6,976 research outputs found

    Implementing energy saving algorithms for Ethernet link aggregates with ONOS

    Full text link
    During the last few years, there has been plenty of research for reducing energy consumption in telecommunication infrastructure. However, many of the proposals remain unim-plemented due to the lack of flexibility in legacy networks. In this paper we demonstrate how the software defined networking (SDN) capabilities of current networking equipment can be used to implement some of these energy saving algorithms. In particular, we developed an ONOS application to realize an energy-aware traffic scheduler to a bundle link made up of Energy Efficient Ethernet (EEE) links between two SDN switches. We show how our application is able to dynamically adapt to the traffic characteristics and save energy by concentrating the traffic on as few ports as possible. This way, unused ports remain in Low Power Idle (LPI) state most of the time, saving energy.Comment: 8 pages, 10 figure

    Collaborative Storage Management In Sensor Networks

    Full text link
    In this paper, we consider a class of sensor networks where the data is not required in real-time by an observer; for example, a sensor network monitoring a scientific phenomenon for later play back and analysis. In such networks, the data must be stored in the network. Thus, in addition to battery power, storage is a primary resource: the useful lifetime of the network is constrained by its ability to store the generated data samples. We explore the use of collaborative storage technique to efficiently manage data in storage constrained sensor networks. The proposed collaborative storage technique takes advantage of spatial correlation among the data collected by nearby sensors to significantly reduce the size of the data near the data sources. We show that the proposed approach provides significant savings in the size of the stored data vs. local buffering, allowing the network to run for a longer time without running out of storage space and reducing the amount of data that will eventually be relayed to the observer. In addition, collaborative storage performs load balancing of the available storage space if data generation rates are not uniform across sensors (as would be the case in an event driven sensor network), or if the available storage varies across the network.Comment: 13 pages, 7 figure

    An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

    Get PDF
    Accepted versio

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised
    corecore