155,355 research outputs found

    Measurement of body temperature and heart rate for the development of healthcare system using IOT platform

    Get PDF
    Health can be define as a state of complete mental, physical and social well-being and not merely the absence of disease or infirmity according to the World Health Organization (WHO) [1]. Having a healthy body is the greatest blessing of life, hence healthcare is required to maintain or improve the health since the healthcare is the maintenance or improvement of health through the diagnosis, prevention, and treatment of injury, disease, illness, and other mental and physical impairments in human beings. The novel paradigm of Internet of Things (IoT) has the potential to transform modern healthcare and improve the well-being of entire society [2]. IoT is a concept aims to connec

    Pictorial Socratic dialogue and conceptual change

    Get PDF
    Counter-examples used in a Socratic dialogue aim to provoke reflection to effect conceptual changes. However, natural language forms of Socratic dialogues have their limitations. To address this problem, we propose an alternative form of Socratic dialogue called the pictorial Socratic dialogue. A Spring Balance System has been designed to provide a platform for the investigation of the effects of this pedagogy on conceptual changes. This system allows learners to run and observe an experiment. Qualitative Cartesian graphs are employed for learners to represent their solutions. Indirect and intelligent feedback is prescribed through two approaches in the pictorial Socratic dialogue which aim to provoke learners probe through the perceptual structural features of the problem and solution, into the deeper level of the simulation where Archimedes’ Principle governs

    Eclectic Rule Extraction for Explainability of Deep Neural Network based Intrusion Detection Systems

    Full text link
    This paper addresses trust issues created from the ubiquity of black box algorithms and surrogate explainers in Explainable Intrusion Detection Systems (X-IDS). While Explainable Artificial Intelligence (XAI) aims to enhance transparency, black box surrogate explainers, such as Local Interpretable Model-Agnostic Explanation (LIME) and SHapley Additive exPlanation (SHAP), are difficult to trust. The black box nature of these surrogate explainers makes the process behind explanation generation opaque and difficult to understand. To avoid this problem, one can use transparent white box algorithms such as Rule Extraction (RE). There are three types of RE algorithms: pedagogical, decompositional, and eclectic. Pedagogical methods offer fast but untrustworthy white-box explanations, while decompositional RE provides trustworthy explanations with poor scalability. This work explores eclectic rule extraction, which strikes a balance between scalability and trustworthiness. By combining techniques from pedagogical and decompositional approaches, eclectic rule extraction leverages the advantages of both, while mitigating some of their drawbacks. The proposed Hybrid X-IDS architecture features eclectic RE as a white box surrogate explainer for black box Deep Neural Networks (DNN). The presented eclectic RE algorithm extracts human-readable rules from hidden layers, facilitating explainable and trustworthy rulesets. Evaluations on UNSW-NB15 and CIC-IDS-2017 datasets demonstrate the algorithm's ability to generate rulesets with 99.9% accuracy, mimicking DNN outputs. The contributions of this work include the hybrid X-IDS architecture, the eclectic rule extraction algorithm applicable to intrusion detection datasets, and a thorough analysis of performance and explainability, demonstrating the trade-offs involved in rule extraction speed and accuracy

    Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program known as VQR (Verifica della QualitĂ  della Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of the

    Preceding rule induction with instance reduction methods

    Get PDF
    A new prepruning technique for rule induction is presented which applies instance reduction before rule induction. An empirical evaluation records the predictive accuracy and size of rule-sets generated from 24 datasets from the UCI Machine Learning Repository. Three instance reduction algorithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each one is used to reduce the size of the training set, prior to inducing a set of rules using Clark and Boswell's modification of CN2. A hybrid instance reduction algorithm (comprised of AllKnn and DROP5) is also tested. For most of the datasets, pruning the training set using ENN, AllKnn or the hybrid significantly reduces the number of rules generated by CN2, without adversely affecting the predictive performance. The hybrid achieves the highest average predictive accuracy
    • …
    corecore