4 research outputs found

    Bandwidth Prediction Schemes for Defining Bitrate Levels in SDN-enabled Adaptive Streaming.

    Get PDF
    The majority of Internet video traffic today is delivered via HTTP Adaptive Streaming (HAS). Recent studies concluded that pure client-driven HAS adaptation is likely to be sub-optimal, given clients adjust quality based on local feedback. In [1], we introduced a network-assisted streaming architecture (BBGDASH) that provides bounded bitrate guidance for a video client while preserving quality control and adaptation at the client. Although BBGDASH is an efficient approach for video delivery, deploying it in a wireless network environment could result in sub-optimal decisions due to the high fluctuations. To this end, we propose in this paper an intelligent streaming architecture (denoted BBGDASH + ), which leverages the power of time series forecasting to allow for an accurate and scalable networkbased guidance. Further, we conduct an initial investigation of parameter settings for the forecasting algorithms in a wireless testbed. Overall, the experimental results indicate the potential of the proposed approach to improve video delivery in wireless network conditions

    QoEMultiSDN: Management of Multimedia Services using MPTCP/SR in Softwarized and Virtualized Networks

    Get PDF
    5G networks are set to empower new user experiences for multimedia streaming services by offering high data rates and low latency. The rapid growth of multimedia services, such as video streaming services over future softwarized 5G networks, poses great challenges for both service providers and network operators regarding service provisioning with high Quality of Experience (QoE). Network evolution towards Software Defined Networking (SDN) and Network Function Virtualization (NFV) provides new opportunities to develop innovative ways to address the challenges. In this paper, we present a novel QoE-aware management scheme based on SDN/NFV by utilizing Multi-Path-TCP/Segment-Routing (MPTCP/SR) techniques and exploring information from both the network and client. The new scheme, entitled QoEMultiSDN, provides an optimized end-to-end QoE for multimedia service delivery. QoEMultiSDN employs two novel strategies to achieve this: (a) QoE-based multisource routing and QoE optimization, and (b) multipath protection and dynamic link-failure-free mechanisms. We implemented the proposed scheme over SDN through Dynamic Adaptive Streaming over HTTP (DASH) experiments using Mininet, POX and OpenDaylight controllers, and compared its performance with MPTCP and regular TCP. Experimental results indicate that the QoEMultiSDN outperforms others in terms of system throughput, failure recovery time and the QoE of the end-user.Science Foundation IrelandInsight Research Centre2021-02-24 JG: broken PDF replacedUpdate citation details during checkdate report - A
    corecore