609 research outputs found

    Joint buffer management and scheduling for input queued switches

    Get PDF
    Input queued (IQ) switches are highly scalable and they have been the focus of many studies from academia and industry. Many scheduling algorithms have been proposed for IQ switches. However, they do not consider the buffer space requirement inside an IQ switch that may render the scheduling algorithms inefficient in practical applications. In this dissertation, the Queue Length Proportional (QLP) algorithm is proposed for IQ switches. QLP considers both the buffer management and the scheduling mechanism to obtain the optimal allocation region for both bandwidth and buffer space according to real traffic load. In addition, this dissertation introduces the Queue Proportional Fairness (QPF) criterion, which employs the cell loss ratio as the fairness metric. The research in this dissertation will show that the utilization of network resources will be improved significantly with QPF. Furthermore, to support diverse Quality of Service (QoS) requirements of heterogeneous and bursty traffic, the Weighted Minmax algorithm (WMinmax) is proposed to efficiently and dynamically allocate network resources. Lastly, to support traffic with multiple priorities and also to handle the decouple problem in practice, this dissertation introduces the multiple dimension scheduling algorithm which aims to find the optimal scheduling region in the multiple Euclidean space

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Design of traffic shaper / scheduler for packet switches and DiffServ networks : algorithms and architectures

    Get PDF
    The convergence of communications, information, commerce and computing are creating a significant demand and opportunity for multimedia and multi-class communication services. In such environments, controlling the network behavior and guaranteeing the user\u27s quality of service is required. A flexible hierarchical sorting architecture which can function either as a traffic shaper or a scheduler according to the requirement of the traffic load is presented to meet the requirement. The core structure can be implemented as a hierarchical traffic shaper which can support a large number of connections with a wide variety of rates and burstiness without the loss of the granularity in cells\u27 conforming departure time. The hierarchical traffic shaper can implement the exact sorting scheme with a substantial reduced memory size by using two stages of timing queues, and with substantial reduction in complexity, without introducing any sorting inaccuracy. By setting a suitable threshold to the length of the departure queue and using a lookahead algorithm, the core structure can be converted to a hierarchical rateadaptive scheduler. Based on the traffic load, it can work as an exact sorting traffic shaper or a Generic Cell Rate Algorithm (GCRA) scheduler. Such a rate-adaptive scheduler can reduce the Cell Transfer Delay and the Maximum Memory Occupancy greatly while keeping the fairness in the bandwidth assignment which is the inherent characteristic of GCRA. By introducing a best-effort queue to accommodate besteffort traffic, the hierarchical sorting architecture can be changed to a near workconserving scheduler. It assigns remaining bandwidth to the best-effort traffic so that it improves the utilization, of the outlink while it guarantees the quality of service requirements of those services which require quality of service guarantees. The inherent flexibility of the hierarchical sorting architecture combined with intelligent algorithms determines its multiple functions. Its implementation not only can manage buffer and bandwidth resources effectively, but also does not require no more than off-the-shelf hardware technology. The correlation of the extra shaping delay and the rate of the connections is revealed, and an improved fair traffic shaping algorithm, Departure Event Driven plus Completing Service Time Resorting algorithm, is presented. The proposed algorithm introduces a resorting process into Departure Event Driven Traffic Shaping Algorithm to resolve the contention of multiple cells which are all eligible for transmission in the traffic shaper. By using the resorting process based on each connection\u27s rate, better fairness and flexibility in the bandwidth assignment for connections with wide range of rates can be given. A Dual Level Leaky Bucket Traffic Shaper(DLLBTS) architecture is proposed to be implemented at the edge nodes of Differentiated Services Networks in order to facilitate the quality of service management process. The proposed architecture can guarantee not only the class-based Service Level Agreement, but also the fair resource sharing among flows belonging to the same class. A simplified DLLBTS architecture is also given, which can achieve the goals of DLLBTS while maintain a very low implementation complexity so that it can be implemented with the current VLSI technology. In summary, the shaping and scheduling algorithms in the high speed packet switches and DiffServ networks are studied, and the intelligent implementation schemes are proposed for them

    Multi Protocol Label Switching: Quality of Service, Traffic Engineering application, and Virtual Private Network application

    Get PDF
    This thesis discusses the QoS feature, Traffic Engineering (TE) application, and Virtual Private Network (VPN) application of the Multi Protocol Label Switching (MPLS) protocol. This thesis concentrates on comparing MPLS with other prominent technologies such as Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and Frame Relay (FR). MPLS combines the flexibility of Internet Protocol (IP) with the connection oriented approach of Asynchronous Transfer Mode (ATM) or Frame Relay (FR). Section 1 lists several advantages MPLS brings over other technologies. Section 2 covers architecture and a brief description of the key components of MPLS. The information provided in Section 2 builds a background to compare MPLS with the other technologies in the rest of the sections. Since it is anticipate that MPLS will be a main core network technology, MPLS is required to work with two currently available QoS architectures: Integrated Service (IntServ) architecture and Differentiated Service (DiffServ) architecture. Even though the MPLS does not introduce a new QoS architecture or enhance the existing QoS architectures, it works seamlessly with both QoS architectures and provides proper QoS support to the customer. Section 3 provides the details of how MPLS supports various functions of the IntServ and DiffServ architectures. TE helps Internet Service Provider (ISP) optimize the use of available resources, minimize the operational costs, and maximize the revenues. MPLS provides efficient TE functions which prove to be superior to IP and ATM/FR. Section 4 discusses how MPLS supports the TE functionality and what makes MPLS superior to other competitive technologies. ATM and FR are still required as a backbone technology in some areas where converting the backbone to IP or MPLS does not make sense or customer demands simply require ATM or FR. In this case, it is important for MPLS to work with ATM and FR. Section 5 highlights the interoperability issues and solutions for MPLS while working in conjunction with ATM and FR. In section 6, various VPN tunnel types are discussed and compared with the MPLS VPN tunnel type. The MPLS VPN tunnel type is concluded as an optimal tunnel approach because it provides security, multiplexing, and the other important features that are reburied by the VPN customer and the ISP. Various MPLS layer 2 and layer 3 VPN solutions are also briefly discussed. In section 7 I conclude with the details of an actual implementation of a layer 3 MPLS VPN solution that works in conjunction with Border Gateway Protocol (BGP)

    Design and performance evaluation of switching architectures for high-speed Internet

    Get PDF
    The motivation for this thesis is the desire to build faster and scalable routers that efficiently handle the exponential traffic growth in the Internet. The Internet forwards information through a mesh of routers and switches, which has to keep up with the increasing demands of traffic. Shared-memory based switches are known to provide the best throughput-delay performance for a given memory size. In this thesis performance of commonly used memory-sharing schemes for the shared memory switches are evaluated under balanced and unbalanced bursty traffic. The scalability of shared-memory switches has been a research issue for quite sometime. One approach is to employ multiple memory modules and use them in parallel to enhance the capacity. The two well-known architectures in this category are (i) shared-multibuffer (SMB) switch architecture invented by Yamanaka et al. of Mitsubishi Electric Corporation, Japan; and (ii) the sliding-window (SW) switch architecture invented by Dr. Kumar of UTPA, Texas, USA. In this thesis, performance of these two architectures are evaluated and compared. Furthermore, in this thesis, the SW switch architecture is extended to enable priority switching to provide differentiated Quality of Service (QoS) for different traffic classes

    Satellite ATM Network Architectural Considerations and TCP/IP Performance

    Full text link
    In this paper, we have provided a summary of the design options in Satellite-ATM technology. A satellite ATM network consists of a space segment of satellites connected by inter-satellite crosslinks, and a ground segment of the various ATM networks. A satellite-ATM interface module connects the satellite network to the ATM networks and performs various call and control functions. A network control center performs various network management and resource allocation functions. Several issues such as the ATM service model, media access protocols, and traffic management issues must be considered when designing a satellite ATM network to effectively transport Internet traffic. We have presented the buffer requirements for TCP/IP traffic over ATM-UBR for satellite latencies. Our results are based on TCP with selective acknowledgments and a per-VC buffer management policy at the switches. A buffer size of about 0.5 * RTT to 1 * RTT is sufficient to provide over 98% throughput to infinite TCP traffic for long latency networks and a large number of sources. This buffer requirement is independent of the number of sources. The fairness is high for a large numbers of sources because of the per-VC buffer management performed at the switches and the nature of TCP traffic.Comment: Proceedings of the 3rd Ka Band Utilization Converence, Italy, 1997, pp481-48

    Deadline-ordered parallel iterative matching with QoS guarantee.

    Get PDF
    by Lui Hung Ngai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 56-[59]).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Thesis Overview --- p.3Chapter 2 --- Background & Related work --- p.4Chapter 2.1 --- Scheduling problem in ATM switch --- p.4Chapter 2.2 --- Traffic Scheduling in output-buffered switch --- p.5Chapter 2.3 --- Traffic Scheduling in Input buffered Switch --- p.16Chapter 3 --- Deadline-ordered Parallel Iterative Matching (DLPIM) --- p.22Chapter 3.1 --- Introduction --- p.22Chapter 3.2 --- Switch model --- p.23Chapter 3.3 --- Deadline-ordered Parallel Iterative Matching (DLPIM) --- p.24Chapter 3.3.1 --- Motivation --- p.24Chapter 3.3.2 --- Algorithm --- p.26Chapter 3.3.3 --- An example of DLPIM --- p.28Chapter 3.4 --- Simulation --- p.30Chapter 4 --- DLPIM with static scheduling algorithm --- p.41Chapter 4.1 --- Introduction --- p.41Chapter 4.2 --- Static scheduling algorithm --- p.42Chapter 4.3 --- DLPIM with static scheduling algorithm --- p.48Chapter 4.4 --- An example of DLPIM with static scheduling algorithm --- p.50Chapter 5 --- Conclusion --- p.54Bibliography --- p.5

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise
    • …
    corecore