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Abstract. The LifeCLEF plant identification challenge aims at eval-
uating plant identification methods and systems at a very large scale,
close to the conditions of a real-world biodiversity monitoring scenario.
The 2015 evaluation was actually conducted on a set of more than 100K
images illustrating 1000 plant species living in West Europe. The main
originality of this dataset is that it was built through a large-scale partic-
ipatory sensing plateform initiated in 2011 and which now involves tens
of thousands of contributors. This overview presents more precisely the
resources and assessments of the challenge, summarizes the approaches
and systems employed by the participating research groups, and provides
an analysis of the main outcomes.
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1 Introduction

Image-based approaches are nowadays considered to be one of the most promis-
ing solution to help bridging the botanical taxonomic gap, as discussed in [21] or
[16] for instance. We therefore see an increasing interest in this trans-disciplinary
challenge in the multimedia community (e.g. in [14], [6], [19], [25], [15], [2]). Be-
yond the raw identification performances achievable by state-of-the-art computer
vision algorithms, the visual search approach offers much more efficient and in-
teractive ways of browsing large floras than standard field guides or online web
catalogs. Smartphone applications relying on such image-based identification
services are particularly promising for setting-up massive ecological monitoring
systems, involving hundreds of thousands of contributors, with different levels
of expertise, and at a very low cost.

Noticeable progress in this way was achieved by several projects and apps
like LeafSnap4 [21], PlantNet5,6 [16], or Folia7. But as promising as these appli-
cations are, their performances are however still far from the requirements of a

4 http://leafsnap.com/
5 https://play.google.com/store/apps/details?id=org.plantnet&hl=en
6 http://identify.plantnet-project.org/
7 http://liris.univ-lyon2.fr/reves/content/en/index.php
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https://play.google.com/store/apps/details?id=org.plantnet&hl=en
http://identify.plantnet-project.org/
http://liris.univ-lyon2.fr/reves/content/en/index.php


real-world social-based ecological surveillance scenario. Allowing the mass of cit-
izens to produce accurate plant observations requires to equip them with much
more accurate identification tools. Measuring and boosting the performances of
content-based identification tools is therefore crucial. This was precisely the goal
of the ImageCLEF8 plant identification task organized since 2011 in the context
of the worldwide evaluation forum CLEF9(see [12], [13], [17] and [18] for more
details).

Contrary to previous evaluations reported in the literature, the key objective
of the PlantCLEF challenge has always been to build a realistic task close to
real-world conditions (with many different contributors, cameras, areas, periods
of the year, individual plants, etc.). This was initially achieved through a citizen
science initiative that began 5 years ago, in the context of the Pl@ntNet project,
in order to boost the production of plant images in close collaboration with the
Tela Botanica social network. The evaluation dataset was enriched every year
with new contributions and progressively diversified with different input feeds
(annotation and cleaning of older data, contributions made through Pl@ntNet
mobile applications). The plant task of LifeCLEF 2015 was directly in the con-
tinuity of this effort. Main novelties compared to the last year were:

– the doubling of the number species, i.e. 1000 species instead of 500
– the possibility to use external training data at the condition that the exper-

iment is entirely re-producible

2 Dataset

More precisely, PlantCLEF 2015 dataset is composed of 113,205 pictures be-
longing to 41,794 observations of 1000 species of trees, herbs and ferns living in
Western European regions. This data was collected by 8,960 distinct contribu-
tors. Each picture belongs to one and only one of the 7 types of views reported
in the meta-data (entire plant, fruit, leaf, flower, stem, branch, leaf scan) and
is associated with a single plant observation identifier allowing to link it with
the other pictures of the same individual plant (observed the same day by the
same person). It is noticeable that most image-based identification methods and
evaluation data proposed in the past were so far based on leaf images (e.g. in
[21], [3], [6] or in the more recent methods evaluated in [13]). Only few of them
were focused on flower’s images as in [26] or [1]. Leaves are far from being the
only discriminant visual key between species but, due to their shape and size,
they have the advantage to be easily observed, captured and described. More
diverse parts of the plants however have to be considered for accurate identifi-
cation, especially because it is not possible for many plant to see their leaves all
over the year.

An originality of PlantCLEF dataset is that its ”social nature” makes it
closer to the conditions of a real-world identification scenario: (i) images of the

8 http://www.imageclef.org/
9 http://www.clef-initiative.eu/
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Fig. 1. Examples of PlantCLEF pictures with decreasing averaged users ratings for the
different types of views

same species are coming from distinct plants living in distinct areas, (ii) pictures
are taken by different users that might not used the same protocol of image
acquisition, (iii) pictures are taken at different periods in the year. Each image
of the dataset is associated with contextual meta-data (author, date, locality
name, plant id) and social data (user ratings on image quality, collaboratively
validated taxon name, vernacular name) provided in a structured xml file. The
gps geo-localization and device settings are available only for some of the images.
Figure 1 gives some examples of pictures with decreasing averaged users ratings
for the different types of views. Note that the users of the specialized social
network creating these ratings (Tela Botanica) are explicitly asked to rate the
images according to their plant identification ability and their accordance to the
pre-defined acquisition protocol for each view type. This is not an aesthetic or
general interest judgement as in most social image sharing sites.

To sum up each image is associated with the followings meta-data:

– ObservationId: the plant observation ID from which several pictures can
be associated

– FileName



– MediaId: id of the image
– View Content: Entire or Branch or Flower or Fruit or Leaf or LeafScan or

Stem
– ClassId: the class number ID that must be used as ground-truth. It is a

numerical taxonomical number used by Tela Botanica
– Species the species names (containing 3 parts: the Genus name, the specific

epithe, the author(s) who discovered or revised the name of the species)
– Genus: the name of the Genus, one level above the Species in the taxonom-

ical hierarchy used by Tela Botanica
– Family: the name of the Family, two levels above the Species in the taxo-

nomical hierarchy used by Tela Botanica
– Date: (if available) the date when the plant was observed
– Vote: the (round up) average of the user ratings of image quality
– Location: (if available) locality name, a town most of the time
– Latitude & Longitude: (if available) the GPS coordinates of the obser-

vation in the EXIF metadata, or if no GPS information were found in the
EXIF, the GPS coordinates of the locality where the plant was observed
(only for the towns of metropolitan France)

– Author: name of the author of the picture
– YearInCLEF: ImageCLEF2011, ImageCLEF2012, ImageCLEF2013, Plant-

CLEF2014, PlantCLEF2015 specifying when the image was integrated in the
challenge

– IndividualPlantId2014: the plant observation ID used last year during
the LifeCLEF2014 plant task

– ImageID2014: the image id.jpg used in 2014.

3 Task Description

The challenge was evaluated as a plant species retrieval task based on multi-
image plant observation queries. The goal was to retrieve the correct plant species
among the top results of a ranked list of species returned by the evaluated system.
Contrary to previous plant identification benchmarks, queries were not defined
as single images but as plant observations, meaning a set of one to several images
depicting the same individual plant, observed by the same person, the same day,
with the same device. Each image of a query observation is associated with a
single view type (entire plant, branch, leaf, fruit, flower, stem or leaf scan) and
with contextual meta-data (data, location, author).

The whole PlantCLEF dataset was split in two parts, one for training (and/or
indexing) and one for testing. All observations with pictures used in the previous
plant identification tasks were directly integrated in the training dataset. Then
for the new observations and pictures, in order to guarantee that most of the
time each species contained more images in the training dataset than in the test
dataset, we used a constrained random rule for putting with priority observations
with more distinct organs and views in the training dataset. The test set was built



by choosing 1/2 of the observations of each species with this constrained random
rule, whereas the remaining observations were kept in the reference training set.
Thus, 1/3 of the pictures are in the test dataset (see Table 1 for more detailed
stats). The xml files containing the meta-data of the query images were purged
so as to erase the taxon names (the ground truth) and the image quality ratings
(that would not be available at query stage in a real-world application). Meta-
data of the observations in the training set are kept unaltered.

Table 1: Detailed numbers of images of the LifeCLEF 2015 Plant Task dataset

Total Branch Entire Flower Fruit Leaf LeafScan Stem

Train 91,759 8,130 16,235 28,225 7,720 13,367 5,476 12,605

Test 21,446 2,088 2,983 6,113 8,327 1,423 696 935

All 113,205 10,218 19,218 34,438 16,047 14,790 6,172 13,540

As a novelty this year, participants to the challenge were allowed to use
external training data at the condition that (i) the experiment is entirely re-
producible, i.e. that the used external resource is clearly referenced and acces-
sible to any other research group in the world, (ii) participants submit at least
one run without external training data so that we can study the contribution
of such resources, (iii) the additional resource does not contain any of the test
observations. It was in particular strictly forbidden to crawl training data from
the following domain names:
http://ds.plantnet-project.org/

http://www.tela-botanica.org

http://identify.plantnet-project.org

http://publish.plantnet-project.org/

http://www.gbif.org/

In practice, each candidate system was evaluated through the submission of
a run, i.e. a file containing a set of ranked lists of species (each list corresponding
to one query observation and being sorted according to the confidence score of
the system in the suggested species). Each participating group was allowed to
submit up to 4 runs built from different methods. The metric used to evaluate
the submitted runs is an extension of the mean reciprocal rank [30] classically
used in information retrieval. The difference is that it is based on a two-stage
averaging rather than a flat averaging such as:

S =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

ru,p
(1)

where U is the number of users (within the test set), Pu the number of in-
dividual plants observed by the u-th user (within the test set), ru,p is the rank
of the correct species within the ranked list of species returned by the evaluated
system (for the p-th observation of the u-th user). Note that if the correct species

http://ds.plantnet-project.org/
http://www.tela-botanica.org
http://identify.plantnet-project.org
http://publish.plantnet-project.org/
http://www.gbif.org/


does not appear in the returned list, its rank ru,p is considered as infinite. Over-
all, the proposed metric allows compensating the long-tail distribution effects
occurring in social data. In most social networks, few people actually produce
huge quantities of data whereas a vast majority of users (the long tail) produce
much less data. If, for instance, only one person did collect an important per-
centage of the images, the classical mean reciprocal rank over a random set of
queries would be strongly influenced by the images of that user to the detriment
of the users who only contributed with few pictures. This is a problem for several
reasons: (i) the persons who produce the more data are usually the most expert
ones but not the most representative of the potential users of the automatic
identification tools, (ii) the large number of the images they produce makes the
classification of their observations easier because they tend to follow the same
protocol for all their observations (same device, same position of the plant in
the images, etc.), (iii) the images they produce are also usually of better quality
so that their classification is even easier.

A secondary metric was used to evaluate complementary (but not manda-
tory) runs providing species prediction at the image level (and not at the obser-
vation level). The evaluation metric in that is expressed as:

S =
1

U

U∑
u=1

1

Pu

Pu∑
p=1

1

Nu,p

Nu,p∑
n=1

1

ru,p,n
(2)

where U is the number of users, Pu the number of individual plants observed
by the u-th user, Nu,p the number of pictures of the p-th plant observation of
the u-th user, ru,p,n is the rank of the correct species within the ranked list of
images returned by the evaluated system.

4 Participants and methods

123 research groups worldwide registered to LifeCLEF plant challenge 2015 in
order to download the dataset. Among this large raw audience, 7 research groups
succeeded in submitting runs on time and 6 of them submitted a technical report
describing in details their system. Participants were mainly academics, special-
ized in computer vision, machine learning and multimedia information retrieval.
We list below the participants and give a brief overview of the techniques used in
their runs. We remind here that LifeCLEF benchmark is a system-oriented eval-
uation and not a deep or fine evaluation of the underlying algorithms. Readers
interested by the scientific and technical details of any of these methods should
refer to the LifeCLEF 2015 working notes of each participant (referenced below):

EcoUAN (1 run) [28], Colombia. This participant used a deep learning ap-
proach based on a Convolutional Neural Network (CNN). They used the CNN
architecture introduced in [20] and that was pre-trained using the popular Im-
ageNet image collection [10]. A tuning process was conducted to train the last
layer using PlantCLEF training set. The classification at the observation level



was done using a sum pooling mechanism based on the individual images clas-
sification.

INRIA-ZENITH (3 runs) [7], France. This research group experimented
two popular families of classification techniques, i.e. convolutional neural net-
works (CNN) on one side and fisher vectors-based discriminant models on the
other side. More precisely, the run entitled INRIA ZENITH Run 1 was based
on the GoogLeNet CNN as described in [29] (pre-trained on the popular Ima-
geNet dataset). A single network was trained for all types of view and the fusion
of the images of a given observation was performed through a Max pooling.
The FV representation used in INRIA ZENITH Run 2 was built from a Gaus-
sian Mixture Model (GMM) of 128 visual words computed on top of different
hand-crafted visual features that were previsouly reduced thanks to a Principal
Component Analysis (PCA). The classifier trained on top of the FV represen-
tations was a logistic regression, which was preferred over a Support Vectors
Machine because it directly outputs probabilities which facilitate fusion pur-
poses. INRIA-ZENITH Run 3 was based on a fusion of Run 1 and Run2 using a
Bayesian inference framework making use of the confusion matrix of each clas-
sifier trained by cross-validation.

MICA (3 runs) [22], VietNam. This participant used different hand-crafted
visual features for the different view types and trained support vector machines
for the classification. The hand-crafted visual features mainly differ in the way
the main region of interest is selected before extracting the features:

– for leaf scans, fruit and flower images: automatic selection of a region of
interest by using salient features and mean-shift algorithms,

– for leaf images: segmenting the leaf region by using a watershed algorithm
with manual inner/outer markers,

– for stem images: select stem regions by applying a Hanning filter with a
pre-determined window size.

The feature extraction step in itself is based on kernel descriptors, namely a
gradient kernel for the leafscan, fruit, flower, leaf, entire and branch view type,
and a LBP kernel for the stem view type. The late fusion of the SVM classifiers
of each view type is based on the sum of the inverse rank position in each ranked
list of species. The second run, (run 2) differs from the first one in that it uses
complementary HSV histogram features for the flower and entire view types.
The third run (Run 3) differs from Run 2 in the fact that it uses an alternative
fusion strategy based on a weighted probability combination.

QUT RV (3 runs), [11], Australia. This group mainly based his experiment
on the use of the GoogLeNet convolutional neural network [29] pre-trained on
ImageNet dataset. The 3 runs only differ on the strategy used to merge the clas-
sification results of each image of a query observation (sum pooling in Run 1,
softmax in Run 2, normalization & softmax in Run3).



Sabanki-Okan (3 runs) [24], Turkey. This group focused his experiment
on the evaluation of PCANet [8], a very simple yet efficient deep learning net-
work for image classification which comprises only the very basic data process-
ing components: cascaded principal component analysis (PCA), binary hashing,
and block-wise histograms. The original method of [8] was only modified to
handle unaligned images. In Run 1, the PCANet is used alone, without using
any additional metadata. In Run 2, the date field of the metadata was used to
post-process the results of the PCANet. Finally, Run 3 was a trial to combine
more classical hand-crafted features for some of the organs (actually SIFT-based
VLAD features for Fruit/Leaf/Stem/Branch) with the PCANet approach for the
Flower and Entire categories (no meta data used).

SNUMED (4 runs), [9], Korea. As the QUT RV and the INRIA ZENITH
research groups, the SNUMED group mainly based his experiment on the use
of the GoogLeNet convolutional neural network [29] pre-trained on ImageNet
dataset. In SNUMED INFO Run 1 and SNUMED INFO Run 2 they fine-tuned
a single network across all the whole PlantCLEF 2015 dataset. In SNUMED
INFO Run 3 and SNUMED INFO Run 4, they used a different training strategy
consisting in randomly partitioning the PlantCLEF training set into five-fold so
as to obtain 5 complementary CNN classifier whose combination is supposed to
be more stable. The scores at the observation level were obtained by combining
the image classification results with the Borda-fuse method.

UAIC (1 run), Romania. This participant used a content-based image search
engine (Lucene Image Retrieval Library [23]) to retrieve the most similar images
of each query image and then apply a two-stage instance-based classifier return-
ing the top-10 most populated species for each image and then the top-10 most
populated across all the images of a query observation.

5 Results

5.1 Main task

The following figure 2 and table 2 show the scores obtained on the main task
(i.e. at the observation level). It is noticeable that the top-9 runs which perform
the best were based on the GoogLeNet [29] convolutional neural network which
clearly confirms the supremacy of deep learning approaches over hand-crafted
features as well as the benefit of training deeper architecture thanks to the im-
proved utilization of the computing resources inside the network. The score’s
deviations between these 9 runs are however still interesting (actually 10 points
of MAP between the worst and the best one). A first source of improvement was
the fusion strategy allowing to combine the classification results at the image
level into classification scores at the observation level. In this regard, the best
performing algorithm was a SoftMax function [4] as shown by the performance
of QUT RV Run 2 compared to INRIA ZENITH run1 based on max pooling, or



Table 2: Results of the LifeCLEF 2015 Plant Identification Task. Column ”Key-
words” attempts to give the main idea of the method used in each run.

Run name Key-words Score

SNUMED INFO run4 5-fold GoogLeNet Borda+ 0,667
SNUMED INFO run3 5-fold GoogLeNet Borda 0,663

QUT RV run2 GoogLeNet SoftMax 0,633
QUT RV run3 GoogLeNet Norm & SoftMax 0,624

SNUMED INFO run2 GoogLeNet Borda+ 0,611
INRIA ZENITH run1 GoogLeNet Max Pool. 0,609
SNUMED INFO run1 GoogLeNet Borda 0,604
INRIA ZENITH run3 Fusion GoogLeNet & Fisher Vectors 0,592

QUT RV run1 GoogLeNet Sum Pool. 0,563
ECOUAN run1 CNN Sum Pool. 0,487

INRIA ZENITH run2 hand-crafted features + Fisher Vectors 0,300
MICA run2 Hand-crafted feat. + SVM 0,209
MICA run1 Hand-crafted feat. + SVM 0,203
MICA run3 Hand-crafted feat. + SVM 0,203

SABANCI run2 PCANet (not pretrained) 0,162
SABANCI run1 PCANet (not pretrained) 0,160
SABANCI run3 PCANet (not pretrained) 0,158

UAIC run1 CBIR (LIRE) 0,013

Fig. 2. Official results of the LifeCLEF 2014 Plant Identification Task.



SNUMED INFO run1 based on a Borda count, or QUT RV run1 based on a sum
pooling. The other source of improvement, which allowed the SNUMED group
to get the best results, was to use a bootstrap aggregating (bagging) strategy
[5] to improve the stability and the accuracy of the GoogLeNet Convolutional
Neural Network. In SNUMED INFO Run 3 and SNUMED INFO Run 4, they
actually randomly partitioned the PlantCLEF training set into five-fold so as
to train 5 complementary CNN classifiers. Bagging is a well known strategy for
reducing variance and avoiding overfitting, in particular in the case of decision
trees, but it is interesting to see that it is also very effective in the case on deep
learning.
The second best approach that did not rely on deep learning (i.e. INRIA ZENITH
run 2) was to use the Fisher Vector model [27] on top of a variety of hand-crafted
visual features and then to train a multi-class supervised linear classifier through
logistic regression. It is here important to note that this method does not make
use of any additional training data other than the one provided in the bench-
mark (contrary to the CNN’s that were all previously trained on the large-scale
ImageNet dataset). Within the 2014 PlantCLEF challenge [18], in which using
external training data was not allowed, the Fisher Vector approach was per-
forming the best, even compared to CNN’s. But still, the huge performance gap
confirms that learning visual features with deep learning is much more effective
than sticking on hand-crafted visual features. Interestingly, the third run of the
INRIA ZENITH team was based on a fusion of the fisher vector run and the
GoogLeNet one which allows assessing in which measure the two approaches are
complementary or not. The results show that the performance of the fused run
was not better than the GoogLeNet alone. This indicates that the hand-crafted
visual features encoded in the fisher vectors did not bring sufficient additional
information to be captured by the fusion model (based on Bayesian inference).
A last interesting outcome that can be derived from the raw results of the task
is the relative low performance achieved by the runs of the SABANCI research
group which were actually based on the recent PCANet method [8]. PCANet
is a very simple deep learning network which comprises only basic data pro-
cessing components, i.e. cascaded principal component analysis (PCA), binary
hashing, and block-wise histograms. The learned visual features are claimed by
the authors to be on par with the state of the art features, either prefixed, highly
hand-crafted or carefully learned (by DNNs). The results of our challenge do not
confirm this assertion. All the runs of SABANCI did notably have lower per-
formances than the hand-crafted visual features used by MICA runs or INRIA
ZENITH Run 2, and much lower performances than the features learned by all
other deep learning methods. This conclusion should however be mitigated by
the fact that the PCANet of SABANCI was only trained on PlantCLEF data
and not on a large-scale external data such as ImageNet. Complementary ex-
periments in this way should therefore be conducted to really conclude on the
competitiveness of this simple deep learning technique.



5.2 Complementary results on images

The following figure 3 presents the scores obtained by the additional image-
level runs provided by the participants. In order to evaluate the benefit of the
combination of the test images from the same observation, the graphic compares
the pairs of run files on images and on observations produced with the same
method.

Fig. 3. Comparison of the methods: before and after combining the prediction for each
image from a same plant observation.

Basically, for each method, we can observe an improvement by combining the
different views of the same plant observation. This has to be related to the fact
that observing different plant organs is the current practice of botanists, who
most of the time can’t identify a species with only one picture of only one organ.
However, we can say that the improvement are not so much high: we guess that
there is a potential of improvement here, basically with more images and may be
with new methods of fusions dealing with this specific problem of multi-images
and multi-organs.

5.3 Complementary results on images detailed by organs

The following figure 4 below shows the detailed scores obtained for each type of
organs. Remember that we use a specific metric weighted by authors and plants,



Fig. 4. Results detailed for each type of image category.

and not by sub-categories, explaining why the score on images not detailed, is
not the mean of the 7 scores of these sub-categories.

Like during the previous Plant Identification Task, this detailed analysis
shows that LeafScan and the Flower views are far away the most effective for
identifying plant species, followed by the Fruit view, the Leaf view, the Entire
view and the Branch view. On the other side, the stem view (or bark view when
speaking about trees) is the less informative one. It actually provides the worst
identification performance whereas the number of species represented in that
view, and thus the confusion risk, is lower than for the other organs. Interest-
ingly, the hand-crafted visual features of the MICA group perform very well on
the Leaf Scan category, with an identification score better than most of the runs
based on the GoogLeNet CNN. This shows the relevance of the leaf normaliza-
tion strategy they used as well as the effectiveness of the gradient kernel for this
type of view. For professional use cases in which taking the time to scan the leaf
might not be an issue, this method is a serious alternative to the use of the CNN
which requires much more resources and training data.

6 Conclusion

This paper presented the overview and the results of the LifeCLEF 2015 plant
identification challenge following the four previous ones conducted within CLEF
evaluation forum. The main novelty compared to the previous year was the
possibility to use external training data in addition to the specific training set



provided within the testbed. The first objective of this novelty was clearly to en-
courage the deployment of transfer learning methods, and in particular of deep
convolutional neural networks in order to evaluate their ability to identify plant
species at a large-scale. In this regard, the results show that such transfer learning
approaches clearly outperform previous approaches based on hand-crafted visual
features, aggregation models and linear classifiers. The results are as impressive
as a 0, 784 identification score on the flower category. Now, the second objective
of opening the training data was to encourage the integration of new plant data
(and not only of the popular generlist dataset ImageNet), particularly for popu-
lating the long tail of the less populated species which is an important challenge
in terms of biodiversity. Unfortunately, none of the participants addressed this
issue. More generally, we believe that collecting and building appropriate train-
ing data is becoming one of the most central problem for solving definitely the
taxonomic gap problem.
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