6,420 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Fully Planar Dual-Polarized Broadband Antenna for 3G, 4G and Sub 6-GHz 5G Base Stations

    Get PDF
    A fully planar dual polarized radiating element with internal embedded coupled dipoles is presented in this paper. The inclusion of these elements allows achieving three different goals: firstly, an extension of the bandwidth towards lower frequencies (from 1.69 GHz to 1.427 GHz) as required in new 5G standards; secondly, a reduction of the antenna size in comparison with other topologies for bandwidth extension and, finally, a reduction of the secondary lobes. The proposed dual polarized broadband antenna is based on two sets of dual polarized dipoles, with a fully planar structure. The objective of this paper is the design of an antenna working in the extended 5G band in order to fulfil the future 5G requirement in the microwave region, in which the new frequency bandwidth goes from 1.427 up to 2.69 GHz with the return losses lower than -14 dB and the crosspolar isolation larger than 28 dB.This work was supported in part by the Spanish Ministry of Education, Culture and Sport under a grant for predoctoral contracts for University Teacher Training under Grant FPU16/00459, and in part by the Spanish Ministry of Science, Innovation and Universities, (program ``Programa Estatal de I+D+i orientada a los Retos de la Sociedad'') under Grant RTC-2017-6394-7

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Ultra-Wideband Phased Arrays for Small Mobile Platforms

    Get PDF
    This dissertation presents the development of a new class of Ultra-Wideband (UWB) apertures for aerial applications by introducing designs with over 50:1 bandwidth and novel differential feeding approaches. Designs that enable vertical integration for flip-chip millimeter-wave (UWB) transceivers are presented for small aerial platforms. Specifically, a new scalable tightly coupled array is introduced with differential feeding for chip integration. This new class of beam-forming arrays are fabricated and experimentally tested for validation with operation from as low as 130 MHz up to 18 GHz. A major achievement is the study of millimeter wave beamforming designs that operate from 22-80 GHz, fabricated using low-cost printed circuit board (PCB) methods. This low-cost fabrication approach and associated testing of the beamforming arrays are unique and game-changing
    • …
    corecore