55 research outputs found

    Travel Demand Forecasting: A Fair AI Approach

    Full text link
    Artificial Intelligence (AI) and machine learning have been increasingly adopted for travel demand forecasting. The AI-based travel demand forecasting models, though generate accurate predictions, may produce prediction biases and raise fairness issues. Using such biased models for decision-making may lead to transportation policies that exacerbate social inequalities. However, limited studies have been focused on addressing the fairness issues of these models. Therefore, in this study, we propose a novel methodology to develop fairness-aware, highly-accurate travel demand forecasting models. Particularly, the proposed methodology can enhance the fairness of AI models for multiple protected attributes (such as race and income) simultaneously. Specifically, we introduce a new fairness regularization term, which is explicitly designed to measure the correlation between prediction accuracy and multiple protected attributes, into the loss function of the travel demand forecasting model. We conduct two case studies to evaluate the performance of the proposed methodology using real-world ridesourcing-trip data in Chicago, IL and Austin, TX, respectively. Results highlight that our proposed methodology can effectively enhance fairness for multiple protected attributes while preserving prediction accuracy. Additionally, we have compared our methodology with three state-of-the-art methods that adopt the regularization term approach, and the results demonstrate that our approach significantly outperforms them in both preserving prediction accuracy and enhancing fairness. This study can provide transportation professionals with a new tool to achieve fair and accurate travel demand forecasting.Comment: improved the methodology; updated new content

    The impacts of ridesourcing services on the taxi market: Empirical evidence from England and Wales

    Get PDF
    Ridesourcing services have emerged as a major competitor and potential substitute for traditional taxi services. However, research investigating the effects of ridesourcing on the taxi market remains limited, with a focus on specific geographies. This empirical study aims to fill this research gap by examining the impacts of ridesourcing on the taxi market in England and Wales. Using biennial Taxi and Private Hire Vehicle (PHV) Statistics data from the Department for Transport spanning 2005 to 2019, we investigate the impacts of ridesourcing on the number of Hackney Carriages (HCs) and PHVs, as well as the employment patterns in the taxi sector. Our findings indicate a gradual decline in the number of HCs following the introduction of ridesourcing. In contrast, the number of PHVs, which are restricted to pre-bookings, gradually increased. However, we observed no statistically significant change in the number of taxi drivers on average. Notably, our analysis reveals heterogeneous effects across different areas, including rural, urban, and metropolitan districts. Furthermore, we explore the role of regulatory environments in the evolution of ridesourcing and traditional taxi services. Our study highlights that regulation change allowing PHVs to operate across borders may lead to a dramatic increase in the number of PHVs and taxi drivers in specific local authorities. Our research has important implications for policymakers and transportation authorities, particularly in terms of maintaining a competitive taxi market. Furthermore, our findings can inform authorities when planning environmentally sustainable mobility services through the implementation of appropriate regulatory frameworks

    Fairness-Enhancing Vehicle Rebalancing in the Ride-hailing System

    Full text link
    The rapid growth of the ride-hailing industry has revolutionized urban transportation worldwide. Despite its benefits, equity concerns arise as underserved communities face limited accessibility to affordable ride-hailing services. A key issue in this context is the vehicle rebalancing problem, where idle vehicles are moved to areas with anticipated demand. Without equitable approaches in demand forecasting and rebalancing strategies, these practices can further deepen existing inequities. In the realm of ride-hailing, three main facets of fairness are recognized: algorithmic fairness, fairness to drivers, and fairness to riders. This paper focuses on enhancing both algorithmic and rider fairness through a novel vehicle rebalancing method. We introduce an approach that combines a Socio-Aware Spatial-Temporal Graph Convolutional Network (SA-STGCN) for refined demand prediction and a fairness-integrated Matching-Integrated Vehicle Rebalancing (MIVR) model for subsequent vehicle rebalancing. Our methodology is designed to reduce prediction discrepancies and ensure equitable service provision across diverse regions. The effectiveness of our system is evaluated using simulations based on real-world ride-hailing data. The results suggest that our proposed method enhances both accuracy and fairness in forecasting ride-hailing demand, ultimately resulting in more equitable vehicle rebalancing in subsequent operations. Specifically, the algorithm developed in this study effectively reduces the standard deviation and average customer wait times by 6.48% and 0.49%, respectively. This achievement signifies a beneficial outcome for ride-hailing platforms, striking a balance between operational efficiency and fairness.Comment: 31 pages, 6 figure

    Mutual Information as Intrinsic Reward of Reinforcement Learning Agents for On-demand Ride Pooling

    Full text link
    The emergence of on-demand ride pooling services allows each vehicle to serve multiple passengers at a time, thus increasing drivers' income and enabling passengers to travel at lower prices than taxi/car on-demand services (only one passenger can be assigned to a car at a time like UberX and Lyft). Although on-demand ride pooling services can bring so many benefits, ride pooling services need a well-defined matching strategy to maximize the benefits for all parties (passengers, drivers, aggregation companies and environment), in which the regional dispatching of vehicles has a significant impact on the matching and revenue. Existing algorithms often only consider revenue maximization, which makes it difficult for requests with unusual distribution to get a ride. How to increase revenue while ensuring a reasonable assignment of requests brings a challenge to ride pooling service companies (aggregation companies). In this paper, we propose a framework for vehicle dispatching for ride pooling tasks, which splits the city into discrete dispatching regions and uses the reinforcement learning (RL) algorithm to dispatch vehicles in these regions. We also consider the mutual information (MI) between vehicle and order distribution as the intrinsic reward of the RL algorithm to improve the correlation between their distributions, thus ensuring the possibility of getting a ride for unusually distributed requests. In experimental results on a real-world taxi dataset, we demonstrate that our framework can significantly increase revenue up to an average of 3\% over the existing best on-demand ride pooling method.Comment: Accepted by AAMAS 202

    Future Aware Pricing and Matching for Sustainable On-demand Ride Pooling

    Full text link
    The popularity of on-demand ride pooling is owing to the benefits offered to customers (lower prices), taxi drivers (higher revenue), environment (lower carbon footprint due to fewer vehicles) and aggregation companies like Uber (higher revenue). To achieve these benefits, two key interlinked challenges have to be solved effectively: (a) pricing -- setting prices to customer requests for taxis; and (b) matching -- assignment of customers (that accepted the prices) to taxis/cars. Traditionally, both these challenges have been studied individually and using myopic approaches (considering only current requests), without considering the impact of current matching on addressing future requests. In this paper, we develop a novel framework that handles the pricing and matching problems together, while also considering the future impact of the pricing and matching decisions. In our experimental results on a real-world taxi dataset, we demonstrate that our framework can significantly improve revenue (up to 17\% and on average 6.4\%) in a sustainable manner by reducing the number of vehicles (up to 14\% and on average 10.6\%) required to obtain a given fixed revenue and the overall distance travelled by vehicles (up to 11.1\% and on average 3.7\%). That is to say, we are able to provide an ideal win-win scenario for all stakeholders (customers, drivers, aggregator, environment) involved by obtaining higher revenue for customers, drivers, aggregator (ride pooling company) while being good for the environment (due to fewer number of vehicles on the road and lesser fuel consumed).Comment: 8 pages, 2 figures, published to AAAI-202

    Towards More Efficient Shared Autonomous Mobility: A Learning-Based Fleet Repositioning Approach

    Full text link
    Shared-use autonomous mobility services (SAMS) present new opportunities for improving accessible and demand-responsive mobility. A fundamental challenge that SAMS face is appropriate positioning of idle fleet vehicles to meet future demand - a problem that strongly impacts service quality and efficiency. This paper formulates SAMS fleet repositioning as a Markov Decision Process and presents a reinforcement learning-based repositioning (RLR) approach called integrated system-agent repositioning (ISR). The ISR learns a scalable fleet repositioning strategy in an integrated manner: learning to respond to evolving demand patterns without explicit demand forecasting and to cooperate with optimization-based passenger-to-vehicle assignment. Numerical experiments are conducted using New York City taxi data and an agent-based simulation tool. The ISR is compared to an alternative RLR approach named externally guided repositioning (EGR) and a benchmark joint optimization (JO) for passenger-to-vehicle assignment and repositioning. The results demonstrate the RLR approaches' substantial reductions in passenger wait times, over 50%, relative to the JO approach. The ISR's ability to bypass demand forecasting is also demonstrated as it maintains comparable performance to EGR in terms of average metrics. The results also demonstrate the model's transferability to evolving conditions, including unseen demand patterns, extended operational periods, and changes in the assignment strategy

    Towards Fair Allocation in Social Commerce Platforms

    Full text link
    Social commerce platforms are emerging businesses where producers sell products through re-sellers who advertise the products to other customers in their social network. Due to the increasing popularity of this business model, thousands of small producers and re-sellers are starting to depend on these platforms for their livelihood; thus, it is important to provide fair earning opportunities to them. The enormous product space in such platforms prohibits manual search, and motivates the need for recommendation algorithms to effectively allocate product exposure and, consequently, earning opportunities. In this work, we focus on the fairness of such allocations in social commerce platforms and formulate the problem of assigning products to re-sellers as a fair division problem with indivisible items under two-sided cardinality constraints, wherein each product must be given to at least a certain number of re-sellers and each re-seller must get a certain number of products. Our work systematically explores various well-studied benchmarks of fairness -- including Nash social welfare, envy-freeness up to one item (EF1), and equitability up to one item (EQ1) -- from both theoretical and experimental perspectives. We find that the existential and computational guarantees of these concepts known from the unconstrained setting do not extend to our constrained model. To address this limitation, we develop a mixed-integer linear program and other scalable heuristics that provide near-optimal approximation of Nash social welfare in simulated and real social commerce datasets. Overall, our work takes the first step towards achieving provable fairness alongside reasonable revenue guarantees on social commerce platforms

    A Systematic Literature Review on Machine Learning in Shared Mobility

    Get PDF
    Shared mobility has emerged as a sustainable alternative to both private transportation and traditional public transport, promising to reduce the number of private vehicles on roads while offering users greater flexibility. Today, urban areas are home to a myriad of innovative services, including car-sharing, ride-sharing, and micromobility solutions like moped-sharing, bike-sharing, and e-scooter-sharing. Given the intense competition and the inherent operational complexities of shared mobility systems, providers are increasingly seeking specialized decision-support methodologies to boost operational efficiency. While recent research indicates that advanced machine learning methods can tackle the intricate challenges in shared mobility management decisions, a thorough evaluation of existing research is essential to fully grasp its potential and pinpoint areas needing further exploration. This paper presents a systematic literature review that specifically targets the application of Machine Learning for decision-making in Shared Mobility Systems. Our review underscores that Machine Learning offers methodological solutions to specific management challenges crucial for the effective operation of Shared Mobility Systems. We delve into the methods and datasets employed, spotlight research trends, and pinpoint research gaps. Our findings culminate in a comprehensive framework of Machine Learning techniques designed to bolster managerial decision-making in addressing challenges specific to Shared Mobility across various levels

    The Governance of Risks in Ridesharing: A Revelatory Case from Singapore

    Get PDF
    Recently we have witnessed the worldwide adoption of many different types of innovative technologies, such as crowdsourcing, ridesharing, open and big data, aiming at delivering public services more efficiently and effectively. Among them, ridesharing has received substantial attention from decision-makers around the world. Because of the multitude of currently understood or potentially unknown risks associated with ridesharing (unemployment, insurance, information privacy, and environmental risk), governments in different countries apply different strategies to address such risks. Some governments prohibit the adoption of ridesharing altogether, while other governments promote it. In this article, we address the question of how risks involved in ridesharing are governed over time. We present an in-depth single case study on Singapore and examine how the Singaporean government has addressed risks in ridesharing over time. The Singaporean government has a strong ambition to become an innovation hub, and many innovative technologies have been adopted and promoted to that end. At the same time, decision-makers in Singapore are reputed for their proactive style of social governance. The example of Singapore can be regarded as a revelatory case study, helping us further to explore governance practices in other countries. Keywords: risk; ridesharing; transport; governance; innovative technologies; case study; Singapor
    corecore