3 research outputs found

    Availability-driven NFV orchestration

    Get PDF
    Virtual Network Functions as a Service (VNFaaS) is a promising business whose technical directions consist of providing network functions as a Service instead of delivering standalone network appliances, leveraging a virtualized environment named NFV Infrastructure (NFVI) to provide higher scalability and reduce maintenance costs. Operating the NFVI under stringent availability guarantees is fundamental to ensure the proper functioning of the VNFaaS against software attacks and failures, as well as common physical device failures. Indeed the availability of a VNFaaS relies on the failure rate of its single components, namely the physical servers, the hypervisor, the VNF software, and the communication network. In this paper, we propose a versatile orchestration model able to integrate an elastic VNF protection strategy with the goal to maximize the availability of an NFVI system serving multiple VNF demands. The elasticity derives from (i) the ability to use VNF protection only if needed, or (ii) to pass from dedicated protection scheme to shared VNF protection scheme when needed for a subset of the VNFs, (iii) to integrate traffic split and load-balancing as well as mastership role election in the orchestration decision, (iv) to adjust the placement of VNF masters and slaves based on the availability of the different system and network components involved. We propose a VNF orchestration algorithm based on Variable Neighboring Search, able to integrate both protection schemes in a scalable way and capable to scale, while outperforming standard online policies

    Balancing between cost and availability for CDNaaS resource placement

    No full text

    Balancing between cost and availability for CDNaaS resource placement

    No full text
    International audienceWe focus on the problem of optimal compute resource allocation and placement for the provision of a virtualized Content Delivery Network (CDN) service over a telecom operator's Network Functions Virtualization (NFV) infrastructure. Starting from a Quality of Experience (QoE)-driven decision on the necessary amount of CPU resources to allocate to satisfy a virtual CDN deployment request with QoE guarantees, we address the problem of distributing these resources to virtual machines and placing the latter to physical hosts, optimizing for the conflicting objectives of management cost and service availability, while respecting physical capacity, availability and cost constraints. We present a multi-objective optimization problem formulation, and provide efficient algorithms to solve it by relaxing some of the original problem's assumptions. Numerical results demonstrate how our solutions address the trade-off between service availability and cost, and show the benefits of our approach compared with resource placement algorithms which do not take this trade-off into account
    corecore