882 research outputs found

    Bandwidth reservation in mobile adhoc networks

    Get PDF
    International audienceThe bandwidth reservation is one of most adopted solutions to meet QoS requirements in 802.11 ad hoc networks. The efficiency of these solutions depends on the accuracy of their estimations of available bandwidth; otherwise, their application can be catastrophic on networks. Therefore, accurate bandwidth estimation is fundamental, where each networks characteristic must be taken into consideration, including mobility and medium sharing. Current solutions do not take into account all networks characteristics, resulting to wrong bandwidth estimations and QoS violations. In this paper, we present a new approach for bandwidth reservation-Accurate Bandwidth Reservation (ABR)-which embeds an improved method of available bandwidth measurement, where all criteria of such networks are considered. Evaluation of ABR is performed by simulations and comparisons with some existing approaches

    An efficient QOS routing protocol for mobile ad-hoc networks

    Get PDF
    To satisfy the user requirements for continuous and real-time multimedia information, the concept of Quality of Service (QoS) has emerged as a main issue in mobile ad-hoc networks. QoS routing is to find a route according to the QoS requirements of the users. In this paper, we propose an efficient QoS routing protocol that is based on AODV over TDMA, one of the typical routing protocols for mobile ad-hoc networks, by making a bandwidth reservation for QoS guarantee. While the existing schemes calculate the maximum available bandwidth for each candidate path, our scheme is to check only if the bandwidth of a given path satisfies the end-to-end QoS requirement. Also, the key idea in the bandwidth reservation is to select carefully time slots without causing any conficts in the wireless environment, thereby maximizing the bandwidth efficiency. In order to evaluate the performance of the proposed QoS routing protocol, some simulations are carried out in the adhoc environment. The simulation results show that the proposed protocol provides sufficiently low and stable delay performance regardless of the offered load.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    An efficient QOS routing protocol for mobile ad-hoc networks

    Get PDF
    To satisfy the user requirements for continuous and real-time multimedia information, the concept of Quality of Service (QoS) has emerged as a main issue in mobile ad-hoc networks. QoS routing is to find a route according to the QoS requirements of the users. In this paper, we propose an efficient QoS routing protocol that is based on AODV over TDMA, one of the typical routing protocols for mobile ad-hoc networks, by making a bandwidth reservation for QoS guarantee. While the existing schemes calculate the maximum available bandwidth for each candidate path, our scheme is to check only if the bandwidth of a given path satisfies the end-to-end QoS requirement. Also, the key idea in the bandwidth reservation is to select carefully time slots without causing any conficts in the wireless environment, thereby maximizing the bandwidth efficiency. In order to evaluate the performance of the proposed QoS routing protocol, some simulations are carried out in the adhoc environment. The simulation results show that the proposed protocol provides sufficiently low and stable delay performance regardless of the offered load.1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Energy Efficient MANET Protocol Using Cross Layer Design for Military Applications

    Get PDF
    In military applications mobile adhoc network plays very important role because it is specifically designed network for on demand requirement and in situations where set up of physical network is not possible. This special type of network which takes control in infrastructure less communication handles serious challenges tactfully such as highly robust and dynamic military work stations, devices and smaller sub-networks in the battle field. Therefore there is a high demand of designing efficient routing protocols ensuring security and reliability for successful transmission of highly sensitive and confidential military information in defence networks. With this objective, a power efficient network layer routing protocol in the network for military application is designed and simulated using a new cross layer approach of design to increase reliability and network lifetime up to a greater extent.

    RoadRunner: Infrastructure-less vehicular congestion control

    Get PDF
    RoadRunner is an in-vehicle app for traffic congestion control without costly roadside infrastructure, instead judiciously harnessing vehicle-to-vehicle communications, cellular connectivity, and onboard computation and sensing to enable large-scale traffic congestion control at higher penetration and finer granularity than previously possible. RoadRunner limits the number of vehicles in a congested region or road by requiring each to possess a token for entry. Tokens can circulate and be reused among multiple vehicles as vehicles move between regions. We built RoadRunner as an Android app utilizing LTE, 802.11p, and 802.11n radios, deployed it on 10 vehicles, and measured cellular access reductions of up to 84% and response time improvements of up to 80%. In a microscopic agent-based traffic simulator, RoadRunner achieved travel speed improvements of up to 7.7% over an industry-strength electronic road pricing system.Singapore-MIT Alliance for Research and TechnologyAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    BETTER QUALITY OF SERVICE MANAGEMENT WITH FUZZY LOGIC IN MOBILE ADHOC NETWORK

    Get PDF
    Quality of service (QoS)is a great concept in mobile Adhoc network (MANETs). It is of a great importance that we are veryconscious of how packet is routed to maximize efficiency and minimize delay. In this paper, an efficient algorithm fortransmitting packet for better quality of service in adhoc mobile network was proposed. Fuzzy Self Organizing Map (FSOM)provide very efficient algorithmic tools for transmitting packet in an efficient manner by taking the most efficient route andalso the bandwidth, latency and range are considered to determine how good is the data delivered. The results shown thatfuzzy logic can guarantee QoS of every packets inthe network.Key words: Keywords – QoS, Adhoc network, Packet and Fuzzy logic
    • …
    corecore