8 research outputs found

    Bi-objective optimization of the tactical allocation of job types to machines: mathematical modeling, theoretical analysis, and numerical tests

    Get PDF
    We introduce a tactical resource allocation model for a large aerospace engine system manufacturer aimed at long-term production planning. Our model identifies the routings a product takes through the factory, and which machines should be qualified for a balanced resource loading, to reduce product lead times. We prove some important mathematical properties of the model that are used to develop a heuristic providing a good initial feasible solution. We propose a tailored approach for our class of problems combining two well-known criterion space search algorithms, the bi-directional ε-constraint method and the augmented weighted Tchebycheff method. A computational investigation comparing solution times for several solution methods is presented for 60 numerical\ua0instances

    A generalization of totally unimodular and network matrices.

    Get PDF
    In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our purpose is to introduce new classes of matrices that preserve the advantageous properties of these well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimodular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral vector by an integer k. We argue that simply generalizing the determinantal structure of totally unimodular matrices does not suffice to achieve this goal and one has to extend the range of values the inverses of submatrices can contain. To this end, we define k-regular matrices. We show that k-regularity is a proper generalization of total unimodularity in polyhedral terms, as it guarantees the scalability of vertices. Moreover, we prove that the k-regularity of a matrix is necessary and sufficient for substituting mod-k cuts for rank-1 Chvatal-Gomory cuts. In the second part of the thesis we introduce binet matrices, an extension of network matrices to bidirected graphs. We provide an algorithm to calculate the columns of a binet matrix using the underlying graphical structure. Using this method, we prove some results about binet matrices and demonstrate that several interesting classes of matrices are binet. We show that binet matrices are 2-regular, therefore they provide half-integral vertices for a polyhedron with a binet constraint matrix and integral right hand side vector. We also prove that optimization on such a polyhedron can be carried out very efficiently, as there exists an extension of the network simplex method for binet matrices. Furthermore, the integer optimization with binet matrices is equivalent to solving a matching problem. We also describe the connection of k-regular and binet matrices to other parts of combinatorial optimization, notably to matroid theory and regular vectorspaces

    Transitive Packing: A Unifying Concept in Combinatorial Optimization

    Get PDF
    This paper attempts to give a better understanding of the facial structure of previously separately investigated polyhedra. It introduces the notion of transitive packing and the transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing polytope are, among others, the node packing polytope, the acyclic subdigraph polytope, the bipartite subgraph polytope, the planar subgraph polytope, the clique partitioning polytope, the partition polytope, the transitive acyclic subdigraph polytope, the interval order polytope, and the relatively transitive subgraph polytope. We give cutting plane proofs for several rich classes of valid inequalities of the transitive packing polytope,in this way introducing generalized cycle, generalized clique, generalized antihole, generalized antiweb, and odd partition inequalities. These classes subsume several known classes of valid inequalities for several of the special cases and give also many new inequalities for several other special cases. For some of the classes we also prove a lower bound for their Gomory-Chvdtal rank. Finally, we relate the concept of transitive packing to generalized (set) packing and covering as well as to balanced and ideal matrices
    corecore