124,451 research outputs found
Protamine-like proteins have bactericidal activity. The first evidence in Mytilus galloprovincialis.
The major acid-soluble protein components of the mussel Mytilus galloprovincialis sperm chromatin consist of the protamine-like proteins PL-II, PL-III and PL-IV, an intermediate group of sperm nuclear basic proteins between histones and protamines. The aim of this study was to investigate the bactericidal activity of these proteins since, to date, there are reports on bactericidal activity of protamines and histones, but not on protamine-like proteins. We tested the bactericidal activity of these proteins against Gram-positive bacteria: Enterococcus faecalis and two different strains of Staphylococcus aureus, as well as Gram-negative bacteria: Proteus mirabilis, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhmurium, Enterobacter aerogenes, Enterobacter cloacae, and Escherichia coli. Clinical isolates of the same bacterial species were also used to compare their sensitivity to these proteins. The results show that Mytilus galloprovincialis protamine-like proteins exhibited bactericidal activity against all bacterial strains tested with different minimum bactericidal concentration values, ranging from 15.7 to 250 µg/mL. Furthermore, these proteins were active against some bacterial strains tested that are resistant to conventional antibiotics. These proteins showed very low toxicity as judged by red blood cell lysis and viability MTT assays and seem to act both at the membrane level and within the bacterial cell. We also tested the bactericidal activity of the product obtained from an in vitro model of gastrointestinal digestion of protamine-like proteins on a Gram-positive and a Gram-negative strain, and obtained the same results with respect to undigested protamine-like proteins on the Gram-positive bacterium. These results provide the first evidence of bactericidal activity of protamine-like-proteins
How innate immunity proteins kill bacteria and why they are not prone to resistance
Recent advances on antibacterial activity of peptidoglycan recognition proteins (PGRPs) offer some insight into how innate immunity has retained its antimicrobial effectiveness for millions of years with no frequent emergence of resistant strains. First, PGRP can bind to multiple components of bacterial envelope (peptidoglycan, lipoteichoic acid, and lipopolysaccharide). Second, PGRP simultaneously induces oxidative, thiol, and metal stress responses in bacteria, which individually are bacteriostatic, but in combination are bactericidal. Third, PGRP induces oxidative, thiol, and metal stress responses in bacteria through three independent pathways. Fourth, antibacterial effects of PGRP are enhanced by other innate immune responses. Thus, emergence of PGRP resistance is prevented by bacteriostatic effect and independence of each PGRP-induced stress response, as PGRP resistance would require simultaneous acquisition of three separate mechanisms disabling the induction of all three stress responses. By contrast, each antibiotic has one primary target and one primary antibacterial mechanism, and for this reason resistance to antibiotics can be generated by inhibition of this primary mechanism. Manipulating bacterial metabolic responses can enhance bacterial killing by antibiotics and elimination of antibiotic-tolerant bacteria, but such manipulations do not overcome genetically encoded antibiotic resistance. Pathogens cause infections by evading, inhibiting, or subverting host immune responses
Differential effects of age on chicken heterophil functional activation by recombinant chicken interleukin-2
The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis
Patients in whom acid-fast bacilli smear-positive pulmonary tuberculosis was newly diagnosed were randomized to receive 400 mg moxifloxacin, 300 mg isonaizid, or 600 mg rifampin daily for 5 days. Sixteen-hour overnight sputa collections were made for the 2 days before and for 5 days of monotherapy. Bactericidal activity was estimated by the time taken to kill 50% of viable bacilli (vt(50)) and the fall in sputum viable count during the first 2 days designated as the early bactericidal activity (EBA). The mean vt(50) of moxifloxacin was 0.88 days (95% confidence interval [Cl], 0.43-1.33 days) and the mean EBA was 0.53 (95% CI 0.28-0.79). For the isoniazid group, the mean vt(50) was 0.46 days (95% Cl, 0.31-0.61 days) and the mean EBA was 0.77 (95% Cl, 0.54-1.00). For rifampin, the mean vt(50) was 0.71 days (95% Cl, 0.48-0.95 days) and the mean EBA was 0.28 (95% Cl, 0.15-0.41). Using the EBA method, isoniazid was significantly more active than rifampin (p < 0.01) but not moxifloxacin. Using the vt(50) method, isoniazid was more active than both rifampin and moxifloxacin (p = 0.03). Moxifloxacin has an activity similar to rifampin in human subjects with pulmonary tuberculosis, suggesting that it should undergo further assessment as part of a short course regimen for the treatment of drug-susceptible tuberculosis
In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant acinetobacter baumannii
Carbapenem-resistant Acinetobacter baumannii (CR-Ab) infections are associated with high morbidity and mortality. The aim of the study was to evaluate the in-vitro activity of different antimicrobial combinations (with and without colistin, COL) against clinical isolates of CR-Ab collected from patients with CR-Ab infection, including unconventional combinations such as COL + VANcomycin (VAN) and COL + rifampin (RIF). CR-Ab strains were collected from hospitalized patients at Sapienza University of Rome. Antimicrobial susceptibility patterns were determined throughout MIC50/90s whereas the synergistic activity was evaluated by qualitative (i.e., checkerboard) and quantitative (i.e., killing studies) methods. All the strains were found oxacillinase (OXA) producers and tigecycline (TIG) sensitive whereas 2 strains were resistant to COL. Application of the checkerboard method indicated complete synergism in COL combinations at different extension: 21.4%, 57.1%, 42.8%, 35.7% for COL + meropenem (MEM), COL + RIF, COL + VAN and COL + TIG, respectively, with the non-conventional combinations COL + VAN and COL + RIF exhibiting the highest rate of synergism. Regarding COL-free combination, complete synergism was observed in 35.7% of the strains for MEM + TIG. Killing studies showed that the combinations COL + MEM, COL + TIG and MEM + TIG were bactericidal and synergistic against both colistin-sensitive and low colistin-resistant strains whereas only the combinations COL + VAN and COL + RIF showed an early and durable bactericidal activity against all the tested strains, with absence of growth at 24 h. This study demonstrated that COL-based combinations lead to a high level of synergic and bactericidal activity, especially COL + VAN and COL + RIF, even in the presence of high level of COL resistance
Destabilization of α-helical structure in solution improves bactericidal activity of antimicrobial peptides: Opposing effects on bacterial and viral targets
We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. Here we show that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween-20™) results in greater reductions in virus titre than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high ionic strength buffer. In contrast, formulation with polysorbate 20 or high ionic strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titre for both gram-positive and gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both gram-positive and gram-negative bacteria suggests that overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds
Requirement of a Plasmid-Encoded Catalase for Survival of \u3cem\u3eRhizobium etli\u3c/em\u3e CFN42 in a Polyphenol-Rich Environment
Nitrogen-fixing bacteria collectively called rhizobia are adapted to live in polyphenol-rich environments. The mechanisms that allow these bacteria to overcome toxic concentrations of plant polyphenols have not been clearly elucidated. We used a crude extract of polyphenols released from the seed coat of the black bean to simulate a polyphenol-rich environment and analyze the response of the bean-nodulating strain Rhizobium etli CFN42. Our results showed that the viability of the wild type as well as that of derivative strains cured of plasmids p42a, p42b, p42c, and p42d or lacking 200 kb of plasmid p42e was not affected in this environment. In contrast, survival of the mutant lacking plasmid p42f was severely diminished. Complementation analysis revealed that the katG gene located on this plasmid, encoding the only catalase present in this bacterium, restored full resistance to testa polyphenols. Our results indicate that oxidation of polyphenols due to interaction with bacterial cells results in the production of a high quantity of H2O2, whose removal by the katG-encoded catalase plays a key role for cell survival in a polyphenol-rich environment
The antibacterial activity of honey: 2. Variation in the potency of the antibacterial activity
Honey is gaining acceptance by the medical profession for use as an antibacterial agent for the treatment of ulcers and bed sores, and other surface infections resulting from burns and wounds. In many cases it is being used with success on infections not responding to standard antibiotic and antiseptic therapy. Its effectiveness in rapidly clearing up infection and promoting healing is not surprising in light of the large number of research findings on its antibacterial activity, covered in Part 1 of this review
Double-carbapenem regimen, alone or in combination with colistin, in the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae (CR-Kp)
Severe bloodstream infection due to KPC-producer e coli in a renal transplant recipient treated with the double-carbapenem regimen and analysis of in vitro synergy testing a case report
Transplant recipients are at high risk of infections caused by multidrug resistant microorganisms. Due to the limited thera- peutic options, innovative antimicrobial combinations against carbape- nem-resistant Enterobacteriaceae causing severe infections are necessary.
A 61-year-old woman with a history of congenital solitary kidney underwent renal transplantation. The postoperative course was compli- cated by nosocomial pneumonia due to Stenotrophomonas maltophilia and pan-sensitive Escherichia coli, successfully treated with antimicrobial therapy. On postoperative day 22, diagnosis of surgical site infection and nosocomial pneumonia with concomitant bacteremia due to a Kle- bisella pneumoniae carbapenemase-producer E coli was made. The patient was treated with the double-carbapenem regimen (high dose of merope- nem plus ertapenem) and a potent synergistic and bactericidal activity of this un-conventional therapeutic strategy was observed in vitro. Despite a microbiological response with prompt negativity of blood cultures, the patient faced a worse outcome because of severe hemorrhagic shock.
The double-carbapenem regimen might be considered as a rescue therapy in those subjects, including transplant recipients, in whom previous antimicrobial combinations failed or when colistin use might be discouraged. Performing in vitro synergy testing should be strongly encouraged in cases of infections caused by pan-drug resistant strains, especially in high-risk patients
- …
