2,905 research outputs found

    Machine learning-based human observer analysis of video sequences

    Get PDF
    The research contributes to the field of video analysis by proposing novel approaches to automatically generating human observer performance patterns that can be effectively used in advancing the modern video analytic and forensic algorithms. Eye tracker and eye movement analysis technology are employed in medical research, psychology, cognitive science and advertising. The data collected on human eye movement from the eye tracker can be analyzed using the machine and statistical learning approaches. Therefore, the study attempts to understand the visual attention pattern of people when observing a captured CCTV footage. It intends to prove whether the eye gaze of the observer which determines their behaviour is dependent on the given instructions or the knowledge they learn from the surveillance task. The research attempts to understand whether the attention of the observer on human objects is differently identified and tracked considering the different areas of the body of the tracked object. It attempts to know whether pattern analysis and machine learning can effectively replace the current conceptual and statistical approaches to the analysis of eye-tracking data captured within a CCTV surveillance task. A pilot study was employed that took around 30 minutes for each participant. It involved observing 13 different pre-recorded CCTV clips of public space. The participants are provided with a clear written description of the targets they should find in each video. The study included a total of 24 participants with varying levels of experience in analyzing CCTV video. A Tobii eye tracking system was employed to record the eye movements of the participants. The data captured by the eye tracking sensor is analyzed using statistical data analysis approaches like SPSS and machine learning algorithms using WEKA. The research concluded the existence of differences in behavioural patterns which could be used to classify participants of study is appropriate machine learning algorithms are employed. The research conducted on video analytics was perceived to be limited to few iii projects where the human object being observed was viewed as one object, and hence the detailed analysis of human observer attention pattern based on human body part articulation has not been investigated. All previous attempts in human observer visual attention pattern analysis on CCTV video analytics and forensics either used conceptual or statistical approaches. These methods were limited with regards to making predictions and the detection of hidden patterns. A novel approach to articulating human objects to be identified and tracked in a visual surveillance task led to constrained results, which demanded the use of advanced machine learning algorithms for classification of participants The research conducted within the context of this thesis resulted in several practical data collection and analysis challenges during formal CCTV operator based surveillance tasks. These made it difficult to obtain the appropriate cooperation from the expert operators of CCTV for data collection. Therefore, if expert operators were employed in the study rather than novice operator, a more discriminative and accurate classification would have been achieved. Machine learning approaches like ensemble learning and tree based algorithms can be applied in cases where a more detailed analysis of the human behaviour is needed. Traditional machine learning approaches are challenged by recent advances in the field of convolutional neural networks and deep learning. Therefore, future research can replace the traditional machine learning approaches employed in this study, with convolutional neural networks. The current research was limited to 13 different videos with different descriptions given to the participants for identifying and tracking different individuals. The research can be expanded to include any complicated demands with regards to changes in the analysis process

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Visual Integration of Data and Model Space in Ensemble Learning

    Full text link
    Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integration of the data and the model space for exploring and combining classifier models. We introduce a workflow that builds upon the visual integration and enables the effective exploration of classification outputs and models. We then present a use case in which we start with an ensemble automatically selected by a standard ensemble selection algorithm, and show how we can manipulate models and alternative combinations.Comment: 8 pages, 7 picture

    Twitter in Academic Conferences: Usage, Networking and Participation over Time

    Full text link
    Twitter is often referred to as a backchannel for conferences. While the main conference takes place in a physical setting, attendees and virtual attendees socialize, introduce new ideas or broadcast information by microblogging on Twitter. In this paper we analyze the scholars' Twitter use in 16 Computer Science conferences over a timespan of five years. Our primary finding is that over the years there are increasing differences with respect to conversation use and information use in Twitter. We studied the interaction network between users to understand whether assumptions about the structure of the conversations hold over time and between different types of interactions, such as retweets, replies, and mentions. While `people come and people go', we want to understand what keeps people stay with the conference on Twitter. By casting the problem to a classification task, we find different factors that contribute to the continuing participation of users to the online Twitter conference activity. These results have implications for research communities to implement strategies for continuous and active participation among members

    Multi-Domain Pose Network for Multi-Person Pose Estimation and Tracking

    Full text link
    Multi-person human pose estimation and tracking in the wild is important and challenging. For training a powerful model, large-scale training data are crucial. While there are several datasets for human pose estimation, the best practice for training on multi-dataset has not been investigated. In this paper, we present a simple network called Multi-Domain Pose Network (MDPN) to address this problem. By treating the task as multi-domain learning, our methods can learn a better representation for pose prediction. Together with prediction heads fine-tuning and multi-branch combination, it shows significant improvement over baselines and achieves the best performance on PoseTrack ECCV 2018 Challenge without additional datasets other than MPII and COCO.Comment: Extended abstract for the ECCV 2018 PoseTrack Worksho

    LifeCLEF Plant Identification Task 2015

    Get PDF
    International audienceThe LifeCLEF plant identification challenge aims at evaluating plant identification methods and systems at a very large scale, close to the conditions of a real-world biodiversity monitoring scenario. The 2015 evaluation was actually conducted on a set of more than 100K images illustrating 1000 plant species living in West Europe. The main originality of this dataset is that it was built through a large-scale partic-ipatory sensing plateform initiated in 2011 and which now involves tens of thousands of contributors. This overview presents more precisely the resources and assessments of the challenge, summarizes the approaches and systems employed by the participating research groups, and provides an analysis of the main outcomes
    corecore