2,178 research outputs found

    Soft self-assembly of Weyl materials for light and sound

    Get PDF
    Soft materials can self-assemble into highly structured phases which replicate at the mesoscopic scale the symmetry of atomic crystals. As such, they offer an unparalleled platform to design mesostructured materials for light and sound. Here, we present a bottom-up approach based on self-assembly to engineer three-dimensional photonic and phononic crystals with topologically protected Weyl points. In addition to angular and frequency selectivity of their bulk optical response, Weyl materials are endowed with topological surface states, which allows for the existence of one-way channels even in the presence of time-reversal invariance. Using a combination of group-theoretical methods and numerical simulations, we identify the general symmetry constraints that a self-assembled structure has to satisfy in order to host Weyl points, and describe how to achieve such constraints using a symmetry-driven pipeline for self-assembled material design and discovery. We illustrate our general approach using block copolymer self-assembly as a model system.Comment: published version, SI are available as ancillary files, code and data are available on Zenodo at https://doi.org/10.5281/zenodo.1182581, PNAS (2018

    Photonic Localization of Interface Modes at the Boundary between Metal and Fibonacci Quasi-Periodic Structure

    Full text link
    We investigated on the interface modes in a heterostructure consisting of a semi-infinite metallic layer and a semi-infinite Fibonacci quasi-periodic structure. Various properties of the interface modes, such as their spatial localizations, self-similarities, and multifractal properties are studied. The interface modes decay exponentially in different ways and the modes in the lower stable gap possess highest spatial localization. A localization index is introduced to understand the localization properties of the interface modes. We found that the localization index of the interface modes in the upper stable gap will converge to two slightly different constants according to the parity of the Fibonacci generation. In addition, the localization-delocalization transition is also found in the interface modes of the transient gap.Comment: 20 pages, 5figure

    A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic crystal waveguides

    Full text link
    This works deals with one dimensional infinite perturbation - namely line defects - in periodic media. In optics, such defects are created to construct an (open) waveguide that concentrates light. The existence and the computation of the eigenmodes is a crucial issue. This is related to a self-adjoint eigenvalue problem associated to a PDE in an unbounded domain (in the directions orthogonal to the line defect), which makes both the analysis and the computations more complex. Using a Dirichlet-to-Neumann (DtN) approach, we show that this problem is equivalent to one set on a small neighborhood of the defect. On contrary to existing methods, this one is exact but there is a price to be paid : the reduction of the problem leads to a nonlinear eigenvalue problem of a fixed point nature

    Asymptotic methods for thin high-contrast two-dimensional PBG materials

    Full text link
    • …
    corecore