6 research outputs found

    Balancing the Tradeoff between Profit and Fairness in Rideshare Platforms During High-Demand Hours

    No full text
    Rideshare platforms, when assigning requests to drivers, tend to maximize profit for the system and/or minimize waiting time for riders. Such platforms can exacerbate biases that drivers may have over certain types of requests. We consider the case of peak hours when the demand for rides is more than the supply of drivers. Drivers are well aware of their advantage during the peak hours and can choose to be selective about which rides to accept. Moreover, if in such a scenario, the assignment of requests to drivers (by the platform) is made only to maximize profit and/or minimize wait time for riders, requests of a certain type (e.g. from a non-popular pickup location, or to a non-popular drop-off location) might never be assigned to a driver. Such a system can be highly unfair to riders. However, increasing fairness might come at a cost of the overall profit made by the rideshare platform. To balance these conflicting goals, we present a flexible, non-adaptive algorithm, \lpalg, that allows the platform designer to control the profit and fairness of the system via parameters α\alpha and β\beta respectively. We model the matching problem as an online bipartite matching where the set of drivers is offline and requests arrive online. Upon the arrival of a request, we use \lpalg to assign it to a driver (the driver might then choose to accept or reject it) or reject the request. We formalize the measures of profit and fairness in our setting and show that by using \lpalg, the competitive ratios for profit and fairness measures would be no worse than α/e\alpha/e and β/e\beta/e respectively. Extensive experimental results on both real-world and synthetic datasets confirm the validity of our theoretical lower bounds. Additionally, they show that \lpalg under some choice of (α,β)(\alpha, \beta) can beat two natural heuristics, Greedy and Uniform, on \emph{both} fairness and profit

    Balancing the Tradeoff between Profit and Fairness in Rideshare Platforms during High-Demand Hours

    No full text

    “Make no little plans”: Impactful research to solve the next generation of transportation problems

    Get PDF
    The transportation science research community has contributed to numerous practical and intellectual innovations and improvements over the last decades. Technological advancements have broadened and amplified the potential impacts of our field. At the same time, the world and its communities are facing greater and more serious challenges than ever before. In this paper, we call upon the transportation science research community to work on a research agenda that addresses some of the most important of these challenges. This agenda is guided by the sustainable development goals outlined by the United Nations and organized into three areas: (1) well-being, (2) infrastructure, and, (3) natural environment. For each area, we identify current and future challenges as well as research directions to address those challenges
    corecore