16,527 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Multi-target tracking using appearance models for identity maintenance

    Get PDF
    This thesis considers perception systems for urban environments. It focuses on the task of tracking dynamic objects and in particular on methods that can maintain the identities of targets through periods of ambiguity. Examples of such ambiguous situations occur when targets interact with each other, or when they are occluded by other objects or the environment. With the development of self driving cars, the push for autonomous delivery of packages, and an increasing use of technology for security, surveillance and public-safety applications, robust perception in crowded urban spaces is more important than ever before. A critical part of perception systems is the ability to understand the motion of objects in a scene. Tracking strategies that merge closely-spaced targets together into groups have been shown to offer improved robustness, but in doing so sacrifice the concept of target identity. Additionally, the primary sensor used for the tracking task may not provide the information required to reason about the identity of individual objects. There are three primary contributions in this work. The first is the development of 3D lidar tracking methods with improved ability to track closely-spaced targets and that can determine when target identities have become ambiguous. Secondly, this thesis defines appearance models suitable for the task of determining the identities of previously-observed targets, which may include the use of data from additional sensing modalities. The final contribution of this work is the combination of lidar tracking and appearance modelling, to enable the clarification of target identities in the presence of ambiguities caused by scene complexity. The algorithms presented in this work are validated on both carefully controlled and unconstrained datasets. The experiments show that in complex dynamic scenes with interacting targets, the proposed methods achieve significant improvements in tracking performance

    From Pillars to AI Technology-Based Forest Fire Protection Systems

    Get PDF
    The importance of forest environment in the perspective of the biodiversity as well as from the economic resources which forests enclose, is more than evident. Any threat posed to this critical component of the environment should be identified and attacked through the use of the most efficient available technological means. Early warning and immediate response to a fire event are critical in avoiding great environmental damages. Fire risk assessment, reliable detection and localization of fire as well as motion planning, constitute the most vital ingredients of a fire protection system. In this chapter, we review the evolution of the forest fire protection systems and emphasize on open issues and the improvements that can be achieved using artificial intelligence technology. We start our tour from the pillars which were for a long time period, the only possible method to oversee the forest fires. Then, we will proceed to the exploration of early AI systems and will end-up with nowadays systems that might receive multimodal data from satellites, optical and thermal sensors, smart phones and UAVs and use techniques that cover the spectrum from early signal processing algorithms to latest deep learning-based ones to achieving the ultimate goal
    corecore