92 research outputs found

    Handling Adaptive Compromise for Practical Encryption Schemes

    Get PDF
    We provide a new definitional framework capturing the multi-user security of encryption schemes and pseudorandom functions in the face of adversaries that can adaptively compromise users\u27 keys. We provide a sequence of results establishing the security of practical symmetric encryption schemes under adaptive compromise in the random oracle or ideal cipher model. The bulk of analysis complexity for adaptive compromise security is relegated to the analysis of lower-level primitives such as pseudorandom functions. We apply our framework to give proofs of security for the BurnBox system for privacy in the face of border searches and the in-use searchable symmetric encryption scheme due to Cash et al. In both cases, prior analyses had bugs that our framework helps avoid

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    SCARF: A Low-Latency Block Cipher for Secure Cache-Randomization

    Get PDF
    Randomized cache architectures have proven to significantly increase the complexity of contention-based cache side channel attacks and therefore pre\-sent an important building block for side channel secure microarchitectures. By randomizing the address-to-cache-index mapping, attackers can no longer trivially construct minimal eviction sets which are fundamental for contention-based cache attacks. At the same time, randomized caches maintain the flexibility of traditional caches, making them broadly applicable across various CPU-types. This is a major advantage over cache partitioning approaches. A large variety of randomized cache architectures has been proposed. However, the actual randomization function received little attention and is often neglected in these proposals. Since the randomization operates directly on the critical path of the cache lookup, the function needs to have extremely low latency. At the same time, attackers must not be able to bypass the randomization which would nullify the security benefit of the randomized mapping. In this paper we propose \cipher (\underline{S}ecure \underline{CA}che \underline{R}andomization \underline{F}unction), the first dedicated cache randomization cipher which achieves low latency and is cryptographically secure in the cache attacker model. The design methodology for this dedicated cache cipher enters new territory in the field of block ciphers with a small 10-bit block length and heavy key-dependency in few rounds

    From Substitution Box To Threshold

    Get PDF
    With the escalating demand for lightweight ciphers as well as side channel protected implementation of those ciphers in recent times, this work focuses on two aspects. First, we present a tool for automating the task of finding a Threshold Implementation (TI) of a given Substitution Box (SBox). Our tool returns `with decomposition\u27 and `without decomposition\u27 based TI. The `with decomposition\u27 based implementation returns a combinational SBox; whereas we get a sequential SBox from the `without decomposition\u27 based implementation. Despite being high in demand, it appears that this kind of tool has been missing so far. Second, we show an algorithmic approach where a given cipher implementation can be tweaked (without altering the cipher specification) so that its TI cost can be significantly reduced. We take the PRESENT cipher as our case study (our methodology can be applied to other ciphers as well). Indeed, we show over 31 percent reduction in area and over 52 percent reduction in depth compared to the basic threshold implementation

    Quantum Speed-Up for Multidimensional (Zero Correlation) Linear Distinguishers

    Get PDF
    This paper shows how to achieve a quantum speed-up for multidimensional (zero correlation) linear distinguishers. A previous work by Kaplan et al. has already shown a quantum quadratic speed-up for one-dimensional linear distinguishers. However, classical linear cryptanalysis often exploits multidimensional approximations to achieve more efficient attacks, and in fact it is highly non-trivial whether Kaplan et al.\u27s technique can be extended into the multidimensional case. To remedy this, we investigate a new quantum technique to speed-up multidimensional linear distinguishers. Firstly, we observe that there is a close relationship between the subroutine of Simon\u27s algorithm and linear correlations via Fourier transform. Specifically, a slightly modified version of Simon\u27s subroutine, which we call Correlation Extraction Algorithm (CEA), can be used to speed-up multidimensional linear distinguishers. CEA also leads to a speed-up for multidimensional zero correlation distinguishers, as well as some integral distinguishers through the correspondence of zero correlation and integral properties shown by Bogdanov et al.~and Sun et al. Furthermore, we observe possibility of a more than quadratic speed-ups for some special types of integral distinguishers when multiple integral properties exist. Especially, we show a single-query distinguisher on a 4-bit cell SPN cipher with the same integral property as 2.5-round AES. Our attacks are the first to observe such a speed-up for classical cryptanalytic techniques without relying on hidden periods or shifts. By replacing the Hadamard transform in CEA with the general quantum Fourier transform, our technique also speeds-up generalized linear distinguishers on an arbitrary finite abelian group

    Provable security for lightweight message authentication and encryption

    Full text link
    The birthday bound often limits the security of a cryptographic scheme to half of the block size or internal state size. This implies that cryptographic schemes require a block size or internal state size that is twice the security level, resulting in larger and more resource-intensive designs. In this thesis, we introduce abstract constructions for message authentication codes and stream ciphers that we demonstrate to be secure beyond the birthday bound. Our message authentication codes were inspired by previous work, specifically the message authentication code EWCDM by Cogliati and Seurin, as well as the work by Mennink and Neves, which demonstrates easy proofs of security for the sum of permutations and an improved bound for EWCDM. We enhance the sum of permutations by incorporating a hash value and a nonce in our stateful design, and in our stateless design, we utilize two hash values. One advantage over EWCDM is that the permutation calls, or block cipher calls, can be parallelized, whereas in EWCDM they must be performed sequentially. We demonstrate that our constructions provide a security level of 2n/3 bits in the nonce-respecting setting. Subsequently, this bound was further improved to 3n/4 bits of security. Additionally, it was later discovered that security degrades gracefully with nonce repetitions, unlike EWCDM, where the security drops to the birthday bound with a single nonce repetition. Contemporary stream cipher designs aim to minimize the hardware module's resource requirements by incorporating an externally available resource, all while maintaining a high level of security. The security level is typically measured in relation to the size of the volatile internal state, i.e., the state cells within the cipher's hardware module. Several designs have been proposed that continuously access the externally available non-volatile secret key during keystream generation. However, there exists a generic distinguishing attack with birthday bound complexity. We propose schemes that continuously access the externally available non-volatile initial value. For all constructions, conventional or contemporary, we provide proofs of security against generic attacks in the random oracle model. Notably, stream ciphers that use the non-volatile initial value during keystream generation offer security beyond the birthday bound. Based on these findings, we propose a new stream cipher design called DRACO

    The QARMAv2 Family of Tweakable Block Ciphers

    Get PDF
    We introduce the QARMAv2 family of tweakable block ciphers. It is a redesign of QARMA (from FSE 2017) to improve its security bounds and allow for longer tweaks, while keeping similar latency and area. The wider tweak input caters to both specific use cases and the design of modes of operation with higher security bounds. This is achieved through new key and tweak schedules, revised S-Box and linear layer choices, and a more comprehensive security analysis. QARMAv2 offers competitive latency and area in fully unrolled hardware implementations. Some of our results may be of independent interest. These include: new MILP models of certain classes of diffusion matrices; the comparative analysis of a full reflection cipher against an iterative half-cipher; our boomerang attack framework; and an improved approach to doubling the width of a block cipher

    Block Cipher Doubling for a Post-Quantum World

    Get PDF
    In order to maintain a similar security level in a post-quantum setting, many symmetric primitives should have to double their keys and increase their state sizes. So far, no generic way for doing this is known that would provide convincing quantum security guarantees. In this paper we propose a new generic construction, QuEME, that allows to double the key and the state size of a block cipher. The QuEME design is inspired by the ECB-Mix-ECB (EME) construction, but is defined for a different choice of mixing function that withstands our new quantum superposition attack that exhibits a periodic property found in collisions and that breaks EME and a large class of variants of it. We prove that QuEME achieves nn-bit security in the classical setting, where nn is the block size of the underlying block cipher, and at least n/6n/6-bit security in the quantum setting. We propose a concrete instantiation of this construction, called Double-AES, that is built with variants of AES-128

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    BipBip: A Low-Latency Tweakable Block Cipher with Small Dimensions

    Get PDF
    Recently, a memory safety concept called Cryptographic Capability Computing (C3) has been proposed. C3 is the first memory safety mechanism that works without requiring extra storage for metadata and hence, has the potential to significantly enhance the security of modern IT-systems at a rather low cost. To achieve this, C3 heavily relies on ultra-low-latency cryptographic primitives. However, the most crucial primitive required by C3 demands uncommon dimensions. To partially encrypt 64-bit pointers, a 24-bit tweakable block cipher with a 40-bit tweak is needed. The research on low-latency tweakable block ciphers with such small dimensions is not very mature. Therefore, designing such a cipher provides a great research challenge, which we take on with this paper. As a result, we present BipBip, a 24-bit tweakable block cipher with a 40-bit tweak that allows for ASIC implementations with a latency of 3 cycles at a 4.5 GHz clock frequency on a modern 10 nm CMOS technology
    • …
    corecore