. In Section 4, spectrum sensing, 

effective capacity, and power allocation for the overlay case are studied in three subsequent subsections. Then we propose 

an access strategy selection criterion in Section 5. Performance analysis and numerical results are presented in Section 6. 

Section 7 concludes the paper. 

  



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066     

Volume 5, Issue 3 available at www.scitecresearch.com/journals/index.php/jisct                        500| 

 

 

2.  System Model and Effective Capacity Definition 

2.1  System Model and Assumptions 
A typical CRN model is assumed [7], in which a cognitive wireless network coexists with a primary wireless network by 

sharing B Hz spectrum band as shown in Fig 1. We assume that there is no direct signalling between the primary and 

cognitive networks. The cognitive network includes a CU transmitter TS  and a CU receiver RS . The primary network 

includes a PU transmitter TP  and a PU receiver RP .  

 
Fig  1: The additive interference channel for a pair of 

primary and cognitive links with channel gain 

coefficients: 𝐠𝐩𝐩, 𝐠𝐬𝐬, 𝐠𝐩𝐬, 𝐠𝐬𝐩. 

 

The primary transmitter adjusts its transmit power Sp  based only on its own transmission requirement. The secondary 

transmitter transmits with variable power Ss  which should not exceed a maximum value of Ss
m . All channel power gains 

are assumed to be stationary and ergodic independent random processes. These system gains are grouped in the vector 

G = [gss , gsp , gpp , gps ]  for a specific realization as shown in Fig 1. All channel power gains are assumed to be 

independent and identically distributed (i. i. d.), and follow Gamma distribution. Gamma distribution fits the experimental 

data [14], and it has been considered as an adequate model to characterize wireless channel fading such as slow fading 

(shadowing) or even fast fading [14,15]. It is a general case of exponential distribution, and it closely approximates the 

lognormal distribution. It is also assumed that the cognitive transmitter has perfect information of interference channel 

gains. These information can be obtained by direct feedback from the primary receiver or indirect feedback from a 

third-party such as a band manager which interposes between the primary and cognitive users [16]. It can also be obtained 

through periodic sensing of pilot signal from the primary receiver assuming the channel reciprocity. 

The corresponding probability density functions (pdf)s: fgss
, fgsp

, fgpp
, and fgps

, are given as  

𝑓𝑋(𝑥) =
𝑥𝜇−1𝑒−𝑥/𝑘

Γ(𝜇 )𝑘𝜇
;         𝑥 ≥ 0, (1) 

 where Γ(⋅) is the Gamma function which is defined as  

Γ(z) =

 
 
 

 
 (z− 1)! =   

z−1

i=1

i,  if  z  is  positive  integer; 

  
∞

0

e−ttz−1dt,  if  z  is  real  or  complex.

  

In (1), μ is known as the shape parameter of the distribution, and k is the scale parameter. The average 𝔼[X] = μk, and 

𝕍ar[X] = μk2. Without loss of generality, we assume the scale parameter k = 1. The background noise at both receivers 

are modeled as AWGN independent circularly symmetric complex Gaussian (CSCG) random variable with zero-mean and 

variance σs
2 and σp

2  respectively. For all the used abbreviations below, the common subscripts s and p refer to the 

cognitive user and primary user respectively, while the superscripts u, o, {0,1} and ∗ refer to the underlay, overlay, 

state number and optimal value respectively. The maximum interference at the primary receiver should be kept below a 

threshold value Ith . This value is a system parameter which can be specified by the primary network operator or by the 
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spectrum regulator. Small scale variations are assumed in this paper, where other variations such as distance path loss 

dependent or shadowing impacts are considered as background or/and interference constraint. 

In this paper, resource allocation policies will be developed for both the underlay and overlay based CRNs with statistical 

delay QoS guarantees. As mentioned above, in the underlay scheme, the secondary user is required to always satisfy the 

interference constraint. Therefore, even in circumstances when the primary user is not transmitting, the cognitive user has 

to adjust its transmission power based on the interference threshold constraint. Consequently, the derived resource 

allocation schemes should not be only a function of system gain vector G, but also will be varied with different QoS 

requirement. In order to clearly illustrate our concept, we assume that each frame at the data link layer of the CU 

transmitter has the same time duration. The frames are stored at the transmit buffer and split into bit-streams at the 

physical layer. The CU transmitter employs adaptive modulation and power control based on the statistical QoS 

constraint and the system gain vector G, which can be perfectly derived by the CU transmitter. 

The factors that will impact the resource allocation of the cognitive network include: (1) the average transmit and 

interference power constraints; (2) the statistical delay QoS requirement; (3) the primary network activities; (4) the DSA 

strategy used by the cognitive network; and (5) the interference caused by the PU transmitter on the cognitive network. 

The existing literatures studied the underlay strategy, while the primary network activities are ignored. In this paper, the 

PUs’ spectrum-occupancy probability will be taken into consideration even for the underlay strategy. It is assumed that 

the primary network will choose whether to use the spectrum or not at the beginning of each frame. As the 

spectrum-occupancy status of the primary network can be viewed as the two hypothesis tests from the CU’s perspective, 

we denote the probability that the primary network does not occupy the spectrum as Pi  (idle probability), and the 

probability that the spectrum is occupied as Pb  (busy probability). We assumed that these probabilities will not change 

during the frame interval. 

2.2  Delay 𝐐𝐨𝐒 Guarantees and Channel Capacity  

 Quality of service (QoS) guarantees in terms of delay constraint play a critically important role in modern wireless 

networks. Non-real-time services such as data, aim at maximizing the throughput with a loose delay constraint. While for 

real-time services, such as multimedia and video conference, the QoS requirement needs a stringent delay-bound to 

achieve high spectral efficiency. Some other services falling in between such as web browsing and paging system, which 

are delay-sensitive but the delay QoS requirements are not as stringent as those of real-time services. Therefore, the 

diverse services impose totally different delay QoS constraints, which bring great challenges to the design of future 

wireless networks. 

In wireless communications, the most scarce radio resources are power and spectral bandwidth. As a result, extensive 

research has been devoted to the techniques that can enhance the spectral efficiency of wireless systems. These techniques 

use the concept of Shannon capacity based on the information theory[17]. Power and rate adaptation has been widely 

considered as one of the key solutions to improve the spectral efficiency. Water-filling algorithm is one of well known 

scheme that maximizes spectral efficiency[18], in which more power is assigned to a channel which is in good condition 

and less power when the channel becomes worse. When the channel quality is below a certain threshold, no power is 

allocated. Additionally, total channel inversion algorithm has a different idea of power and rate adaptation[18], in which 

more power is assigned to a channel in a deep fading state and less power for the good channel. This is to keep a constant 

signal-to-noise ratio, such that a constant rate service process can be obtained. Apparently, water-filling is better than total 

channel inversion since the former provides higher spectral efficiency[19]. It is important to note that Shannon theory 

does not place any restrictions on complexity and delay. However, a natural question is whether the former is also better 

than the latter in terms of QoS guarantees? In order to answer the above question, it is necessary to take the QoS metrics 

into account when applying power and rate adaptation. 

The dual concepts of effective bandwidth and effective capacity give us a powerful approach to evaluate the statistical 

QoS performance from the networking perspective. The effective-bandwidth theory has been extensively studied in the 

early 90’s with the emphasis on wired asynchronous transfer mode (ATM) networks [20]. This theory enables us to 

analyze network statistics such as queue distributions, buffer overflow probabilities, and delay-bound violation 

probabilities, which are important for statistical QoS guarantees. In [11], the authors proposed an interesting concept, 

namely effective capacity. The effective capacity approach is particularly convenient for analyzing the statistical QoS 

performance of wireless transmissions where the service process is driven by the time-varying wireless channel. In this 

paper, by integrating information theory with the effective capacity, we investigate the impact of QoS constraint on the 

power and rate adaptation over cognitive radio networks. The problem is how to maximize the capacity subject to a given 

delay QoS constraint. There exists a tradeoff between the capacity and the QoS requirement, the higher capacity gain 
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comes at the price of sacrificing QoS provisioning, and vice versa. When the QoS constraint becomes loose, the optimal 

power control converges to the water-filling scheme, where Shannon (ergodic) capacity can be achieved. On the other 

hand, when the QoS constraint becomes stringent, the optimal power-control converges to the total channel inversion 

such that the system operates at a constant service rate. 

The authors in [11] and  [21] showed that the probability of the queue length of the transmit buffer exceeding a certain 

threshold q, decays exponentially as a function of q. If we define Q as the stationary queue length, then the delay rate of 

the tail distribution of the queue length Q can be written as  

θ = − lim
q→∞

log e  Pr (Q≥q)

q
. (2) 

 For large threshold (say qth  ), the following approximation for the buffer violation probability can be made  

Pr(Q ≥ qth ) ≃ e−θ  qth
, (3) 

 where 0 < θ < ∞ is a constant called QoS exponent. (see [11] for details). 

The above equation states that the probability of the queue length exceeding a certain threshold qth  decays exponentially 

fast as the threshold qth  increases. 

Furthermore, when the focus is on delay-bound violation probability, an expression similar to the above equation can be 

obtained as [22]  

Pr(D ≥ dth ) ≃ e−θεdth
, (4) 

 where D and dth  denote the delay and delay bound, respectively, and ε is the source arrival rate determined as 

ε = qth /dth  [23]. The effective bandwidth function intersects with the effective capacity function at the value of ε (see 

[22] for details). 

From Eqs. (3) and (4), we can see that the parameter θ plays an important role for the statistical QoS guarantees, which 

indicates the decaying-rate of the QoS violation probability. 

In practical applications, the value of θ depends on the statistical characterization of the arrival and service processes, 

bounds on delay or buffer lengths, and target values of the delay or buffer length violation probabilities. 

A smaller θ corresponds to a slower decay rate, which implies that the system can only provide a looser QoS guarantee, 

while a larger θ leads to a faster decay rate, which means that a more stringent QoS requirement can be supported. In 

particular, when θ → 0, the system can tolerate an arbitrarily long delay, which corresponds to the scenario studied in 

information theory. On the other hand, when θ → ∞, the system cannot tolerate any delay, which corresponds to an 

extremely stringent delay-bound. Due to its close relationship with statistical QoS demands, θ  is called the QoS 

exponent [11]. 

2.3  Effective Capacity Concept 
 Based on the concept of QoS exponent, the effective capacity is defined as the maximum constant arrival rate that a 

given service process can support for which the QoS exponent θ is fulfilled. Analytically, the effective capacity can be 

formally expressed as follows. 

Let the sequence {R[i], i = 1,2,⋯ }  denote a discrete-time stationary and ergodic stochastic service process and 

S[t] ≜   t
i=1 R[i] be the sum of the service process over time sequence of i = 1,2,⋯ , t. Then, the effective capacity of the 

service process, denoted by EC(θ), where θ > 0, is defined as [11]  

EC(θ) = −lim
t→∞

1

θt
loge𝔼[e−θS[t]], (5) 

 where 𝔼[⋅] denotes the expectation. When the sequence {R[i], i = 1,2,⋯ } is an uncorrelated process, the effective 

capacity formula turns to  

EC(θ) = −
1

θ
loge𝔼[e−θR[i]]. (6) 

 

Notice that the effective capacity can be considered as the maximal throughput under the constraint of QoS exponent θ. 
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In the following sections, we will apply this metric for cognitive radio network and design the corresponding resource 

allocation algorithms. 

3  Optimal Resource Allocation For Underlay Scheme 

In this section, we aim at obtaining the optimal resource allocation which can maximize the throughput of the cognitive 

network under a given statistical delay QoS guarantee determined by QoS exponent θ. 

When the CU applies the underlay scheme, the spectrum sensing is not needed. The CU can use the whole frame duration 

for transmission with adjusted transmit power no matter whether the primary network occupies the spectrum or not. The 

cognitive network with the underlay scheme has two system states for each frame, which are listed as follows:   

    • State 0: The channel is idle,  i.e. , it is not occupied by the primary network, with a probability Pi.  

    • State 1: The channel is busy,  i.e. , it is currently used by the primary network, with a probability Pb .  

 We denote the service rates of these two states as Ru,0 and Ru,1 at CU, respectively. Based on Shannon information 

theory, the achievable service rates of the two system states can be written as  

Ru,0 = TBlog2  1 +
gss Ss

u ,0

σs
2  ,     and           Ru,1 = TBlog2  1 +

gss Ss
u ,1

gps Sp +σs
2 , (7) 

 where Ss
u,0

 and Ss
u,1

 are the transmit power of the CU transmitter when the spectrum is idle and busy, respectively. The 

effective capacity formula of the cognitive network for each state mentioned above can be written as (see Appendix 8 for 

details)  

EC
u,0(θ) = −

1

θ
loge Pi𝔼gss

[e−θRu ,0
]  (8) 

  

EC
u,1(θ) = −

1

θ
loge Pb𝔼z[e−θRu ,1

] , (9) 

 where, 𝔼gss
 is the expectation operator over the random variable gss , and 𝔼z  is the expectation operator over the ratio 

of the random variables gss  and gps  which will be discussed shortly. 

Since in the underlay case, the cognitive user does not preform spectrum sensing, it is not possible to differentiate state 0 

or state 1. Hence, we can impose the cognitive user to operate in the state that provides higher capacity. Therefore, the 

aim now is to solve (8) and (9) individually, and make the cognitive user to choose a state that provides better 

performance. 

The effective capacity (8) can be written as  

EC
u,0 θ = −

1

θ
loge  Pi𝔼gss

 e
−TBθlog 2 1+

gss S s
u ,0

σs
2  

   = −
1

θ
loge  Pi𝔼gss

[ 1 +
gss Ss

u ,0

σs
2  

−αu

] ,  (10) 

 where the term αu = (TBθ/ln2) can be named as the normalized QoS exponent. It can characterize the statistical delay 

QoS requirement since it is only a function of θ. 

By evaluating (10), the following formula can be obtained  

EC
u,0 = −

1

θ
loge[ Pi(

Γ(αu−μ1)

Γ(αu )
 γu μ   1F1 μ1; 1 + μ1 − α

u ; γu +
Γ(μ1−α

u )

Γ(μ1)
 γu α

u
  1F1 α

u ; 1 + αu − μ1; γu )], (11) 

 where γu =
σs

2

Ss
u ,0, μ1 = μ, and the function  1F1 is called Confluent Hypergeometric function of first kind, defined as 

[24]:  

 1F1(a, b, z) =   ∞
n=0

(a)n

(b)n

zn

n!
,     where     (a)n =  

a(a + 1)(a + 2)⋯ (a + n − 1), n ≠ 0;
1, n = 0.

  (12) 

 

To evaluate (9), we may refer to the statistical fact that says: the ratio of two independent Gamma distributed random 

variables with shape parameters μ1 and μ2, respectively is Beta Prime distributed random variable with parameters μ1 
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and μ2 [25]. Let us define the random variables X and Y as X = gss , and Y = (gps Sp + σs
2)/Ss

u,1
. Since power channel 

fading is assumed to be Gamma distributed, Y is also Gamma distributed with mean μ2. The pdf of Y can be expressed 

as  

fY (y) =
yμ2−1e−y

Γ(μ2)
, (13) 

 where μ2 =
(μ1Sp +σs

2)

Ss
u ,1 . Then, the pdf of the ratio random variable Z =

X

Y
 has the following Beta Prime distribution  

fZ (z) =
zμ1−1(1+z)−μ1−μ2

β(μ1 ,μ2)
. (14) 

 Here, μ1 = μ is the expected value of power channel fading. In (14), β(μ1 , μ2) is the Beta function which is related to 

Gamma function as β(μ1 , μ2) =
Γ(μ1)Γ(μ2)

Γ(μ1+μ2)
. Substituting Ru,1 defined in (7) into (9), we get  

EC
u,1 θ = −

1

θ
loge  Pb𝔼z  e

−TBθlog 2 1+
gss S s

u ,1

gps S p +σs
2 
    = −

1

θ
loge[Pb𝔼z[ 1 + z −α

u
]]. (15) 

 By evaluating (15) using ((14)), the following formula can be obtained below,  

EC
u,1 = −

1

θ
loge[Pb  

Γ(αu +μ2)Γ(μ1+μ2)

Γ(αu +μ1+μ2)Γ(μ2)
 ]. (16) 

 The effective capacity formula (11) and (16) are derived using the properties of gamma and hypergeometric functions 

listed in [24].   

Now, the main objective is to find the optimal power allocation for the two power {Ss
u,0 , Ss

u,1} = {
σs

2

γu ,
μ1Sp +σs

2

μ2
} to 

maximize the effective capacity of the cognitive network subject to the upper bounded transmit and interference powers. 

From (11), we can formulate an expression for the optimal effective capacity for the cognitive network channel in the state 

0, and write the optimization problem as follows  

maxγu −
1

θ
loge[Pi(

Γ(αu−μ1)

Γ(αu )
 γu μ   1F1 μ1; 1 + μ1 − α

u ; γu +
Γ(μ1−α

u )

Γ(μ1)
 γu α

u
  1F1 α

u ; 1 + αu − μ1; γu )],

S. t.        0 ≤ PiSs
u,0 ≤ Ss

m ,

                Pi𝔼[gsp Ss
u,0] ≤ Ith .

 (17) 

 The CU transmitter should satisfy transmit power constraint, which appears in the first constraint in (17). At the same 

time, since the transmissions of the cognitive network will interfere the primary network, in order to protect the QoS of 

the primary network, the average interference power constraint is imposed in the second constraint of (17). 

Using the fact that log(⋅) is a monotonically increasing function, the solution to the maximization problem (17) can be 

mapped to the following minimization problem  

minγu Pi(
Γ(αu−μ1)

Γ(αu )
 γu μ   1F1 μ1; 1 + μ1 − α

u ; γu +
Γ(μ1−α

u )

Γ(μ1)
 γu α

u
  1F1 α

u ; 1 + αu − μ1; γu ),

S. t.        0 ≤ PiSs
u,0 ≤ Ss

m ,

                Pi𝔼[gsp Ss
u,0] ≤ Ith .

 (18) 

 

The corresponding optimal power allocation can be obtained as (see the details in Appendix B).  

[ Ci1
u μ1 γ

∗u μ1+1(  1F1(μ1; 1 + μ1 − α
u ; γ∗u ) +

γ∗u   1F1(1+μ1;2+μ1−α
u ;γ∗u )

1+μ1−α
u )

+ Ci2
u αu γ∗u α

u +1(  1F1(αu ; 1 + αu − μ1; γ∗u ) +
γ∗u   1F1(1+αu ;2+αu−μ1;γ∗u )

1+αu−μ1
)] = σs

2(λ∗u + ν∗uμ1),
 (19) 

 where λ∗u  and ν∗u  are the optimal Lagrangian multipliers for the underlay scheme that satisfy the constraints in (18), 

and  

Ci1
u = Γ(αu − μ1)/Γ(αu ),                            Ci2

u = Γ(μ1 − α
u)/Γ(μ1).

 (20) 
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 After finding the optimal Lagrangian multipliers λ∗u  and ν∗u  using Algorithm 1, (19) can be solved numerically to find 

the corresponding power allocation γ∗u , then Ss
∗u,0 =

σs
2

γ∗u , 

Similar to the work done in the state 0, the optimization problem to adapt Ss
∗u,1

 can be formulated to the following 

minimization problem  

minμ2
    

Γ(αu +μ2)Γ(μ1+μ2)

Γ(αu +μ1+μ2)Γ(μ2)
,

S. t.        0 ≤ Pb Ss
u,1 ≤ Ss

m ,

                Pb𝔼[gsp Ss
u,1] ≤ Ith ,

 (21) 

 and the corresponding optimal power allocation of the state 1 can be obtained as (see also the details in Appendix B)  

(μ2
∗)2 Γ(αu +μ2

∗ )Γ(μ1+μ2
∗ )

Γ(αu +μ1+μ2
∗ )Γ(μ2

∗ )
(Ψ(αu + μ2

∗) + Ψ(μ1 + μ2
∗)−Ψ(αu + μ1 + μ2

∗)−Ψ(μ2
∗)) = (μ1Sp + σs

2)(λ∗u + ν∗uμ1) (22) 

 where the optimal value μ2
∗  is the value of μ2 corresponding to Ss

∗u,1
,  i.e. , μ2

∗ = (μ1Sp + σs
2)/Ss

∗u,1
. The function Ψ 

in (22) is known as polygamma function and defined as [24]  

Ψ(z) =   
∞

0

tm e−zt

et−1
dt = −γ0   ∞

k=0
1

k+1
−

1

k+z
    z ≠ 0,−1,−2,⋯, (23) 

 where γ0 ≃ 0.57721 is the Euler-Mascheroni constant. 

The cognitive transmitter will be allocated the power that maximize the effective capacity. The optimal power allocation 

for the underlay cognitive radio Ss
∗u  which maximizes the effective capacity can be determined by  

Ss
∗u = arg max

Ss
∗u ,0 ,Ss

∗u ,1
 EC

u,0 Ss
∗u,0 , EC

u,1 Ss
∗u,1  . (24) 

 As a result, the optimal effective capacity of the underlay scheme is  

EC
u,opt

(θ, Ss
∗u ) = max EC

u,0(θ, Ss
∗u ), EC

u,1(θ, Ss
∗u) . (25) 

 

 Algorithm 1: The pseudocode of the optimal Lagrangian multipliers calculations for underlay scheme. 

 

     Initialization:  𝜆𝑢 ,0, 𝜈𝑢 ,0    

     REPEAT ⋯     

          (1)- Compute: 𝑆𝑠
𝑢 ,0,𝑖 , and 𝑆𝑠

𝑢 ,1,𝑖
 by (19) and (22)      

          (2)- Compute: subgradient of 𝜆𝑢 ,𝑖 , and 𝜈𝑢 ,𝑖  by (B-7).      

          (3)- Update: 𝜆𝑢 ,𝑖+1, and 𝜈𝑢 ,𝑖+1 by      𝜆𝑢 ,𝑖+1 = 𝜆𝑢 ,𝑖 + 𝜀1 ⋅ ℒ𝑠(𝜆𝑢 ,𝑖+1)    𝜈𝑢 ,𝑖+1 = 𝜈𝑢 ,𝑖 + 𝜀2 ⋅ ℒ𝑠(𝜈𝑢 ,𝑖+1)         

     UNTIL  𝜆𝑢 ,𝑖 , and 𝜈𝑢 ,𝑖  converge.  

 where ℒ𝑠(⋅) is the subgradient of the dual function for the multiplier calculated by (B-7). 𝜀1 and 𝜀2 are the stepsize for 

each multiplier. They have been chosen to equal to (1 + 𝑐)/(𝑎 + 𝑐), where 𝑐 is some adaptive constant and 𝑎 is the 

number of iteration.  This variable stepsize is shown to give a fast convergence [26]. See Fig 3(a).  
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4  Optimal Resource Allocation For Overlay Scheme 

 In this section, we aim at deriving optimal resource allocation scheme for the overlay scheme. As discussed previously, 

while applying the overlay scheme, the CUs need to utilize the spectrum sensing to identify the spectrum occupancy status 

before accessing the spectrum and can only use the vacant spectrum for transmissions. Therefore, for a frame of T 

seconds duration, the first τ seconds will be used to sense the channel, and the remaining (T − τ) seconds will be 

exploited for data transmission. The resulting frame structure is shown in Fig 2.  

  

 
Fig 2: The transmission frame structure. 

 

   

4.1  Spectrum Sensing Model 
 

According to [7,8,27], the spectrum occupation status can be determined between the following two hypotheses:  

 detected  as  idle :     y(i) = n(i)    i = 1,2⋯τB,

 detected  as  busy :     y(i) = n(i) + np (i)    i = 1,2⋯τB,
 (26) 

 where y(i) is the signal received by the CU receiver, np(i) is the interference on the CU generated by the transmit 

signal of the PU. Since the bandwidth is B, we have τB symbols in a duration of τ seconds (for simplicity, we assume 

that τB is an integer). Assuming that {np(i)} samples are i. i. d. signal and modeled as zero-mean Gaussian distributed 

with variance of σnp
2 . The optimal detector response for this hypothesis problem is given in [28] as  

𝒴 =
1

τB
  τB

i=1 |yi|
2£busy

idle δ, (27) 

 where δ is a pre-designed threshold. The cognitive radio assumes that the primary system is in operation if 𝒴 ≥ δ. 

Otherwise, it is idle. Assuming τB is sufficiently high, 𝒴 can be approximated, using Central Limit Theorem [29], as a 

Gaussian random variable with mean and variance  

     𝔼 𝒴 =  
σs

2                                                           if  PU  is  inactive 

σs
2 + σnp

2                                                           if  PU  is  active ,
      

 and     σ𝒴
2 =  

σs
4/(τB)   if  PU  is  inactive 

 𝔼[ |np|4] + σs
4 + 2σnp

2 σs
2 − σnp

2  /(τB)   if  PU  is  active ,
  (28) 

 respectively, where 𝔼[|np |4] is the forth moment of the received signal np . Note that 𝔼[|ns |4] = 2σs
2 for the CSCG 

assumption. The probability of false alarm of the energy detector is given as follows [30]  

Pf = Pr{𝒴 > δ|Pi} = Q 
δ−σs

2

 σs
4/(τB)

 , (29) 

 where Q(⋅) is the complementary cumulative distribution function of the standard Gaussian. If we assume that the 

primary signal np  has complex-valued PSK waveform [30], the probability of detection of the energy detector can be 

written as  

Pd = Pr{𝒴 > δ|Pb} = Q 
δ−σn p

2 −σs
2

σs  2σn p
2 +σs

2 / τB 
 , (30) 
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Due to the unavoidable sensing errors, the cognitive network has four states, which are listed as follows:   

    1.  State 0 : Channel is idle, detected as idle, with probability: (1− Pf)Pi  

    2.  State 1 : Channel is busy, detected as idle, with probability: (1 − Pd )Pb   

    3.  State 2 : Channel is idle, detected as busy, with probability: PfPi  

    4.  State 3 : Channel is busy, detected as busy, with probability: Pd Pb   

 As defined in the overlay strategy, the cognitive network can access the spectrum only when the channel is sensed as idle. 

Therefore, the service rates of the cognitive network for the above four states, denoted by Ro,0, Ro,1, Ro,2, and   Ro,3, are  

Ro,0 = (T − τ)Blog2  1 +
gss Ss

o ,0

σs
2  ,     and           Ro,1 = (T − τ)Blog2  1 +

gps Ss
o ,1

gps Sp +σs
2 , (31) 

  and  Ro,2 = Ro,3 = 0, 

 respectively, where Ss
o,0

 and Ss
o,1

 are the transmit power of the CU transmitter for the state 0 and 1, respectively. 

The effective capacity of the overlay scheme can be written as  

EC
o(θ) = −

1

θ
loge((1 − Pf)Pi𝔼[e−θRo ,0

] + (1− Pd )Pb𝔼[e−θRo ,1
] + PfPi + Pd Pb). (32) 

 The derivation is similar to the case of the underlay scheme and it is omitted here for the sake of brevity. 

Using the same idea presented in the underlay case, (32) can be expanded as 

 

EC
o(θ) = −

1

θ
loge((1 − Pf)Pi𝔼gss

[e
−(T−τ)Bθlog 2 1+

gss S s
o ,0

σs
2  

] + (1 − Pd )Pb𝔼w [e
−(T−τ)Bθlog 2 1+

gss S s
o ,1

gps S p +σs
2 

]

                   +PfPi + Pd Pb),

 (33) 

 where 𝔼w  is the expectation over the ratio 
gss Ss

o ,1

gps Sp +σs
2. Let αo = ((T − τ)Bθ/ln2) as the normalized QoS exponent. This 

parameter, αo  can characterize the statistical delay QoS requirement, since at certain sensing time it is only a function of 

θ. Note that αo  is related to αu  as αu =
(T−τ)

T
αo . (33) can be written as  

EC
o(θ) = −

1

θ
loge((1 − Pf)Pi𝔼gss

[ 1 +
gss Ss

0

σs
2  

−αo

] + (1− Pd )Pb𝔼w [ 1 + w −α
o

] + PfPi + Pd Pb ), (34) 

 

By evaluating (34), a solution of the effective capacity can be expressed as  

EC
o = −

1

θ
loge[(1 − Pf)Pi (

Γ(αo−μ1)

Γ(αo )
 γo μ   1F1 μ1; 1 + μ1 − α

o ; γo +
Γ(μ1−α

o )

Γ(μ1)
 γo α

o
  1F1 α

o ; 1 + αo − μ1; γo )

+(1 − Pd )Pb  
Γ(αo +μ3)Γ(μ1+μ3)

Γ(αo +μ1+μ3)Γ(μ3)
 + PfPi + Pd Pb],

 (35) 

 where γo =
σs

2

Ss
o ,0, and μ3 =

(μ1Sp +σs
2)

Ss
o ,1 . The derivation is omitted here due to the lack of space.   

4.2  Optimal Power Allocation for Overlay Scheme 

The power allocation of the cognitive radio network, {Ss
o,0, Ss

o,1} should be carefully assigned to optimize the overall 

capacity of the channel. Furthermore, the sensing period τ, which plays a great role on the system performance, should 

also be considered in this optimization process. 

The cognitive network needs to meet transmit power constraint, which can be expressed as  

(T − τ)B (1− Pf)PiSs
o,0 + (1 − Pd )Pb Ss

o,1 ≤ Ss
m . (36) 

 Due to the existence of sensing errors, the interference from the CU transmitter to the PU receiver is inevitable and it 

exists only when miss detection (1 − Pd )Pb  occurs. Thus, the cognitive network should also meet the following 
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interference constraint  

(1− Pd )Pb𝔼[gsp Ss
o,1] ≤ Ith , (37) 

 where 𝔼[gsp ] = μ, as it is assumed above. 

Our objective is to derive the optimal resource allocation {Ss
o,0, Ss

o,1, τ} to maximize the effective capacity under the 

transmit and interference power constraints in (36) and (37) respectively. 

The optimization problem can be formulated as  

maxγo ,μ3 ,τ −
1

θ
loge[(1 − Pf)Pi(Ci1

o (γo )μ   1F1 μ1; 1 + μ1 − α
o ; γo + Ci2

o (γo )α
o

  1F1 α
o ; 1 + αo − μ1; γo )

                +(1 − Pd )Pb
Γ(αo +μ3)Γ(μ1+μ3)

Γ(αo +μ1+μ3)Γ(μ3)
+ Co ]

S. t.        (36)    &    (37)         hold,        and     0 < τ < 𝑇/2,

 (38) 

 where  

Ci1
o = Γ(αo − μ1)/Γ(αo ),        Ci2

o = Γ(μ1 − α
o)/Γ(μ1),        Co = PfPi + Pd Pb . 

 The variables γo  and μ3 are related to the original optimized variables Ss
o,0

 and Ss
o,0

 as γo =
σs

2

Ss
o ,0 and μ3 = (μ1Sp +

σs
2)/Ss

o,1
 respectively. The optimized sensing period variable τ in (38) is embedded in the variable αo . Furthermore, we 

assume that the sensing time should not last more than half of the frame period T. The authors in [30] conclude that for 

multi slot spectrum sensing, in all cases, the optimal throughput is obtained when the sensing period is less than T/8. 

The problem (38) can be solved by two steps. In the first step, we try to obtain the optimal power allocation under a given 

sensing time τ. In the second step, we can obtain the optimal sensing time by exhaustive search given the power 

allocation. 

Similar to the underlay case, the solution of the maximization problem (38) can be mapped to the following minimization 

problem  

minγo ,μ3 ,τ     [(1− Pf)Pi  Ci1
o (γo)μ   1F1 μ1; 1 + μ1 − α

o ; γo + Ci2
o (γo )α

o
  1F1 α

o ; 1 + αo − μ1; γo  

                +(1 − Pd )Pf
Γ(αo +μ3)Γ(μ1+μ3)

Γ(αo +μ1+μ3)Γ(μ3)
+ Co]

S. t.        0 ≤ (T − τ)B (1 − Pf)PiSs
o,0 + (1 − Pd )PbSs

o,1 ≤ Ss
m

                (1 − Pd )Pbμ1Ss
o,1 ≤ Ith .

 (39) 

 The corresponding optimal power allocation for a given τ can be written as  

[Ci1
o μ1 γ

∗o μ1+1(  1F1(μ1; 1 + μ1 − α
o ; γ∗o ) +

γ∗o   1F1(1+μ1;2+μ1−α
o ;γ∗o )

1+μ1−α
o )

+Ci2
o αo γ∗o α

o +1(  1F1(αo ; 1 + αo − μ1; γ∗o) +
γ∗o   1F1(1+αo ;2+αo−μ1 ;γ∗o )

1+αo−μ1
)]

= (T − τ)Bσs
2(λ∗o + ν∗oμ1)

 (40) 

  

(μ3
∗)2 Γ(αo +μ3

∗ )Γ(μ1+μ3
∗ )

Γ(αo +μ1+μ3
∗ )Γ(μ3

∗ )
(Ψ(αo + μ3

∗) +Ψ(μ1 + μ3
∗) −Ψ(αo + μ1 + μ3

∗)−Ψ(μ3
∗))

= (T − τ)B(μ1Sp + σs
2)(λ∗o + ν∗uμ1),

 (41) 

 where γ∗o =
σs

2

Ss
∗o ,0, and the multipliers, λ∗o  and ν∗o  are the optimal Lagrangian multipliers satisfying the constraints in 

(39). The optimal value μ3
∗  in (41) is the value of μ3 corresponding to Ss

∗o,1
,  i.e. , μ3

∗ = (μ1Sp + σs
2)/Ss

∗o,1
. Algorithm 

4.2 listed below illustrates the pseudocode to find the overlay optimal Lagrangian multipliers. 

Different sensing time will result in different performance. Thus, determining the optimal sensing time is a critically 

important task in the resource allocation scheme. Therefore, after deriving the optimal power allocation scheme at any 

given τ, the optimal sensing time, denoted by τ∗, can be found by one-dimensional exhaustive search [31]. Hence the 
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optimal effective capacity of the overlay scheme is  

                    EC
o,opt

(θ) = EC
o(θ, Ss

∗o , Ss
∗1 , τ∗).                                                              (42) 

   

Algorithm 2 The pseudocode for finding the optimal Lagrangian multipliers and resource allocation for overlay scheme. 

     

 FOR 𝜏 = 0:𝑇/2    

        Initialization:  𝜆𝑜 ,0, 𝜈𝑜 ,0    

        REPEAT ⋯     

          (1) - Compute:  𝑆𝑠
𝑜 ,0,𝑖 , and 𝑆𝑠

𝑜 ,1,𝑖
 by (40) and (41).     

          (2) - Compute:  subgradient of 𝜆𝑜 ,𝑖 , and 𝜈𝑜 ,𝑖  by (B-8).     

          (3) - Update:  𝜆𝑜 ,𝑖+1, and 𝜇𝑜 ,𝑖+1 by (B-8)   𝜆𝑜 ,𝑖+1 = 𝜆𝑜 ,𝑖 + 𝜀1 ⋅ ℒ𝑠(𝜆𝑜 ,𝑖+1)  𝜈𝑜 ,𝑖+1 = 𝜈𝑜 ,𝑖 + 𝜀2 ⋅ ℒ𝑠(𝜈𝑜 ,𝑖+1)        

        UNTIL  𝜆𝑜 ,𝑖 , and 𝜈𝑜 ,𝑖  converge.  

    END FOR   

  Optimal Resource Allocation: 𝜏∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝐸𝐶
𝑜(𝜃)  

  (𝑆𝑠
∗𝑜 ,0, 𝑆𝑠

∗𝑜 ,1) =| 𝑝𝑜𝑤𝑒𝑟  𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  (40)  𝑎𝑛𝑑  (41) |𝜏∗,𝜆∗𝑜 ,𝜈∗𝑜    

𝜀1 and 𝜀2 are the stepsize for the multipliers. They have been chosen to be dynamic values which are updated every 

iteration by the same approach given in Algorithm 1. This accelerates the convergence as can be seen in Fig 3(b).   

 

5  Underlay-Overlay Selection criterion 
In the previous sections, we have obtained optimal power allocation for both underlay and overlay schemes. However, 

underlay and overlay schemes have different features. For example, the underlay strategy does not need to perform 

spectrum sensing but the interference power constraint should be satisfied all the time. While a portion of time is assigned 

to sensing process for the overlay case, the cognitive network only needs to meet the interference power requirement when 

the PU is detected to be active. Therefore, the underlay and overlay approaches may have their respective advantages 

under diverse propagation environment and system parameters. If the cognitive network can dynamically choose the DSA 

strategies, the performance of the whole network could be further improved. 

In this section, we aim to develop a selection criterion for the cognitive network based on PUs’ spectrum-occupancy 

probability and the QoS requirement. The main reason for choosing these two metrics can be explained as follows. First, 

when the cognitive and primary networks are given, the maximum transmit power of the CU and the interference 

threshold that can be tolerated by the PU are determined and will remain unchanged for a relative long time period. 

Second, the PUs’ traffic load, which affects the spectrum access activity of the primary network and thus the performance 

of the cognitive network, is time-varying and can be well reflected by the PUs’ idle probability. The heavier traffic load 

will cause higher spectrum-occupancy probability and vice versa. Accordingly, the PUs’ spectrum-occupancy probability 

should be included in the selection criterion. Third, QoS guarantee is critically important to the wireless communication 

system and especially for the cognitive networks. As different applications and services may have diverse QoS 

requirement, it should also be taken into consideration. 

Now, we first take a closer look at the relationship between the QoS requirement and the QoS exponent. For a given 

discrete service rate process, the effective capacity EC  can be calculated from (6). The corresponding constraints for 

queue length-bound violation and delay-bound probabilities are determined from (3) and (4) by  

Pr{Q > qth } ≈ e−θqth
≤ PQ ,

 (43) 

 and  
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Pr{D > dth } ≈ e−θεdth
≤ PD , (44) 

 where PQ  and PD  are the maximum queue length-bound violation and delay probabilities that are allowed by the system, 

respectively. 

The QoS requirements depend on the type of service, for example for audio, dth = 50ms and the violation probability 

PD = 10−2, while for video communication dth = 150ms and PD = 10−3 [22]. According to these requirements, the 

limits of the value of θ can be specified. Consequently, the QoS exponent θ should satisfy  

θ ≥ −
ln PQ

qth ,     and     θ ≥ −
ln PD

εdth . (45) 

 Note that ε is defined in Subsection 2.2. 

Substituting the optimal resource allocation schemes {Ss
∗u,0, Ss

∗u,1} and {Ss
∗o,0, Ss

∗o,1, τ∗} for the underlay and overlay 

schemes given in (19), (22), and (40), (41) respectively, into (11) and (35), respectively, we can obtain the maximum 

effective capacity for the underlay and overlay schemes, denoted by EC
u,opt

(θ) and EC
o,opt

(θ), respectively. 

The methodology of the DSA selection criterion can be summarized by considering a two-dimensional plane, where the 

x-axis represents the QoS exponent θ and the y-axis denotes the idle probability Pi. Then, we can divide the plane into 

two regions, denoted by Ru  and Ro , respectively. The point (θ, Pi) in Ru  satisfies EC
u,opt

(θ) ≥ EC
o,opt

(θ), and the point 

(θ, Pi) in Ro  satisfies EC
o,opt

(θ) ≥ EC
u,opt

(θ). Given the delay bound and its violation probability, the corresponding QoS 

exponent θ can be calculated. If the point (θ, Pi) falls into Ru , the cognitive network should choose the underlay 

scheme. On the other hand, if (θ, Pi) falls into Ro , the cognitive network should select the overlay scheme. 

6.  Numerical Results and Performance Analysis 
In this section, numerical results are presented to evaluate the performance of the proposed power allocation strategies for 

both underlay and overlay schemes.  In the calculation, the frame duration is set to T = 50ms, the sampling frequency is 

100 K samples/s. Unless otherwise is stated, the probability of the channel to be idle is set to Pi = 0.4 as a target value. 

Other parameters are listed in the corresponding figures. 

First, we evaluate the convergency of our algorithm. Fig 3(a) and Fig 3(b) show the iterative algorithms for determining 

the optimal Lagrangian multipliers for underlay and overlay schemes respectively. The maximum secondary transmit 

power is set to 10dBw,  i.e. , Ss
m = 10W. The interference threshold and the primary transmit power are set to 0dBw 

and Sp = 10dBw, respectively. As shown in Fig 3, the Lagrangian multipliers can quickly converge to their optimal 

values when choosing dynamic stepsize stated in Algorithm 1. For overlay scheme, the optimal sensing time needs to be 

determined from one-dimensional exhaustive search by Algorithm 2, which will increase the algorithm complexity. As it 

can be seen in Fig 3(b), the overlay system requires a higher number of iterations for convergence.   

 
Fig 3: Tracking the optimal Lagrangian multipliers for both underlay and overlay schemes. 𝐈𝐭𝐡 = 𝟎𝐝𝐁𝐰 , 

𝐒𝐩 = 𝟏𝟎𝐝𝐁𝐰, 𝐒𝐬
𝐦 = 𝟏𝟎𝐝𝐁𝐰, and 𝛉 = 𝟏𝟎−𝟑 
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Fig 4 presents the normalized effective capacity (which is defined as the effective capacity divided by TB and thus has 

the unit of “bits/sec/Hz") of both schemes as a function of the QoS exponent θ. In Fig  4(a), we can observe that, in 

underlay scheme, the QoS exponent θ plays a critically important role in the maximum throughput of the cognitive 

network. When θ is small ( i.e. , the QoS constraint is loose), the cognitive network can realize higher throughput. On the 

contrary, when θ is large ( i.e. , the QoS constraint is stringent), the cognitive network can only support lower arrival 

rates. Figure Fig 4(b) illustrates the normalized effective capacity as a function of delay exponent and the impact of the 

probability of the channel being idle, Pi for the overlay scheme. We can observe that the effective capacity is a decreasing 

function of θ and is an increasing function of the probability (Pi). In loosely QoS constraint system, the effective 

capacity variation is insignificant, while for more stringent QoS constraint, the capacity degrade is dramatically. 

Higher Pi means the cognitive transmitter assumes that the channel is idle with a higher probability. The CU exploits the 

situation and transmits with a higher power level, which in turn, gains more capacity. While at lower Pi, the cognitive 

transmitter assumes the channel is busy with a higher probability (since Pb = 1 − Pi) and thus, it reduces the transmit 

power to comply with the interference constraint. 

 

 
Fig 4:  Normalized effective capacity versus exponent delay for underlay and overlay schemes. 𝐒𝐬

𝐦 = 𝟏𝟎𝐝𝐁𝐰 

 

To compare the effective capacities for the proposed adaptive and non adaptive schemes, Fig 5 shows the effective 

capacity as a function of QoS exponent θ for adaptive and non-adaptive schemes. The top two curves are for overlay and 

the two lower curves for underlay. Solid curves show the result for adaptive scheme and dashed curves for non-adaptive 

scheme. It is shown that the effective capacities under the adaptive schemes are always higher than the fixed allocated 

power policies. Moreover, it can be noticed that the rate that the performance degrades in the adaptive algorithms is faster 

than that of the non adaptive algorithm. This means that the adaptive algorithm is more sensitive to the QoS delay 

exponent variation. 



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066     

Volume 5, Issue 3 available at www.scitecresearch.com/journals/index.php/jisct                        512| 

 

 
Fig 5: Normalized effective capacity versus QoS exponent 𝛉 for adaptive and non adaptive power 

policies. 

 

The transmit power of the primary network Sp  is another critical parameter that affects the performance of the cognitive 

network. Fig 6 shows the effective capacity versus the transmit power of the primary user Sp  for both schemes with 

different QoS exponent θ.  

 We can observe that the performance of the cognitive network degrades as Sp  increases. This phenomenon can be 

explained as a larger Sp  will cause more severe interference to the CU receiver. This causes the CU transmitter need more 

power to overcome the negative impact brought by the interference of the PU sender. However, as shown in Figure 5, 

when the QoS exponent is small ( i.e. , θ = 10−3), the performance loss of the underlay cognitive network is not obvious. 

On the contrary, the performance of the cognitive network degrades more obvious when the QoS exponent is large ( i.e. , 

θ = 0.1). The reason for this observation is that a small θ denotes loose QoS requirement and the power allocation 

becomes water-filling as we explained in Subsection 2.2, thus the power resource can be more efficiently utilized. 

However, large θ means stringent QoS requirement, which results the cognitive network transmit with constant rate. 

Therefore, more power is used to overcome the more serious interference caused by larger Sp  and the upper bounded 

power resource is less efficiently utilized. 

 
Fig 6: Normalized effective capacity versus primary transmit power with different 𝛉, 

𝐏𝐢 = 𝟎.𝟒, 𝐈𝐭𝐡 = 𝟎𝐝𝐁𝐰. 

 

Furthermore, the above figures (Figs 4-6) show that the overlay scheme provides higher capacity than the underlay 
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scheme which is consistent with the results reported in most previous literature, for example, see  [4,42]. It can be also 

concluded that the overlay scheme is more susceptible to θ than the underlay scheme, this is more observable in high 

stringent delay systems. 

Fig 7 investigates how the secondary user’s transmit power and the interference power suffered by the primary user of 

both schemes vary with Pi. Fig 7(a) illustrates the secondary user’s transmit power versus the QoS exponent θ under 

different spectrum-idle probabilities Pi. It can be observed that the transmit power of the overlay scheme remains constant 

for all θ and does not vary with Pi, which means that the transmit power constraint given by (36) is always active and the 

upper bounded power resource can be fully utilized. 

 
Fig 8: Secondary transmit and interference power for both schemes for the proposed optimal power 

allocation. 𝐒𝐬
𝐦 = 𝟏𝟎𝐝𝐁𝐰 and 𝐒𝐩 = 𝟏𝟎𝐝𝐁𝐰. 

On the contrary, the transmit power of the underlay schemes varies with Pi. The larger Pi is, the less the utilized transmit 

power is. However, the underlay based cognitive network can achieve better performance with larger Pi. Consequently, as 

Pi increases, the underlay scheme can derive better performance but consume less transmit power, which denotes that the 

transmit power resource is more efficiently utilized. Moreover, it can be seen that the transmit power of the underlay 

scheme always converges to the average interference power constraint (Ith = 5d Bw). This is because the underlay based 

cognitive network will gradually converge to an interference-power constrained system as the QoS constraint becomes 

more stringent. Fig 7(b) shows the average interference power versus θ for different Pi. Different from Fig 7(a), we can 

observe that the interference power constraint of the underlay based cognitive network is always satisfied for different θ 

and Pi . However, the interference power caused by the overlay schemes varies with θ  and Pi . Specifically, the 

interference power of the overlay strategy increases as θ  becomes large and decreases as Pi  increases. Such 

phenomenons can be explained as follows. First, when θ becomes larger, the CU will transmit with constant rate, and 

more transmit power will be allocated to the worse channel conditions. Due to the imperfect spectrum sensing, the CU 

transmitter uses larger power for transmission when the miss-detection happens and thus will cause large interference 

power. Second, when Pi  increases, the actual probability of miss-detection (1 − Pi)(1 − Pd ) decreases and thus the 

inference power caused by the overlay scheme is reduced. Moreover, we can find from Figure 7 that when Pi is large, the 

interference power of the overlay scheme is always lower than the threshold and thus the overlay scheme is a 

transmit-power constrained system. While when Pi is small, the characteristics of the overlay scheme vary with θ. The 

overlay based system is a transmit-power constrained system, for small θ, and both transmit and interference power 

constraints are active for large θ. 

Fig 8 shows the effective capacity versus sensing time τ for different Pi. We can observe that the effective capacity is a 

concave function with respect to τ. In addition, it is also noticed that the optimal sensing time for each curve changes with 

Pi. The cognitive user needs more sensing time to achieve optimal capacity when Pi is low. 

 

  



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066     

Volume 5, Issue 3 available at www.scitecresearch.com/journals/index.php/jisct                        514| 

 

 
Fig  8: Effective capacity of the overlay scheme versus sensing time for different 𝐏𝐢, 
𝐒𝐬
𝐦 = 𝐒𝐩 = 𝟏𝟎𝐖, 𝛉=0.1, and 𝐈𝐭𝐡 = 𝟎𝐝𝐁 

 

In Fig 9, each curve divides the plane into two regions. The region below the curve is Ru  , where the point (θ, Pi) 

satisfies EC
u,opt

(θ) ≥ EC
o,opt

(θ), and the region above the curve is Ro , where the point (θ, Pi) satisfies EC
o,opt

(θ) ≥

EC
u,opt

(θ). Based on the figure, the access strategy selection criterion proposed above can be performed. If the point (θ, Pi) 

falls below the curved border, the cognitive network should choose the underlay scheme. On the contrary, the cognitive 

network should choose the overlay strategy if (θ, Pi) falls above the border. If the point falls exactly on the border, which 

means EC
o,opt

= EC
u,opt

, it gives the same effective capacity for both schemes. Considering the higher implementation 

complexity of the overlay scheme, the preferred choice is then the underlay scheme. 

 

  

 
Fig 9: The probability 𝐏𝐢 versus the 𝐐𝐨𝐒 exponent 𝛉 for different interference 

threshold. Showing the border line of the optimal capacity for both schemes. 

 

Furthermore, Fig 9 presents the border curves under different interference thresholds. We can observe from the figure that 

the area of the region Ru  increases when the interference threshold Ith  becomes larger. Generally, from the analysis and 

the comparison of the two different DSA schemes, it can be deduced that the selection of the efficient strategy depends on 

several factors. It is a function of the channel occupancy probability, as well as a function of the interference threshold 

allowed. The choice of the scheme has also to be compromised between complexity and the achievable performance. By 

observing the above analysis and results, we can notice that the less busy the primary channel with loose QoS 

requirement ( i.e. , high Pi and small θ), it is preferred to use the overlay scheme for higher achievable capacity. On the 

other side, when the system is more harsh ( i.e. , low Pi and large θ), underlay scheme is preferred to maintain the 

achievable capacity performance. 
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7  Conclusions 

 In this paper, we integrated the concept of effective capacity into information theory and developed the optimal resource 

allocation for both underlay and overlay DSA schemes. We studied the impact of the delay-QoS constraint on the network 

performance, and considered the PUs’ spectrum-occupancy probability. Analytical results for the effective capacity for 

both schemes were derived. Optimal power allocations to achieve maximum effective capacity were also obtained. 

The underlay and overlay schemes have their respective advantages under different QoS  requirement and idle 

probability. We proposed a selection criterion to determine whether to use underlay or overlay scheme under the given 

QoS constraint and the primary user’s spectrum occupancy probability to optimize effective capacity. Moreover, it is 

concluded that the transmit power of the underlay strategy and the interference power of the overlay strategy vary with the 

PUs’ spectrum-occupancy probability, but the transmit power of the overlay strategy and the interference power of the 

underlay strategy always remain unchanged. The overlay scheme is more susceptible to θ than the underlay scheme. This 

is more observable in high stringent delay constraint systems. 

Numerical results were presented to give more interesting observations and insights of system performance. 

Appendices  

Appendix A 
    As the PU active probability is taken into consideration for the underlay scheme, the solution of the effective capacity 

of (6) can be found as [21], [23]  

EC
u(θ) = −

1

θ
loge ρ(Pu ⋅ Du ) , (A-1) 

 where Du  is a diagonal matrix given by 

Du = diag[d1
u (θ), d2

u (θ)] =  𝔼[e−θRu ,0
],𝔼[e−θRu ,1

] ,  and ρ(⋅)  function is the spectral radius of a matrix, which is 

defined as the maximum of the absolute values of its eigenvalues,  i.e. , ρ(A) =
def

max
i

(|ωi|), ωi
′s are the eigenvalues 

[34]. Pu  in [A-1] denotes the transition probability matrix of the underlay based cognitive radio network. 

The system has two system states. As the primary network independently selects whether to access the spectrum or not at 

the beginning of each frame, the two system states are time-uncorrelated. Thus the entries of the (2 × 2) transition 

probability matrix can be written as  

 
p00

u = p10
u = Pi ,

p01
u = p11

u = Pb .
  [A-2] 

 

Since the transition probability matrix Pu  has a unit rank, the spectral radius of matrix (Pu ⋅ Du) can be easily calculated 

by  

ρ(Pu ⋅ Du ) = trac(Pu ⋅ Du ) = Pi𝔼[e−θRu ,0
] + Pb𝔼[e−θRu ,1

] [A-3] 

 Substituting the above equation into (A-1), the formula in (8) is obtained.   

 

Appendix B 
The objective function in (18) is nonnegative weighted sum of the functions f1

u (x) and f2
u (x) defined in (20). According 

to the definition of Hypergeometric function given in (12), this function is a polynomial function with nonnegative 

exponents, and thus it is strictly convex. The function f3
u (y) in (20) is monotonically increasing function for y > 0 as 

shown in Fig 10. As a result, we can conclude that the objective function in (18) is convex [26,31].  
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Fig 10: The function f(y) is monotonically increasing and bounded by 

[0,1]. The constans a and b are related to α and μ in (20) respectively. 

Here, they are chosen arbitrary. 

 

 

   Furthermore, the constraints in (18) are linear with respect to x and y. Since, both the objective function and the 

constraints are jointly strictly convex, then the problem is convex and hence, it has an optimal solution and can be obtained 

using the Lagrange dual method[31]. 

We can construct the Lagrangian function for the problem (18) as  

Λ(x, y, λ, ν) = Ci1f1(x) + Ci2f2(x) + Cbf3(y) + λ{Pix + Pby − Sth } + ν{Pi𝔼 gsp x + Pb𝔼 gsp y − Ith } (B-1) 

 where λ and ν are the Lagrangian multipliers associated with the transmit power and interference power constraints, 

respectively, and 𝔼[gsp x] = μx. Then, the Lagrange dual problem can be formulated as  

maxλ≥0,ν≥0    minx≥0,y≥0Λ(x, y, λ, ν)

≡ maxλ≥0,ν≥0    minx≥0,y≥0{{Ci1f1(x) + Ci2f2(x) + Cbf3(y)} +λ{Pix + Pb y} + νμ{Pix + Pb y} − λSm − νIth }
 (B-2) 

 Performing the partial derivatives of the unconstrained problem Λ(x, y, λ, ν) with respect to each variable and setting it 

to zero, this leads to a series of subproblems. Solving this system of equations yields the optimal solution {x⋄, y⋄} of the 

subproblem  

Ci1f′1(x⋄) + Ci2f′2(x⋄) + λPi + νμPi = 0 (B-3) 

Cbf′3(y⋄) + λPb + νμPb = 0 (B-4) 

Pix
⋄ + Pb y⋄ − Sm = 0 (B-5) 

Piμx⋄ + Pbμy⋄ − Ith = 0 (B-6) 

 where, f′ is the first derivative of the function f with respect to the relevant variable. The last two linear equations, 

(B-5), (B-6) are linearly dependent, and hence, infinite solutions can be obtained. While, solutions for x⋄, and y⋄ can be 

obtained from (B-3) and (B-4) respectively. Plugging {x⋄, y⋄} into (B-2), we can solve the dual problem and find the 

optimal Lagrangian multipliers, denoted by {λ∗, ν∗}. 

Finally substituting {λ∗, ν∗} into {x⋄, y⋄}, we can derive the optimal power allocation {x∗, y∗} given by (19) and (22). 

In order to use the iteration method illustrated in Algorithm 1 to derive the power allocation {x⋄, y⋄}, the subgradient of 

the Lagrange dual function is needed. Assuming that the value of the Lagrangian multipliers for the ith  iteration are 

{λi , νi} and the corresponding optimal power allocation are {xi , yi}, the subgradient for the dual function, denoted by 

{ℒλ
i ,ℒν

i }, can be written as  

ℒλ
u,i = Pix

i + Pbyi − Sm

ℒν
u,i = Piμxi + Pbμyi − Ith .

 (B-7) 

 The same can be done for the overlay scheme:  



Journal of Information Sciences and Computing Technologies(JISCT) 

ISSN: 2394-9066     

Volume 5, Issue 3 available at www.scitecresearch.com/journals/index.php/jisct                        517| 

 

ℒλ
o,i = (T − τ)B (1 − Pf)Pix

i + (1 − Pd )Pb yi − Sm

ℒν
o,i = (1 − Pd )Pbμyi − Ith .

 (B-8) 
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