86 research outputs found

    Balancing Degree, Diameter and Weight in Euclidean Spanners

    Full text link
    In this paper we devise a novel \emph{unified} construction of Euclidean spanners that trades between the maximum degree, diameter and weight gracefully. For a positive integer k, our construction provides a (1+eps)-spanner with maximum degree O(k), diameter O(log_k n + alpha(k)), weight O(k \cdot log_k n \cdot log n) \cdot w(MST(S)), and O(n) edges. Note that for k= n^{1/alpha(n)} this gives rise to diameter O(alpha(n)), weight O(n^{1/alpha(n)} \cdot log n \cdot alpha(n)) \cdot w(MST(S)) and maximum degree O(n^{1/alpha(n)}), which improves upon a classical result of Arya et al. \cite{ADMSS95}; in the corresponding result from \cite{ADMSS95} the spanner has the same number of edges and diameter, but its weight and degree may be arbitrarily large. Also, for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and weight O(log^2 n) \cdot w(MST(S)), which reproves another classical result of Arya et al. \cite{ADMSS95}. Our bound of O(log_k n + alpha(k)) on the diameter is optimal under the constraints that the maximum degree is O(k) and the number of edges is O(n). Our bound on the weight is optimal up to a factor of log n. Our construction also provides a similar tradeoff in the complementary range of parameters, i.e., when the weight should be smaller than log^2 n, but the diameter is allowed to grow beyond log n. For random point sets in the d-dimensional unit cube, we "shave" a factor of log n from the weight bound. Specifically, in this case our construction achieves maximum degree O(k), diameter O(log_k n + alpha(k)) and weight that is with high probability O(k \cdot log_k n) \cdot w(MST(S)). Finally, en route to these results we devise optimal constructions of 1-spanners for general tree metrics, which are of independent interest.Comment: 27 pages, 7 figures; a preliminary version of this paper appeared in ESA'1

    Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics

    Full text link
    Recently Elkin and Solomon gave a construction of spanners for doubling metrics that has constant maximum degree, hop-diameter O(log n) and lightness O(log n) (i.e., weight O(log n)w(MST). This resolves a long standing conjecture proposed by Arya et al. in a seminal STOC 1995 paper. However, Elkin and Solomon's spanner construction is extremely complicated; we offer a simple alternative construction that is very intuitive and is based on the standard technique of net tree with cross edges. Indeed, our approach can be readily applied to our previous construction of k-fault tolerant spanners (ICALP 2012) to achieve k-fault tolerance, maximum degree O(k^2), hop-diameter O(log n) and lightness O(k^3 log n)

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Spanners for Geometric Intersection Graphs

    Full text link
    Efficient algorithms are presented for constructing spanners in geometric intersection graphs. For a unit ball graph in R^k, a (1+\epsilon)-spanner is obtained using efficient partitioning of the space into hypercubes and solving bichromatic closest pair problems. The spanner construction has almost equivalent complexity to the construction of Euclidean minimum spanning trees. The results are extended to arbitrary ball graphs with a sub-quadratic running time. For unit ball graphs, the spanners have a small separator decomposition which can be used to obtain efficient algorithms for approximating proximity problems like diameter and distance queries. The results on compressed quadtrees, geometric graph separators, and diameter approximation might be of independent interest.Comment: 16 pages, 5 figures, Late

    New Doubling Spanners: Better and Simpler

    Get PDF
    published_or_final_versio

    Sparse Fault-Tolerant Spanners for Doubling Metrics with Bounded Hop-Diameter or Degree

    Get PDF
    postprin

    Light Euclidean Spanners with Steiner Points

    Get PDF
    The FOCS'19 paper of Le and Solomon, culminating a long line of research on Euclidean spanners, proves that the lightness (normalized weight) of the greedy (1+ϵ)(1+\epsilon)-spanner in Rd\mathbb{R}^d is O~(ϵd)\tilde{O}(\epsilon^{-d}) for any d=O(1)d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}) (where O~\tilde{O} hides polylogarithmic factors of 1ϵ\frac{1}{\epsilon}), and also shows the existence of point sets in Rd\mathbb{R}^d for which any (1+ϵ)(1+\epsilon)-spanner must have lightness Ω(ϵd)\Omega(\epsilon^{-d}). Given this tight bound on the lightness, a natural arising question is whether a better lightness bound can be achieved using Steiner points. Our first result is a construction of Steiner spanners in R2\mathbb{R}^2 with lightness O(ϵ1logΔ)O(\epsilon^{-1} \log \Delta), where Δ\Delta is the spread of the point set. In the regime of Δ21/ϵ\Delta \ll 2^{1/\epsilon}, this provides an improvement over the lightness bound of Le and Solomon [FOCS 2019]; this regime of parameters is of practical interest, as point sets arising in real-life applications (e.g., for various random distributions) have polynomially bounded spread, while in spanner applications ϵ\epsilon often controls the precision, and it sometimes needs to be much smaller than O(1/logn)O(1/\log n). Moreover, for spread polynomially bounded in 1/ϵ1/\epsilon, this upper bound provides a quadratic improvement over the non-Steiner bound of Le and Solomon [FOCS 2019], We then demonstrate that such a light spanner can be constructed in Oϵ(n)O_{\epsilon}(n) time for polynomially bounded spread, where OϵO_{\epsilon} hides a factor of poly(1ϵ)\mathrm{poly}(\frac{1}{\epsilon}). Finally, we extend the construction to higher dimensions, proving a lightness upper bound of O~(ϵ(d+1)/2+ϵ2logΔ)\tilde{O}(\epsilon^{-(d+1)/2} + \epsilon^{-2}\log \Delta) for any 3d=O(1)3\leq d = O(1) and any ϵ=Ω(n1d1)\epsilon = \Omega(n^{-\frac{1}{d-1}}).Comment: 23 pages, 2 figures, to appear in ESA 2

    Sparse Euclidean Spanners with Optimal Diameter: A General and Robust Lower Bound via a Concave Inverse-Ackermann Function

    Get PDF
    corecore