2 research outputs found

    HORIZONTAL CURRENT BIPOLAR TRANSISTOR (HCBT) – A LOW-COST, HIGH-PERFORMANCE FLEXIBLE BICMOS TECHNOLOGY FOR RF COMMUNICATION APPLICATIONS

    Get PDF
    In an overview of Horizontal Current Bipolar Transistor (HCBT) technology, the state-of-the-art integrated silicon bipolar transistors are described which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that are among the highest-performance implanted-base, silicon bipolar transistors. HBCT is integrated with CMOS in a considerably lower-cost fabrication sequence as compared to standard vertical-current bipolar transistors with only 2 or 3 additional masks and fewer process steps. Due to its specific structure, the charge sharing effect can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the electric field can be engineered just by manipulating the lithography masks achieving the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process flow with high-speed devices, i.e. at zero additional costs. Double-balanced active mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved.This article has been corrected. Link to the correction DOI:10.2298/FUEE1703429

    ON FUNDAMENTAL OPERATING PRINCIPLES AND RANGE-DOPPLER ESTIMATION IN MONOLITHIC FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR SENSORS

    Get PDF
    The diverse application areas of emerging monolithic noncontactradar sensors that are able to measure object’s distance and velocity is expected to grow in the near future to scales that are now nearly inconceivable. A classical concept of frequency-modulated continuous-wave (FMCW) radar, tailored to operate in the millimeter-wave (mm-wave) band, is well-suited to be implemented in the baseline CMOS or BiCMOS process technologies. High volume production could radically cut the cost and decrease the form factorof such sensing devices thus enabling their omnipresence in virtually every field. This introductory paper explains the key concepts of mm-wave sensing starting from a chirp as an essential signal in linear FMCW radars. It further sketches the fundamental operating principles and block structure of contemporary fully integrated homodyne FMCW radars. Crucial radar parameters like the maximum unambiguously measurable distance and speed, as well as rangeand velocity resolutions are specified and derived. The importance of both beat tones in the intermediate frequency (IF) signal and the phase in resolving small spatial perturbations and obtaining the 2-D range-Doppler plot is pointed out. Radar system-level trade-offs and chirp/frame design strategies are explained. Finally, the nonideal and second-order effects are commented and the examples of practical FMCW transmitter and receiver implementations are summarized
    corecore