
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

Multi-target tracking using

appearance models for identity

maintenance

Peter Morton

A thesis submitted in fulfillment

of the requirements of the degree of

Doctor of Philosophy

Australian Centre for Field Robotics

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

June 2014

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of the University or other institute of higher

learning, except where due acknowledgement has been made in the text.

Peter Morton

June 15th, 2014

i

ii Declaration

Abstract

Peter Morton Doctor of Philosophy
The University of Sydney June 2014

Multi-target tracking using appearance
models for identity maintenance

This thesis considers perception systems for urban environments. It focuses on the

task of tracking dynamic objects and in particular on methods that can maintain

the identities of targets through periods of ambiguity. Examples of such ambiguous

situations occur when targets interact with each other, or when they are occluded by

other objects or the environment.

With the development of self driving cars, the push for autonomous delivery of pack-

ages, and an increasing reliance on technology for security, surveillance and public-

safety applications, robust perception in crowded urban spaces is more important

than ever before. A critical part of perception systems is the ability to understand

the motion of objects in a scene. Tracking strategies that merge closely-spaced targets

together into groups have been shown to offer improved robustness, but in doing so

sacrifice the concept of target identity. Additionally, the primary sensor used for the

tracking task may not provide the type of information required to reason about the

identity of individual objects.

There are three primary contributions in this work. The first is the development of

3D lidar tracking methods with improved ability to track closely-spaced targets and

that can determine when target identities have become ambiguous. Secondly, this

thesis defines appearance models suitable for the task of determining the identities

of previously-observed targets, which may include the use of data from additional

sensing modalities. The final contribution of this work is the combination of lidar

tracking and appearance modelling, to enable the clarification of target identities in

the presence of ambiguities caused by scene complexity.

The algorithms presented in this work are validated using established metrics from

the literature, and also compared to an additional measure adapted from clustering

analysis; V-measure is shown in this thesis to better reflect identity tracking per-

formance. Evaluation is performed on both carefully controlled and unconstrained

datasets, comprising 19 labelled scenarios with 89717 observations of 78 targets over

a total of 25048 lidar scans, and an unconstrained urban dataset featuring a further

27375 scans. The experiments show that the proposed methods achieve significant

improvements in tracking performance, in complex dynamic scenes with interacting

targets, such as those commonly found in an urban environment.

iii

iv Abstract

Acknowledgements

My heartfelt thanks to my family, friends and colleagues who have made this thesis
possible.

To my supervisor, James Underwood. Thank you for your dedication and integrity
as a researcher and as a mentor. Your willingness to discuss all the aspects of my
project often and in depth has been invaluable to me. Thank you for teaching me
the joys (or at least the merits) of technical writing. The detailed feedback you have
provided on not only this thesis, but all of my writing, is truly appreciated. Thank
you, also, for giving me the freedom to pursue my technical interests. Whilst the
results of my “20% time” don’t make much of an appearance in this document, the
skills I learnt will play a big role in my next steps from here.

To my associate supervisor, Bertrand Douillard. Thank you for the time spent dis-
cussing ideas, working through problems and scribbling diagrams. Thanks for your
close collaboration on code and publications and for your unwavering confidence that
deadlines are “tight, but feasible.”

James and Bertrand, the model of collaboration you set up in the CIMS perception
team made my time at ACFR so much more productive and enjoyable. Alastair,
thank you for shared code and shared ideas. I think our “pyception” development
strategy was right on the money.

Thank you to all my friends at ACFR. Thanks to the lunch time crew for the debates
about text editors, operating systems and programming languages. Without your vim
tips I would never have finished this thesis on time. Thanks to the down stairs gang
for the adventures, road trips and general shenanigans. Thank you Chris, Roman
and Marcos for the fun at Marulan and helping gather much of the data used in this
thesis.

To my family, thank you for your love and support. Although each step on my
journey seems to take me further from Melbourne, it is always wonderful to return
home. Thanks, finally, to Nicole for all the patience, encouragement and love I could
ever ask for.

v

Contents

Declaration i

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Thesis Contributions . 5

1.4 Thesis Structure . 7

2 Background 9

2.1 Tracking approaches . 10

2.1.1 Tracking by detection . 11

2.1.1.1 Detection via classification 12

2.1.1.2 Detection via background subtraction 13

2.1.1.3 Prediction . 15

2.1.1.4 Data Association . 17

2.1.1.5 Track Management 18

2.1.2 Tracking by registration . 19

2.1.3 Hybrid and alternative approaches 21

2.2 Target Identity . 22

vii

viii CONTENTS

2.3 Sensors for tracking in urban environments 25

2.3.1 Radar . 25

2.3.2 2D Lidar . 26

2.3.3 3D Lidar . 27

2.3.4 Camera . 28

2.4 Evaluating tracking performance . 30

2.4.1 Evaluation criteria . 30

2.4.2 The CLEAR MOT metrics . 31

2.4.3 GMOTA . 32

2.4.4 V-measure . 34

2.4.5 Comparison of performance measures 37

2.5 Summary . 38

3 Tracking interacting objects with 3D lidar 41

3.1 3D lidar and pre-processing . 42

3.1.1 Velodyne lidar . 43

3.1.2 Coordinate Transforms . 44

3.1.3 Ground Detection and Segmentation 47

3.1.4 Change Detection . 50

3.1.5 The pre-processing pipeline 52

3.2 3D lidar tracking approaches . 52

3.2.1 Methods . 54

3.2.1.1 Centroids . 54

3.2.1.2 Split . 56

3.2.1.3 Split-cost . 58

3.2.2 Dataset . 60

3.2.3 Ground Truth . 61

3.2.4 Results and discussion . 62

3.3 Group Tracking . 70

CONTENTS ix

3.3.1 Event Graph . 71

3.3.1.1 Track extraction . 71

3.3.1.2 Graph Construction 72

3.3.1.3 “Ambiguity” . 74

3.3.2 Results and discussion . 75

3.4 Summary . 80

4 Appearance modelling for tracking 83

4.1 Identity and Appearance . 84

4.2 Feature Extraction . 86

4.2.1 Appearance from lidar data 86

4.2.2 Appearance from camera data 88

4.2.3 Combining camera and lidar data 91

4.2.3.1 Camera to lidar calibration 92

4.2.3.2 Image sampling . 93

4.3 Appearance models . 96

4.3.1 Using appearance models to determine identity 97

4.3.2 Similarity measures . 100

4.4 Evaluation of appearance models . 104

4.4.1 Methodology . 104

4.4.2 Dataset . 107

4.4.3 Results and Discussion . 108

4.4.3.1 Lidar . 108

4.4.3.2 Camera . 112

4.4.3.3 Thermal IR . 119

4.5 Summary . 121

x CONTENTS

5 Robust identity tracking 123

5.1 Solving the event graph . 124

5.1.1 Hypothesis Graph (HGraph) 126

5.1.2 Bayesian Network (BNet) . 128

5.1.2.1 ‘Switch’ states . 129

5.1.2.2 Bayesian network representation 131

5.1.2.3 Node likelihoods . 133

5.1.2.4 Number of Targets 134

5.1.2.5 Computational Complexity 139

5.1.2.6 Marginalisation and information gain 141

5.1.3 Experiments . 142

5.1.4 Results and Discussion . 143

5.1.4.1 Simulated data . 144

5.1.4.2 Camera-based appearance models 144

5.1.4.3 Lidar-based appearance models 149

5.1.4.4 Thermal IR . 153

5.2 Large scale experiments . 156

5.2.1 Experiments . 156

5.2.2 Evaluation of specific scenarios 158

5.2.2.1 Opera House - Three Pedestrians 161

5.2.2.2 CBD - Intersection 167

5.2.3 Overall results . 173

5.2.3.1 Opera House . 173

5.2.3.2 CBD . 176

5.2.4 Discussion . 178

5.3 Summary . 181

CONTENTS xi

6 Conclusion 183

6.1 Summary of contributions . 184

6.1.1 Tracking performance evaluation 185

6.1.2 Tracking interacting objects with 3D lidar 185

6.1.3 Appearance modelling . 185

6.1.4 Robust identity tracking . 186

6.2 Future Directions . 186

Bibliography 189

xii CONTENTS

Chapter 1

Introduction

This thesis considers perception systems for urban environments. It focuses on the

task of tracking dynamic objects and in particular on methods that can recover the

identities of targets after periods of ambiguity. Such ambiguous situations may occur

when targets interact with each other, or when they are occluded by other objects or

the environment.

The principal contribution of this thesis is the development of tracking methods that

use a combination of sensing modalities to track the locations and identities of inter-

acting targets. These methods can be broken down into three main parts:

• a lidar-based tracking system, specifically designed to handle closely-spaced

targets and determine when target identities have become ambiguous;

• appearance models, extracted from lidar or camera data, that can be used to

re-establish target identity after periods of ambiguity; and

• a framework that combines lidar-based tracking with appearance models to

allow the extraction of complete object trajectories even in the presence of

ambiguous interactions.

In this chapter we present the motivation for developing systems that can maintain

object identity, define the problem to be solved specifically, and describe the princi-

1

2 CHAPTER 1. INTRODUCTION

pal contributions of this thesis. An overview of the thesis structure is presented in

Section 1.4.

1.1 Motivation

Perception is one of the fundamental challenges of robotics. For a robot to operate

in an uncontrolled environment it must be able to observe its surroundings and take

them into account when making decisions. The role of a perception system is to take

raw sensor data and convert it into information useful to higher-level applications.

Urban environments impose certain requirements on and challenges for perception

systems. Urban scenes are both geometrically complex and highly dynamic, and op-

eration in such conditions requires that the robot’s internal model of the environment

is constantly updated and its consistency maintained.

The temporal evolution of a scene is a key component that perception algorithms must

address explicitly. In its simplest form, this might involve the classification of the

scene into dynamic and static components, however there are many applications for

which higher-level information is required. A service robot following its owner through

a crowd, monitoring livestock behaviour, tracing the path of a suspected criminal

through a closed circuit television (CCTV) network; for all of these applications, the

concept of who is just as important as where. We refer to this as “identity tracking”.

Dynamic urban environments present sources of ambiguity that make the identity

tracking problem difficult. Complex scene geometry creates occlusions, regions within

which a target is not observed. Combined with multiple moving targets, this leads

to situations where a tracking system loses the ability to tell which target is which.

That is, their identities become ambiguous. Similarly, objects moving in proximity

to one another generate additional occlusions or become close enough together such

that a sensor can no longer distinguish the individual targets.

Figure 1.1 shows an example of an “interaction” event that causes identity uncertainty.

Two targets, initially observed independently, move close together and cannot be

1.1. MOTIVATION 3

separated by the sensor. When they move apart again, the positions of the targets

can be determined, but their identities are ambiguous.

(a)
(b)

(c)

Figure 1.1 – Example of an “interaction” between two pedestrians, as observed using
a 3D lidar sensor. The targets are observed apart (a), then come together (b)
before moving apart again (c). Whilst the positions of the targets are clear, their
identities have are ambiguous. Did the targets cross paths, or move back in the
direction whence they came?

Ambiguous interactions are common in urban scenes, such as that shown in Figure 1.2.

This image of pedestrians crossing the road at an intersection is taken from a dataset

recorded in the city of Sydney, Australia. It shows two different types of interactions,

pedestrians crossing paths, and pedestrians walking in the same direction in close

proximity to one another. There are also many occlusions; at the instant shown, four

pedestrians are in a line from the sensor.

Figure 1.2 – Camera data from a pedestrian crossing in an urban environment

Applications that require information about the identities of tracked targets dictate

the need for tracking algorithms that can reason about ambiguous situations and

provide the ability to recover identity information.

4 CHAPTER 1. INTRODUCTION

The literature surrounding this topic is divided into two main areas. Perception

systems for self-driving cars provide robust multi-target tracking, but for such a task

it is sufficient to know the locations and velocities of objects. The concept of target

identity is not important. In the field of computer vision, tracking occurs in the image

frame, and most commonly from static sensors. Whilst maintaining target identity

is an active area of research, the 3D geometry of a scene is not generally considered.

In this thesis, we consider cases that require both accurate estimates of 3D target

location and maintenance of target identities.

1.2 Problem Statement

The ability of tracking systems to maintain target identity is constrained by a number

of factors. In an ideal scenario, perfect sensor coverage with no occlusions, sufficient

resolution to separate all targets, and a frame rate fast enough to observe all dy-

namics would prevent target identities from ever become ambiguous, but this thesis

considers identity tracking from a single sensor vehicle using data that is subject to

the limitations of current sensing technologies. Furthermore, no a-priori knowledge of

the environment is assumed, and tracking does not require participation on the part

of the targets, either in the form of cooperative motion (following predefined paths),

or instrumentation (such as transponders).

Given these limitations, target identities will at times become ambiguous. A tracking

system must recognise these situations and be able to recover from them. To do so,

the system needs to use the observable data to learn target representations that allow

them to be recognised at a later point in time. Referring to Figure 1.1, the system is

unable to distinguish the targets in frame (b). However, information extracted from

the targets in (a), perhaps from a complementary sensor, could be used to solve their

identities in (c).

Learning models that allow identities to be determined uniquely within the set of all

tracked targets can prove difficult. Tracking systems can reduce the complexity of the

problem by explicitly reasoning about which target identities are ambiguous. Then,

1.3. THESIS CONTRIBUTIONS 5

the target representations need only be powerful enough to discriminate amongst

these candidate identities.

In this thesis we develop approaches that allow object identities to become ambiguous,

but do so in such a way that targets can be recognised and their identity recovered

at a later point in time.

1.3 Thesis Contributions

This thesis proposes methods that improve the ability of tracking systems to main-

tain object identity. By fusing data from multiple sensors and explicitly identifying

ambiguous situations, the methods achieve robust positional and identity tracking

and can maintain an internal understanding of identity uncertainty. A snapshot of

the tracking output from the methods developed in this thesis is shown in Figure 1.3.

Figure 1.3 – Sample tracking output obtained by applying the methods developed in
this thesis to the data shown in Figure 1.2.

The contributions of this thesis can be broken down into three main areas: lidar-based

tracking, appearance modelling and identity reasoning. The specific contributions in

these areas are detailed below.

6 CHAPTER 1. INTRODUCTION

Lidar-based tracking

• Proposal of a method for lidar-based tracking with improved ability to track

closely-spaced targets, whilst preserving track homogeneity.

• Adaptation of the event graph approach from [106] to lidar-based tracking,

enabling explicit determination and representation of identity ambiguity.

• Detailed experimental evaluation of tracking methods, on a variety of interaction

scenarios involving pedestrians and cyclists.

Appearance Modelling

• Definition of appearance models, and how they relate to the identity tracking

problem.

• Analysis of methods for fusing lidar and camera data to build appearance mod-

els, including techniques to select image regions based on lidar data that was

sampled at a lower resolution.

• Experimental comparison of appearance models on real data, using a testing

scheme that simulates interactions between objects.

Identity reasoning

• Application of the “hypothesis graph” identity-reasoning framework to the event

graphs constructed in this work

• An extension to a Bayesian network based identity reasoning method that in-

creases the range of event graphs to which the method can be applied

• Evaluation of appearance models and tracking techniques over a wide variety

of interaction scenarios, including a manually labelled dataset containing 89717

observations of 78 targets over a total of 25048 lidar scans.

1.4. THESIS STRUCTURE 7

• An analysis of identity uncertainty in terms of graph entropy.

• Evaluation of the tracking methods on an unconstrained urban dataset, com-

prising 27375 scans.

1.4 Thesis Structure

Chapter 2 presents the background of this thesis. A general overview of the field

of target tracking is presented. We provide a breakdown of basic tracking methods,

describe the “identity management” problem and discuss sensors and their applica-

bility to tracking in urban environments. In Section 2.4, we describe the metrics that

will be used in the rest of the thesis to evaluate multi-target tracking, and present the

motivation for our choice of V-measure as an identity tracking performance measure.

Chapter 3 examines methods for tracking interacting objects using lidar data. It

describes the pre-processing steps required to convert lidar data into “observations”,

which form the input to the tracking system. The chapter focuses on the key problems

of segmentation and data-association, proposes a novel method that addresses some

of these issues, and motivates the need to switch to “group tracking” approaches in

complex scenes. An “event graph” approach is adopted from the computer vision

literature as a way to maintain a record of the relationships between tracks, and

determine sources of identity ambiguity.

Whilst tracking the position of objects can be largely solved by the methods of Chap-

ter 3, tracking identities of targets requires additional information. Chapter 4 ex-

amines how to build “appearance models”, which improve tracking performance by

allowing the re-identification of targets whose identities have become ambiguous due

to phenomena such as an interaction with another target or period of non-observation.

The appearance modelling parameters that are relevant to a system designer are de-

scribed and evaluated in extensive experimentation, using real-world data in a testing

scheme that simulates arbitrary object interactions.

8 CHAPTER 1. INTRODUCTION

Chapter 5 combines these appearance models with the event graphs constructed in

Chapter 3 to solve ambiguous tracking situations. Two frameworks for achieving this

are discussed in detail, and the abilities of these methods compared. An analysis of

tracking performance, both in terms of metric accuracy and identity maintenance is

presented, and the ability of one of these frameworks to measure its own reduction in

identity uncertainty is explored. The results of a large scale experiment, performed

in an unconstrained urban environment, are discussed.

Conclusions and a statement of future work are presented in Chapter 6.

Chapter 2

Background

Tracking is “the estimation of the state of a moving object based on remote measure-

ments” [6]. Systems which automate this process date back to World War II, when

their introduction revolutionised fire-control, the task of aiming and firing naval guns.

From 1940 to 1946 the use of radar systems progressed from simple range finders to

automated systems that could track a target and predict its future position, deter-

mining range, elevation and bearing and enabling accurate fire-control in all visibility

conditions [22]. Whilst the field of tracking has greatly expanded over the interven-

ing years and now encompasses applications as diverse as robotic surgery [26], sports

broadcasting [17] and self-driving cars [56, 67, 110], the development of radar tracking

during World War II, as described by Coales et al. [22], illustrates many of the aspects

of the tracking problem that remain active topics of research today.

Consider the task of tracking aircraft in the example above. An automated tracking

system must first determine if there are any targets of interest within its field of view

(FOV). Once a target is acquired, the range, bearing and elevation to the target can

be determined from a single observation. Then, to determine the target’s velocity

the system must measure the location of the same target at different times. Finally,

the system must also be able to predict the future location of a target, such that it

can compensate for the time delays associated with loading and firing the gun and

also the time taken for the shell to reach the target. That all of these aspects could

9

10 CHAPTER 2. BACKGROUND

be achieved in the 1940s using a combination of mechanical systems and analogue

electronics is an impressive feat of engineering.

When designing perception systems for urban environments, aspects of the tracking

problem that were not relevant to Coales et al. become important. Foremost amongst

these is the concept of tracking multiple targets simultaneously. In the case of the

radar fire-control, each radar tracked a single target, however, in an urban environ-

ment one sensor system might be used to observe an entire scene and track all the

objects present. A second aspect is that the entire state history of a target may be

relevant; surveillance and monitoring systems, for example, are concerned with not

just the present and future location of target but the whole trajectory.

This chapter describes the fundamental concepts of object tracking, with more spe-

cific background material introduced in the subsequent chapters. In Section 2.1, we

describe the two broad classes of tracking algorithms, which we refer to as “tracking

by detection” and “tracking by registration”. Section 2.2 introduces the concept of

“target identity” and in Section 2.3 we discuss the sensor technologies applicable to

the task of tracking dynamic objects from a moving sensor platform in an urban en-

vironment. In Section 2.4, we introduce the metrics that will be used throughout this

work to evaluate tracking performance.

2.1 Tracking approaches

In the robotics and computer vision literature there are two broad classes of tracking

algorithms, which we will refer to as ‘tracking by detection’ and ‘tracking by reg-

istration’. In practise, the line between the two is blurry and many systems make

use of elements of each method. We review some specific instances of these hybrid

approaches in Section 2.1.3.

In the sections that follow, we use the term ‘frame’ to refer to sensor data from one

sampling period. For a camera, a ‘frame’ is a single image, whilst for a rotating 3D

lidar sensor it encompasses the data from one sensor revolution, which we also refer

2.1. TRACKING APPROACHES 11

to as a ‘scan’. Tracking algorithms tend to operate on discrete time steps, one frame

at a time.

2.1.1 Tracking by detection

In ‘tracking by detection’, a data stream is separated into sets of observations through

the use of a detector. A detector might, for example, be tuned to look for pedestrians,

motion capture markers, or items on a conveyor belt. Objects detected in each frame

(observations) are matched with observations in subsequent frames to form a track.

An overview of the approach as applied to 3D lidar data is shown in Figure 2.1.

frames
(scans / images)

detect

detect

detect

observations

tracks

tn-2

tn-1

tn

updatedata
association

predict

updatedata
association

predict

updatedata
association

predict

Figure 2.1 – Tracking by detection. At each time step, a data frame is transformed
into observations through the use of a detector. Observations are then used to
update existing tracks, or create new ones.

Detection is performed on a frame-by-frame basis, independent of previous detection

results. The detector finds, for example, pedestrians in a scene, but these detections

do not necessarily correspond to the same objects as were detected in a previous

12 CHAPTER 2. BACKGROUND

frame. At the same time, the state (position, velocity and/or perhaps other proper-

ties) of each existing track is used to predict where the tracked objects are now. The

correspondence of observations to tracks is determined in a process called data associ-

ation. When an observation is assigned to a track, the track’s state is updated. New

tracks are created for unmatched observations, and old, unobserved tracks expire.

Each part of the algorithm leads to a number of design choices, which will be expanded

upon in the sections that follow. We first discuss methods for object detection via

classification and background subtraction, followed by the prediction, data association

and track management steps.

2.1.1.1 Detection via classification

A common way to find objects of interest in frames of a data stream is to use a class-

specific model. A binary classifier that is sensitive to a particular type of object (e.g.

car, tree, pedestrian) is either manually specified or learnt from data and evaluated

on sub-regions of each frame. Regions in which the classifier returns a positive result

form the set of observations. Perhaps the most well-known object-specific detection

framework is the “Viola-Jones” method [113], which uses a cascade of AdaBoost [34]

classifiers to enable real-time detection of faces in video data. Detection via classi-

fication is most commonly used with camera data, and other well-known examples

include the use of the histograms of oriented gradients (HOG) descriptor of Dalal and

Triggs [23].

Class-specific models for 3D lidar data are yet to achieve the same performance as

their camera-based counterparts, and are less commonly used. Recent approaches,

however, have shown promising results, including a support vector machine (SVM)

based method for detecting pedestrians in 3D lidar data, which was proposed in [93]

and combined with tracking in [94]; a model for separating dynamic and static objects

[48]; and a method for detecting cars, pedestrians and bicyclists [115].

2.1. TRACKING APPROACHES 13

2.1.1.2 Detection via background subtraction

The previous section described an approach for object detection that sought to model

the object of interest. An alternative strategy is to model the background of the

scene instead. Subtracting the background then gives the foreground objects, which

are then separated from each other to form the set of observations.

For lidar data in urban environments, this is the most common detection approach

[28, 43, 69, 76], and is most readily understood by considering the 3D structure of

human environments. In street scenes in particular, the ground surface acts as the

scene background and once removed, only objects remain. An additional helpful

property of street scenes is that dynamic objects (pedestrians, cyclists, vehicles) tend

to maintain their separation from other objects. Therefore, non-ground points can

be readily clustered into objects. Figure 2.2 shows an example of object detection

by background subtraction and subsequent segmentation. The ground points, shown

in grey, are detected and removed, and then non-ground points are clustered into

observations. A weakness of this approach is that objects in close proximity to one

another may be clustered together. This is referred to as under-segmentation.

An alternative form of background subtraction, used for both 3D lidar and camera

data is change detection. Rather than modelling the background as a ground surface,

the background is learnt from the regions of the scene that do not change from frame to

frame. Figure 2.3 shows the result of change detection from [109] applied to the same

data as in Figure 2.2. A disadvantage of this method is that objects that might move,

but are not presently moving, are ignored. In an autonomous driving application, for

instance, pedestrians waiting at a crossing would not be detected until they start to

move. By contrast, the ground detection and subtraction approach would allow the

pedestrians to be detected and the car to slow down or give way.

For vision data, the colour of the static background can be modelled. Figure 2.4 shows

an example of object detection via background subtraction. Even though dynamic

objects are present in each input frame, median filtering allows the non-changing

parts of the scene to be extracted – notice across the middle row how the dynamic

14 CHAPTER 2. BACKGROUND

Figure 2.2 – Segmentation of Velodyne data, from a scene containing two walking
pedestrians, a wall (top right) and a number of trees. The sensor vehicle is also
shown. Ground points are detected and shown in grey. The remaining non-ground
points are clustered into observations (each shown in a different colour).

objects disappear as more data is included in the filtering process. The final image in

the middle row is then used as a background model, and by subtracting it from each

image, the dynamic parts of the scene can be found. The bottom row of Figure 2.4

shows the thresholded difference between images and the final background model, as

well as the objects found by blob detection. Whilst this approach works well in this

toy example, it is not robust against slight variations in the background (notice how

the leaves of the trees show up as changes in the bottom row). Therefore, more robust

techniques such as Gaussian mixture models (GMMs) are usually used to model the

background [95].

This method is only practical for fixed cameras in scenes with no fast changes in

illumination. Additionally, since this method operates in (2D) image coordinates, it

is much more prone to merging observations of multiple objects as can be seen in the

right hand column of Figure 2.4. Even though the two objects are separated in 3D

space, they overlap in image coordinates and are observed as one object. For these

2.1. TRACKING APPROACHES 15

Figure 2.3 – Velodyne change detection example. Image shows the same data as
Figure 2.2, but this time change detection [109] was used to find the foreground
objects. Buildings, trees, etc. are background and shown in grey. Only three
moving objects were detected, and are shown in colour.

reasons, moving cameras in urban environments more commonly use class-specific

detectors (e.g. [35]).

2.1.1.3 Prediction

Predicting the near-future location of tracked dynamic targets is an important element

of tracking, because it allows noisy observations to be smoothed by a model of possible

target motion, and it provides additional constraints for data association that assist

when periods of occlusion make observation impossible.

As part of the tracking by detection framework we maintain an estimate for the state

of each tracked object. Before performing data association we predict the present

state of the object xk, given the estimate of the state at k − 1.

xk|k−1 = f(xk−1)

16 CHAPTER 2. BACKGROUND

Figure 2.4 – Object detection using a background model. Top row: input image
sequence. Middle row: background images obtained via median filtering (image in
nth column is result of filtering input images 1 to n). After only four images, the
foreground objects have been completely removed. Bottom row: Objects detected
by comparing each input image to the final background image.

This function, f , is called the motion or process model and represents the dynamics of

object motion. This prediction step is particularly important when the speed of the

target is high with respect to the sampling rate of the sensor. Without prediction, a

target could move a significant distance from its expected location and frame-to-frame

data association would fail. However, especially in a multi-target tracking scenario,

with limited information about the objects being tracked, the motion model is only

an approximation and prediction increases the uncertainty in the state.

Aside from the benefit of improving frame-to-frame data association, prediction is

also used to cope with occluded targets and missed observations. If an object is not

observed for several frames, predicting the target location successfully can allow the

target to be associated to the correct track when it reappears. A better motion model,

which matches the object dynamics and has slower uncertainty growth, will enable

tracking to continue through longer periods of no observations.

2.1. TRACKING APPROACHES 17

Specifying a motion model for pedestrians is a difficult problem, as humans can

transition quickly from stationary to walking, jogging or running and change direction

with ease (as compared to cyclists or vehicles) [114]. Knowledge of the environment

and prior tracking data can be used to learn goal locations and predict a pedestrian’s

destination, leading to better motion models [16]. Alternatively, fluid-dynamic models

have been used to simulate crowd behaviour [45].

The most relevant work in this field is by Luber et al. [64], which uses the social

force model by Helbing et al. [40]. They demonstrate a significant reduction in data

association errors as a result of the model, which assumes pedestrians have an intended

velocity and direction and adapt their paths based on ‘repulsive effects’ from other

pedestrians and the environment.

In this work we do not differentiate between tracking cars, pedestrians, cyclists, or

other moving objects, and so we use a constant velocity model with built-in noise

terms. This causes the uncertainty of unobserved tracks to grow quickly, but ensures

that few tracks are lost due to unexpected dynamics.

The tracking methods in this thesis are therefore driven by observation. Occlusions,

which prevent observations, cause ambiguous tracking situations to arise. Rather

than rely on more tightly defined motion models, which are fragile in the presence of

unexpected dynamics, the methods developed in this thesis allow for these ambiguous

situations to occur, and use observed data to resolve target identities.

2.1.1.4 Data Association

The detection step yields a set of observations, which are matched with the appro-

priate tracks by the process of data association. Ideally, there is a one-to-one corre-

spondence between tracks and observations – each tracked object is observed once,

and there are no spurious observations. The data shown in Figure 2.1 is an example

of this idealised case.

If the source of each observation (i.e. which target generated it) is known, then

data association is trivial. For example, aircraft fitted with an automatic dependent

18 CHAPTER 2. BACKGROUND

surveillance-broadcast (ADS-B) transponder [32] provide information about their po-

sitions (obtained via the global positioning system (GPS)) to air traffic controllers

and other aircraft. Tracking systems using this information do not need to determine

which position measurement came from which aircraft, as it is provided in the data.

In general though, observations are considered “anonymous”, in that we don’t know

which observation came from which target and data association needs to be solved

using a bipartite matching algorithm such as the “Hungarian” or “Kuhn-Munkres”

algorithm [53].

This matching is often based on the assumption that each target generates exactly one

observation, however in practice a number of situations arise that make data associa-

tion more difficult. Targets may not generate observations due to occlusions, targets

might generate multiple observations due to over-segmentation or clutter, or multiple

observations might only generate one observation because of under-segmentation.

Many different data association strategies have been proposed in the literature, some

of the most well known being the probabilistic data association filter (PDAF) (which

updates tracks with the sum of multiple observations, weighted by their associa-

tion probabilities) and multi-hypothesis tracker (MHT) (which maintains a tree of

hypotheses over data associations). We examine the effect of data association on

tracking performance in more detail in Chapter 3.

2.1.1.5 Track Management

Track management encompasses many of the practical implementation details re-

quired to turn a theoretical framework into a working system. Whilst a tracking

system is “just” a set of independent filters, each maintaining the state of an object

in the scene, engineering design decisions with respect to track management are crit-

ical to the robustness of the overall system. The two main management tasks that

are not directly covered by data association and track state update are track creation

and track deletion.

2.1. TRACKING APPROACHES 19

In an idealised description of a tracking system, a new track is created for every

observation that does not get associated to an existing one. In practise though, false

positive and fragmented observations occur, and a decision must be made whether

to accept or reject an observation. A common approach is to require a minimum

amount of “evidence” (measured as number of observations, or duration of continuous

observation, for example) before marking a track as confirmed. Frameworks such

as MHT use terms such as probability of detection and false target density [83] to

calculate the likelihood of an object existing.

Once a track is confirmed, prediction can be used to estimate its state, even when

the track receives no observations due to occlusion or sensor errors. After some time

without observations, though, the tracked object can be assumed to have left the

scene and the track should be deleted. This is generally achieved by monitoring the

track uncertainty (as measured by the filter). Once the uncertainty grows above a

certain threshold, the track is deleted.

2.1.2 Tracking by registration

Whilst tracking by detection finds objects of interest in each frame of a data stream

then connects the observations together to form tracks, tracking by registration starts

with a template object and searches for the most likely position and orientation of

that object in each frame. This is most easily understood by taking an example from

the visual effects (VFX) industry.

Consider a film-making scenario where a scene has been recorded with a moving

camera. In the background of the shot there is a billboard showing some advertising

that the director wants to remove. If the position of the four corners of the billboard

in each frame were known, and no part of it is occluded by other scene elements, then

a new image could be warped to fit and replace the billboard.

Manually labelling the corners of the billboard would be very labour intensive, so

VFX software makes use of 2D “tracking by registration” algorithms such as the

Kanade-Lucas-Tomasi (KLT) tracker [92, 105]. Typically, an operator will select a

20 CHAPTER 2. BACKGROUND

key point (in this case a corner of the billboard) and the software will determine the

location of this point in subsequent frames of the video. If the software ‘looses track’

of the point, the user can manually adjust it and tracking continues. In this case,

tracking the corners of the billboard would be sufficient for the image replacement

task, but if more points are tracked then the complete motion of the camera can be

determined. This process is called match moving and is a common VFX technique.

Figure 2.5 shows a screen shot of the open source software “Blender” [102] being used

to track the position of a robot in a video sequence. The orientation of the robot

changed significantly during tracking, and although the KLT tracker copes with this

to some extent, the template had to be manually reselected and tracking restarted

several times.

template

source footage

tracked object

track data

Figure 2.5 – “Blender” [102] is an example of VFX software that implements “tracking
by registration”.

Some tracking by registration approaches provide robustness against changes in object

appearance by adapting the template over time, however these methods still require

some way to specify the original data that forms the object template. In the cases

2.1. TRACKING APPROACHES 21

above, this was through human intervention, but could be automated through the use

of a detector. This combination of detection and registration leads to hybrid trackers,

as discussed in the following section.

2.1.3 Hybrid and alternative approaches

Whilst we describe “tracking by detection” and “tracking by registration” as the two

broad classes of object trackers, there are frameworks that exploit elements of both

detection and registration, or use feedback between the tracker and detector.

The tracking-learning-detection (TLD) framework by Kalal et al. [49] is an example

of a hybrid approach that combines both detection and registration. Starting from an

object marked by a bounding box in one frame of a video, the system uses tracking

by registration to find the object in subsequent frames. At the same time it uses

the tracking results to train an object detector. A feedback scheme uses the detector

to ensure that the tracker does not drift, and uses the tracker to improve the accu-

racy of the detector and adapt it as the object and background appearance changes.

Figure 2.6 shows a screenshot from a TLD demo example video.

Other methods use tracking-by-detection but more tightly couple the detection and

data association steps to reduce false positives and improve occlusion handling. One

such example is described as “people-tracking-by-detection and people-detection-by-

tracking” by Andriluka et al. [2].

Another tracking approach that doesn’t fit into the two broad categories as discussed

above is the probability hypothesis densitiy (PHD) filter. Whilst the detection step of

PHD is the same as in “tracking by detection”, PHD-based trackers differ in the way

they handle tracks and data association. Rather than maintaining independent filters

for each tracked object, and explicitly assigning observations to tracks, PHD filters

treat the collection of targets as a set-valued state, and the collection of observations

as a set-valued observation. The PHD filter is an approximation to the more general

random finite set (RFS) formulation [66], and propagates the first-order statistical

moment (intensity) of the state. The integral of this intensity over any region gives

22 CHAPTER 2. BACKGROUND

Figure 2.6 – Example of the TLD framework [49] being used to track a car from
helicopter footage. Images on the right hand side of the frame are positive samples
used to train the detector, whilst on the left hand side are the negative training
examples. Image is from http://www.youtube.com/watch?v=Smh-HwtDHI8.

the expected number of targets. In general, the PHD filter has no closed-form solution,

and so approximations such as the Gaussian mixture probability hypothesis density

(GM-PHD) filter have been developed.

In estimating the density of targets over regions, these filters do not represent indi-

vidual target state. In regions containing multiple targets, therefore, the identities

of individual targets are not maintained and the trajectories of such targets cannot

be determined [79]. To solve this problem, various extensions have been proposed

[61, 79]. In the presence of interacting targets these methods are subject to the same

kind of failure modes as tracking by detection approaches.

2.2 Target Identity

An important aspect of multi-target tracking is the “identity management problem”

[38]. A target’s identity is a somewhat abstract concept in that there is no one

definitive label for an object – a person who is tracking objects in a scene may label

http://www.youtube.com/watch?v=Smh-HwtDHI8

2.2. TARGET IDENTITY 23

the objects as “Alice” and “Bob” or “the red car” and “the blue car”, whilst an

automated system might use some internal representation such as “Object-1” and

“Object-2”. The exact labels don’t matter though, the important part of identity

management is just that each label corresponds to exactly one physical object in the

scene.

The previous section described two broad approaches to object tracking. In tracking

by registration, target identity is implicit in the tracking process. The system finds

an object in one frame, then searches for that very same object in the next. As such,

no explicit “identity management” is required.

Tracking by detection systems generally represent observations by features such as

their 3D position and the data association process is controlled only by the track

to observation distance. So long as objects remain separated from each other, then

observations are uniquely associated to tracks, and target identity is preserved. How-

ever, when objects come close together, positional information might not be sufficient

to determine the correct mapping from observation to track, and identities may be-

come confused. An example of such an interaction, observed using a 3D lidar, is

shown in Figure 2.7.

In this situation the lidar is providing what we term “anonymous” observations, the

observations tell us where targets are, but not which object is which. The opposite to

this is an “identified” observation that is associated with a specific target. Examples

of identified observations include the ADS-B messages for aircraft tracking (mentioned

previously) and radio-frequency identification (RFID) tags.

Most sensors provide data that falls somewhere in between the ‘anonymous’ and

‘identified’ extremes mentioned above. In the absence of per-target infrastructure,

a remote-sensing system can not obtain a target’s identity directly. Instead, target

appearance is used as a proxy for identity and appearance information can be used

to determine which target is which.

Figure 2.8 shows the same interaction as Figure 2.7, but this time the data is taken

from a colour camera. The appearance information in the images enables the viewer

24 CHAPTER 2. BACKGROUND

(a) (b)

(c) (d)

Figure 2.7 – An example of a situation that results in identity ambiguity. Two pedes-
trian targets are observed using 3D lidar data (a). Whilst the objects remain
separated, tracking proceeds by associating observations to the appropriate tracks
(b) (in this example only every 10th observation is shown for clarity). When the
objects move close together, the sensor is no longer able to resolve individual tar-
gets (c). When the targets separate, it is unclear which target moved in which
direction (d).

to be quite certain that the person that started on the left of the image in Figure 2.8a

is also on the left in Figure 2.8c.

Many sensors obtain some amount of appearance information and how useful this

information is depends on the processing techniques employed, and on the differ-

entiability of the appearance properties of the targets. In the following section we

discuss sensors for tracking and give a brief overview of how appearance information

can be extracted. A more detailed discussion of learning models to represent target

appearance is presented in Chapter 4.

2.3. SENSORS FOR TRACKING IN URBAN ENVIRONMENTS 25

(a) (b) (c)

Figure 2.8 – The same interaction as Figure 2.7, seen with a colour camera. This
time, there is no ambiguity about which target is which after the interaction.

2.3 Sensors for tracking in urban environments

In this section we describe the sensor technologies most commonly used for task of

perception in urban environments, with a particular emphasis on their utility for

different parts of the tracking systems that concern this thesis. We are primarily

concerned with sensors mounted on a moving platform (such as a self-driving car,

service robot, or surveillance platform) rather than an instrumented environment

(for example, a CCTV network).

2.3.1 Radar

As described in the introduction to this chapter, radar was one of the first sensors

to be integrated into an automated target tracking system. Radar systems operate

at a wide range of frequencies, which affects sensing resolution and range. The most

common type of radar for automotive applications is the millimetre wave radar, which

is used for adaptive cruise control (ACC) [14]. The narrow FOV of millimetre wave

radars mean that for autonomous driving applications, a number of units are used

together to increase sensor coverage. For example, the Stanford entry in the DARPA

Urban Challenge (DUC) used 5 millimetre wave radars whilst the MIT team used 15

[56, 67].

Whilst both teams successfully used radar to detect and track moving vehicles, radars

suitable for automotive applications are used to determine position and velocity only

26 CHAPTER 2. BACKGROUND

and do not provide good information about the size and shape of the target. Re-

ferring the radar systems used on the MIT DUC vehicle, Leonard et al. note that

“unfortunately, the radars cannot easily distinguish between small, innocuous ob-

jects (like a bolt lying on the ground, or a sewer grate) and large objects (like cars)”

[56]. Given this difficulty in telling the difference between objects of different shapes

and sizes, determining the identities of individual pedestrians using automotive radar

data would be a very difficult task.

2.3.2 2D Lidar

A 2D lidar such as the SICK LMS-291 (pictured in Figure 2.9) uses a single beam

laser range finder and a rotating mirror to measure range in a planar “slice” of the

environment. Its size, scan rate, accuracy and ease of use has made it a very com-

mon sensor for robotics applications. 2D lidar sensors have been used for pedestrian

tracking since around 2001 [51, 62, 87], and they remain a popular sensor for tracking

to this day. Recently, 2D lidar data has been used to track groups of pedestrians [3]

and learn the socio-spatial relations between people [63].

(a) (b)

Figure 2.9 – (a) Sick LMS-291 lidar sensor. (b) Two 2D lidars mounted with scanning
planes perpendicular to each other on the experimental platform “Shrimp”.

2.3. SENSORS FOR TRACKING IN URBAN ENVIRONMENTS 27

The planar nature of the scan means that occlusions are common, and tracking works

best in flat environments, where the scanner can remain parallel to the ground. Pedes-

trian observations from 2D lidar data are typically line segments, extracted from

torsos or legs, and as such it is difficult to extract appearance information sufficient

to determine target identities. In fact 2D lidar observations don’t give much class

information either – imaged at the right height, the corner of a car looks the same as

the corner of a building, and the legs of a pedestrian may appear exactly the same as

the trunk of a tree.

2.3.3 3D Lidar

The introduction of purpose-built 3D lidar sensors has had a large impact on the

design of perception systems. Whilst 3D lidar data can be obtained by sweeping or

‘nodding’ a 2D scanner, the development of specialised sensors with video-like frame

rates has made dynamic target tracking feasible in 3D environments. Additionally,

the increase in data coverage and density reduces instances of occlusion and the

increased number of measurements returned from a given target allows target size

and 3D shape to be measured.

For robotics applications, the most well-known 3D lidar sensor is the Velodyne HDL-

64E, pictured in Figure 2.10. After its success in the 2007 Defense Advanced Research

Projects Agency (DARPA) Urban Challenge, the sensor has been widely adopted

amongst the autonomous driving research community. Topics of interest include

segmentation [28, 43, 69, 76], classification [29, 68, 101], simultaneous localisation

and mapping (SLAM) [57] and tracking [70, 72].

The amount of geometric information captured in a 3D lidar point cloud means that

not only can we determine objects classes (pedestrian, car, bicycle), but also recognise

different instances of the same class. This is examined in more depth in Chapter 4.

28 CHAPTER 2. BACKGROUND

(a) (b)

Figure 2.10 – (a) The Velodyne HDL-64E lidar sensor. (b) The sensor as mounted on
the ACFR experimental platform “Shrimp”.

2.3.4 Camera

Camera-based tracking has a wide variety of applications, ranging from industrial

pick-and-place, to motion capture for the VFX industry and graphical overlays during

sports broadcasting. Pedestrian tracking is common in the domain of surveillance,

where off-the-shelf units can add automated tracking capabilities to CCTV systems

[100].

Whilst there are many successful commercial applications of camera-based tracking

systems, multiple-target tracking in urban environments remains an active area of

research. In the context of this thesis, the most relevant recent works consider the

task of tracking interacting pedestrians in cluttered scenes [54, 118, 119].

Much of the work in camera based identity tracking focuses on fixed-infrastructure

systems and less so on mobile platforms (although pedestrian tracking from a mobile

platform has been demonstrated [31]). In the DARPA Urban Challenge, for example,

the top four teams relied entirely on other sensors, such as radar and lidar, for obstacle

detection and tracking [4, 25, 56, 67].

There are a number of reasons why cameras are not the preferred sensor for multi-

2.3. SENSORS FOR TRACKING IN URBAN ENVIRONMENTS 29

target tracking from ground vehicles. Firstly, accurate 3D position information is

important. A collision avoidance system, for example, must not only be able to

detect a pedestrian in the vicinity of the vehicle, but also know exactly where it is

such that braking or evasive manoeuvres can be performed. Whilst depth information

is possible by using stereo cameras, the depth error increases quadratically with the

range to target [19], and changing illumination and amounts of texture make the

stereo-matching problem difficult.

Illumination is a problem not just for depth estimation, but for object detection too.

Figure 2.11 shows a real-world environment as seen by a 3D lidar (left) and camera

(right). The 3D lidar can see five people in this part of the scene, but they are much

harder to see in the image on the right due to the camera’s limited dynamic range.

Lidar can detect people equally well in complete darkness, where a camera would fail,

and because it actively illuminates the environment, algorithms do not need to be

adapted for different lighting conditions. Both sensors, however, are susceptible to

environmental conditions such as rain, dust and snow.

(a) (b)

Figure 2.11 – (a) Pedestrians in an urban scene, extracted from 3D lidar data via
change detection. (b) Bounding boxes of the same five lidar detections projected
into the corresponding camera image. Due to insufficient dynamic range, the pedes-
trian marked in blue is almost impossible to see.

Cameras are, however, a very useful source of identity information. The visual ap-

pearance of objects are often sufficiently distinct that they can be readily identified.

We choose, therefore, to use 3D lidar as our primary sensor for tracking, but to make

30 CHAPTER 2. BACKGROUND

use of camera data for determining object identity. This topic is explored in detail in

Chapters 4 and 5.

2.4 Evaluating tracking performance

So far in this chapter we have presented an overview of tracking approaches, de-

scribed the concept of target identity, and introduced sensors appropriate to the task

of multi-target tracking. In the chapters that follow we will be investigating these

areas in greater detail and developing new methods for identity tracking. In order to

objectively evaluate and compare tracking approaches we require performance met-

rics.

In this thesis we are primarily interested in supervised evaluation. Supervised eval-

uation involves comparison against a “ground truth”, object trajectories obtained

by manual labelling of data, by per-target instrumentation or other tracking infras-

tructure. The alternative, unsupervised evaluation, seeks to measure tracking per-

formance in the absence of any ground truth, and statistics such as track length or

duration are often considered.

In this section we describe the desirable properties of tracking evaluation metrics.

We discuss why the current methods don’t adequately measure identity-tracking per-

formance, and present an additional method adapted from the clustering analysis

literature. The methods presented in this section will be used throughout the rest of

the thesis as we investigate the identity tracking problem.

2.4.1 Evaluation criteria

If a ground truth tracking solution is available, tracking performance can be measured

by comparing the output of the system with the ground truth. Whilst the require-

ments of the comparison may at first seem easy to specify (high score when system

output is the same as the ground truth, low score when they differ), many different

metrics have been proposed to achieve this same task.

2.4. EVALUATING TRACKING PERFORMANCE 31

Perhaps the most prominent discussion on performance evaluation came out of the

classification of events, activities and relationships (CLEAR) Evaluation Workshop

[1]. In work that originated from this workshop, Bernardin and Stiefelhagen define

the following two criteria for performance metrics [10].

1. They should allow to judge a tracker’s precision in determining exact object

locations.

2. They should reflect its ability to consistently track object configurations through

time, that is, to correctly trace object trajectories, producing exactly one tra-

jectory per object.

These criteria illustrate the difficulty in defining performance metrics alluded to

above. Both specify what a system must do to achieve a perfect tracking score,

but do not state how scores should degrade, or what the lowest possible score even

means. Particularly with regard to (2), recognising whether a solution is perfect or

imperfect is well defined, but quantifying how imperfect is not.

2.4.2 The CLEAR MOT metrics

In an effort to address the criteria listed above and standardise metrics for multi

target tracking systems Bernardin and Stiefelhagen proposed the CLEAR multiple

object tracking (MOT) metrics [10]. The performance evaluation has two components:

multiple object tracking accuracy (MOTA) and multiple object tracking precision

(MOTP).

MOTP measures the ability of a tracking system to determine the correct location of

targets (independent of its estimate of how they are configured). It is defined as in

Equation 2.1, where dit is the distance between object i and its corresponding track,

and ct is the number of matches at time t.

MOTP =

∑
i,t d

i
t∑

t ct
(2.1)

32 CHAPTER 2. BACKGROUND

MOTA measures the ability of a tracking system to determine the correct config-

uration of targets, that is, which target is where in the scene. Maintaining target

configuration over time implies correct determination of object trajectories. MOTA

is defined in Equation 2.2 and is 1 − Etot where Etot is the error rate of the tracker.

The error rate includes m (misses), fp (false positives) and mme (mismatches), and

is averaged over the total number of objects present g. For further discussion of the

measures see the original paper ([10]).

MOTA = 1−
∑

t (mt + fpt +mmet)∑
t gt

(2.2)

Whilst the standardisation of tracking metrics is important for the comparison of

tracking systems, some limitations in the CLEAR MOT metrics mean that authors

using these metrics still apply custom solutions to evaluate their tracking methods.

A problem arises with the use of MOTA to measure identity switches. When using

this metric, identity switches are penalised each time they occur. As a result, if a

tracker switches the identity of two targets for a single frame, then corrects them on

a subsequent frame, MOTA counts this as two mismatch errors per track; one for the

switch into the erroneous state, and a second error for the switch back to the correct

state. This corresponds to case (a) in Figure 2.12 and Table 2.1. If the identities were

switched for a longer period of time before being corrected, as shown in case (b), then

the score will be the same. Note that in case (b), the middle section (between t = 6

and t = 11) is a completely different track, but the number of identity switches is the

same. Additionally, the bias of MOTA against changes in track identity mean that

case (c) receives a higher score than (a).

2.4.3 GMOTA

The problem shown in parts (a), (b) and (c) of Figure 2.12, whereby a persistent error

in identity scores more highly than a temporary one, has lead to the proposal of a

MOTA variant, which computes a global identity score. The authors of [9] compute

2.4. EVALUATING TRACKING PERFORMANCE 33

t = 1

t = 15

t = 6

t = 11

(a)

t = 15

t = 6

t = 11

t = 1

(b)

t = 15

t = 6

t = 11

t = 1

(c)

t = 15

t = 6

t = 11

t = 1

(d)

Ground Truth Tracker Output

Figure 2.12 – Four different tracking solutions for the same synthetic data, showing
varying numbers of identity errors. In (a) the identities are swapped at frame t = 6,
and then corrected on the next. In (b) identity switches occur at t = 6 and are
corrected at frame t = 11. In (c) errors occurs at t = 6 and finally in (d), one
labelled object is fragmented across several tracks before stabilising at frame t = 6.

a b c d

MOTA 0.867 0.867 0.933 0.867
GMOTA 0.933 0.667 0.667 0.667

V-measure 0.647 0.440 0.440 0.399

Table 2.1 – Performance metrics for the four tracking solutions shown in Figure 2.12

34 CHAPTER 2. BACKGROUND

gmme, or ‘global mismatch errors’, which accumulates the number of frames in which

the identity is wrong after a mismatch error. Zervos et al. [120] also compute gmme

and use it to replace mme in Equation 2.2. They refer to the resulting metric as

global multiple object tracking accuracy (GMOTA).

GMOTA is also problematic, however, as the method scores the longest track-to-label

match as correct, and treats all other assignments as errors. In case (d) of Figure 2.12,

an object trajectory is fragmented across several tracks before stabilising. However,

since this portion of the trajectory is not the longest match, the effect of this is ignored

by GMOTA and the score for case (c) and (d) is the same.

2.4.4 V-measure

The ability of a tracking system to maintain the correct identity for each tracked

object is its ability to group input observations into the correct trajectories. When

considered in this way, a measure that captures identity-tracking performance has

two requirements:

1. Each track contains observations from the one labelled object.

2. All observations from the one labelled object are assigned to the same track.

These requirements are very similar to those in the classification literature. Consider

the following definitions of homogeneity and completeness, quoted from [84].

1. “A clustering result satisfies homogeneity if all of its clusters contain only

data points which are members of a single class.

2. A clustering result satisfies completeness if all the data points that are mem-

bers of a given class are elements of the same cluster.”

If we consider the labelled object trajectories as classes and the tracks as clusters,

then we can rewrite the above as:

2.4. EVALUATING TRACKING PERFORMANCE 35

1. A tracking result satisfies homogeneity if all of its tracks contain only obser-

vations from a single labelled object.

2. A tracking result satisfies completeness if all of the observations from a single

labelled object are part of the same track.

These two terms, homogeneity and completeness, are the components of a cluster-

ing evaluation measure called V-measure [84], which have their roots in much earlier

information theoretic measures such as mutual information [8]. According to the

definitions above, V-measure is well suited to the evaluation of identity-tracking per-

formance, so we first define V-measure as used in clustering evaluation, then explain

how it is adapted for tracking evaluation.

V-measure is defined as the weighted harmonic mean of homogeneity (h) and com-

pleteness (c),

V =
(1 + β) · h · c

(β · h) + c
(2.3)

where β is a parameter that controls the weighting of the two components. When

β = 1, V-measure is equivalent to normalised mutual information (NMI) [7, 96]. The

presentation of V-measure above, in terms of homogeneity and completeness, however,

allows us to compute each component separately, which proves useful for understand-

ing the behaviour of the identity tracking systems in this thesis. Homogeneity and

completeness are defined as follows.

homogeneity = 1− H(C|K)

H(C)
(2.4)

completeness = 1− H(K|C)

H(K)
(2.5)

36 CHAPTER 2. BACKGROUND

where

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

nc,k

n
log

(
nc,k

nk

)
(2.6)

H(C) = −
|C|∑
c=1

nc

n
log
(nc

n

)
(2.7)

and H(K|C) and H(K) are defined in a symmetric manner

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

nc,k

n
log

(
nc,k

nc

)
(2.8)

H(K) = −
|K|∑
k=1

nk

n
log
(nk

n

)
. (2.9)

In the definitions above, n, nc, nk, nc,k are all computed from the clustering contin-

gency table. n is the total number of samples, nc and nk are the number of samples

belonging to class c and cluster k, respectively, and nc,k is the number of samples

from class c assigned to cluster k.

To adapt V-measure for the analysis of identity-tracking performance we adjust the

definition of the contingency table. In this work, nc,k is the number of frames in

which labelled object c matches to track k. As for the CLEAR MOT metrics, we

use the Hungarian (or Kuhn-Munkres) algorithm [53, 74] to compute the track to

labelled-object mapping for each frame, bounded by a threshold distance.

V-measure does not include the concept of “false positives” (clustered points that

weren’t in the labelled set) or “false negatives” (labelled points not assigned to any

cluster). This means that, using V-measure, we evaluate only the ability of a track-

ing system to maintain target identity. Missed tracks and false positives must be

measured using an alternate metric.

2.4. EVALUATING TRACKING PERFORMANCE 37

2.4.5 Comparison of performance measures

In the preceding sections we discussed a number of tracking performance measures.

Limitations in the ability of MOTA and GMOTA to reflect identity tracking perfor-

mance (a key element of this thesis) led us to propose the use of V-measure for this

task.

The examples shown in Figure 2.12 demonstrate some situations in which V-measure

provides a more consistent measure of a system’s ability to maintain target identities.

The values computed by MOTA, GMOTA and V-measure (presented in Table 2.1)

provide an ordering for the different tracker outputs, with the highest scores repre-

senting the “best” performance according to that measure.

From Figure 2.12, MOTA scores track output (c) highest, whilst GMOTA chooses

(a). V-measure, too, scores (a) highest, but additionally provides a more intuitive

ordering of (b), (c) and (d). The general properties of the three performance measures

can be summarised as follows.

MOTA

MOTA favours temporal consistency, by punishing trackers every time they

switch a track’s identity. It is better for an identity to continue being wrong

after a switch then to correct the mistake.

GMOTA

GMOTA favours overall consistency, by rewarding the longest match between

tracks and labelled objects. Parts of tracks that are not in the longest match

are punished equally regardless of their consistency.

V-measure

Similar to GMOTA, V-measure will emphasise the agreement between the

largest sections of matching tracks and labels, but unlike GMOTA, V-measure

will also assess the consistency of the smaller fragment. V-measure evaluates

homogeneity and consistency as described above.

38 CHAPTER 2. BACKGROUND

V-measure, as shown in this section, encapsulates the desired properties of an identity-

tracking performance measure. It has empirical advantages over MOTA and GMOTA

as shown in this section and has a stronger theoretical basis in information theory,

which has been applied more diversely for general set assignment problems.

Throughout this thesis we will primarily use V-measure to evaluate identity tracking

performance. We will also make use of its component homogeneity and completeness

scores to expose greater detail about the behaviour of tracking systems.

However, since V-measure does not consider missed observations and false positives,

or measure accuracy in target positions, we must use additional metrics to understand

tracking performance in these regards. The MOTP score is a suitable way to record

positional accuracy, and since MOTA does include false positives and misses we also

report the MOTA score.

2.5 Summary

In this chapter we introduced the background material relevant to the work in this

thesis. We considered the problem from a high level and discussed the two main

frameworks for multi-target tracking.

We introduced the concept of target identity and the “identity management problem”,

and how this is relevant to the rest of the work in this thesis. We described the

sensor technologies applicable to the task of multi-target tracking in urban scenes

and motivated the selection of 3D lidar as our primary tracking modality.

The evaluation of tracking performance can be separated into two components, the

ability of a system to determine the locations of targets, and its ability to maintain

their identities. In Section 2.4 we described ways to measure these components. We

presented the most common approach from the literature, CLEAR MOT, and demon-

strated that MOTA does not adequately capture the ability of a tracking system to

maintain object identity. This deficiency has been previously recognised in the litera-

ture and an adaptation, GMOTA, proposed. We demonstrated that GMOTA, though

2.5. SUMMARY 39

an improvement on MOTA, still has important limitations that decrease its utility.

In this chapter, we proposed the adoption of V-measure to evaluate identity-tracking

performance. Whilst it encapsulates the desired properties of an identity-tracking

performance measure it does not evaluate the positional accuracy of a system, false

positives or false negatives. Therefore, in this thesis we will analyse tracking perfor-

mance in terms of the MOTP, MOTA and V-measure scores.

40 CHAPTER 2. BACKGROUND

Chapter 3

Tracking interacting objects with

3D lidar

This chapter examines methods for multi-target tracking in urban environments. In

such environments, scene complexity results in occlusions and ambiguous target in-

teractions and poses significant challenges for a tracking system.

3D lidar sensors are becoming increasingly popular for perception in urban scenes.

The FOV, density and accuracy of their data make them fundamentally different to

other sensors. Since its introduction in 2006, the Velodyne HDL-64E in particular has

become very popular with autonomous driving researchers, being used by five of the

six finishing teams in the 2007 DARPA urban challenge [111] as well as for Google’s

self-driving car project [39].

The recency of the sensor means that tracking methods designed specifically for such

data are in their relative infancy (as compared to 2D lidar and radar). The methods

used in the 2007 DARPA Urban Challenge generally projected the 3D point cloud into

a 2D representation [24, 67] – for example, the Stanford entry re-sampled Velodyne

data into 2D “virtual scans” in order to perform segmentation and tracking [80]. Most

of the teams relied on the assumption that all moving objects encountered during the

challenge would be vehicles, and could therefore be represented by vehicle-specific

models. Only more recently have algorithms that can segment the full 3D point cloud

41

42 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

from a Velodyne sensor [28, 43, 69] been proposed and methods designed specifically

to track objects in 3D developed [70, 94].

In this chapter we focus on the task of tracking dynamic objects in urban scenes.

In particular we are interested in the case where objects are in close proximity to

each other, forming groups, and crossing paths. In Section 3.2 we compare a number

of techniques for tracking object in segmented point clouds, propose a method for

data association that reasons about the possibility of occlusion, and in Section 3.3

we demonstrate the utility of group tracking and higher-level logic to form the most

complete understanding of scene dynamics. The methods developed in this chapter

are combined with the appearance modelling techniques described in Chapter 4 to

provide robust identity tracking in complex urban scenes, in Chapter 5.

3.1 3D lidar and pre-processing

In this section, the fundamentals of lidar technology are described along with the pre-

processing steps required to work with lidar data in higher level systems. We introduce

the Velodyne HDL-64E, the primary sensor used in this chapter, and describe the

coordinate transformations and object detection methods that prepare the data for

input to our tracking system.

At the heart of any 3D lidar sensor is one (or more) laser range finder. By emitting

a pulse of light and measuring how long it takes for the pulse to be reflected off a

target and return to the sensor it is possible to determine how far away an object is.

Single beam range-to-target measurements are useful in fields such as construction,

surveying, and the military.

For robotics applications, 2D and 3D lidar sensors are more common, because in this

form, lidar data can be used to build metric maps of the environment, enabling high

level tasks such as obstacle avoidance, tracking and classification. A 2D lidar sensor

can be created by rotating a single beam laser range finder around one axis or, more

commonly, reflecting the laser off a rotating mirror. Taking multiple range measure-

3.1. 3D LIDAR AND PRE-PROCESSING 43

ments as the beam sweeps across the scene allows a 2D slice of the environment to

be reconstructed.

To make the step to 3D, various techniques may be employed. For instance a “nod-

ding” sensor takes a 2D scanning lidar and rotates it around a secondary axis. This

axis may be driven by a motor (as in [104]), harmonically oscillated (in scanners such

as the Nippon Signal FX8 [44]), or allowed to wobble freely (the “Zebedee” [15]). In

this work we utilise the Velodyne HDL-64E, which captures scenes by rotating 64

diverging laser range finders around one axis, rather than moving one range finder

around multiple axes.

Whilst some of the pre-processing techniques discussed below are specific to the Velo-

dyne, the general concepts of coordination transforms, ground detection, segmenta-

tion and change detection can be applied to other 3D sensors.

3.1.1 Velodyne lidar

The Velodyne HDL-64E comprises 64 lasers rangefinders, arranged so as to sweep out

concentric rings from approximately -24° (towards ground) to +2° from horizontal.

The entire unit, shown in Figure 3.1, spins around the vertical axis and each of the 64

lasers fires at approximately 21 kHz, resulting in over 1.3 million range samples per

second. When spinning at 20 Hz, as used for our datasets, this equates to an resolution

in azimuth of less than 0.2°. Sampling in azimuth is controlled by laser firing time

and therefore does not necessarily happen at the same angle each revolution.

The data is measured as a continuous stream, and transmitted in groups of 100

‘blocks’ – where each block contains 32 returns from either the upper or lower set of

lasers. For convenience during segmentation and tracking, the point stream is divided

into “scans”, where each scan represents one 360° revolution of the Velodyne sensor.

44 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

(Entire unit spins
at 5-20Hz)

Housing(Groups of 16)

Laser
Emitters

Motor
Housing

(Groups of 32)

Laser
Receivers

Field of View
(-24 to +2 degrees)

Figure 3.1 – Velodyne lidar (diagram adapted from [112])

3.1.2 Coordinate Transforms

Each data point returned from the Velodyne is a line-of-sight distance from one of

the laser emitters to the nearest object in its path. To convert data from these

(range, bearing, elevation) measurements into Cartesian coordinates, a number of

transforms are required. These transforms are listed below and shown in Figure 3.2.

1. From raw sensor returns into 3D Cartesian points local to the sensor (intrinsic

calibration).

2. From the sensor coordinate frame into the vehicle body frame (extrinsic cali-

bration).

3. From the vehicle body frame into global coordinates (via the navigation solu-

tion).

Intrinsic Calibration

The Velodyne HDL-64E contains 64 independent lasers and to generate a metrically

accurate point cloud, measurements in (range, bearing, elevation) are converted to

3.1. 3D LIDAR AND PRE-PROCESSING 45

 sensor frame

 body frame
 global frame

 measurement ray
 (range, bearing, elevation)

 object

 navigation transform

 extrinsic transform

 intrinsic transform

Figure 3.2 – Transforming from raw sensor data to a point-cloud in global coordinates.
Measurements from each laser are represented as (range, bearing, elevation).
These measurements are converted to the Cartesian sensor frame via an intrin-
sic transform, to the body frame via an extrinsic transform, and finally into the
global frame via the navigation solution.

(x, y, z) coordinates in the sensor frame. There are a total of five parameters to

be optimised for each beam, comprising corrections for each of range, bearing and

azimuth, as well as the horizontal and vertical positions of each laser within the

housing. Whilst the Velodyne is supplied with a factory calibration, methods that

achieve superior accuracy have been developed [59]. The Velodyne used for these

experiments was calibrated by an in-house method that optimises sensor pose and

the intrinsic parameters jointly by minimising a variant of the iterative closest point

(ICP) residual. This method is similar to [59], and the differences are not significant

in the context of this thesis. Both methods achieve considerable improvements over

the factory calibration.

Extrinsic Calibration

The point cloud is then projected from sensor coordinates into the vehicle’s body

frame. The transform is obtained using the method described in [108], which can

jointly calibrate multiple lidar sources using a navigation solution. An alternative

46 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

method for extrinsic calibration, that does not require manual selection of alignment

features is presented in [59].

Global projection

To project the points from the body frame into the global frame, the navigation solu-

tion (position and orientation of the vehicle body frame with respect to some globally

fixed coordinate frame) is used. This navigation solution is usually obtained through

the use of a GPS/inertial navigation system (INS), however in city environments,

issues such as multi-path [36] may cause jumps in the position estimate. These jumps

or “rifts” in the navigation solution can be problematic for tracking, especially if they

are large enough such that the tracks obtained up to scan k − 1 can not be reliably

matched to observations at scan k.

If accurate position information is required at all times, then one solution is to use

lidar data to build reflectivity maps [58]. Data collected by a survey vehicle is pro-

cessed offline to generate a globally consistent map, which can then be localised

against in real time. Another approach, used by the Stanford and MIT teams in

the DARPA Urban Challenge, is to maintain two linked coordinate systems [56, 67].

The “smooth” coordinate frame is formed by integrating velocity estimates from the

INS, and the offset between this frame and the global solution (which may contain

jumps) is maintained. Whilst the smooth coordinate frame will drift over time, its

local consistency makes it better for tracking and other local perception tasks. If data

is required in the global frame, then it can be obtained by adding the global offset.

For the purposes of object tracking we require only this smooth coordinate frame. So

long as the scan-to-scan navigation estimate is sufficiently accurate to allow reliable

data association, then it is not necessary to project the data into a metrically accurate

globally registered coordinate system and indeed if this was required then it should

be performed at a later stage in the pipeline after data associations have been made.

We obtain this locally smooth solution using an open loop ICP [11, 20] method, where

the change in sensor position is found by aligning new scans to previous ones. The

3.1. 3D LIDAR AND PRE-PROCESSING 47

point-to-plane ICP variant [20] is applied, and to limit the drift of the solution, batches

of scans are aligned to ‘reference’ scans chosen at approximately every 10 metres. The

resulting transforms are in sensor space, but they can trivially be converted to the

body frame, and despite the open-loop nature of the approach we found that the

drift rate was low enough to provide a reasonably accurate global solution over the

distances considered in our experiments. An example of an ICP-based navigation

solution on an urban dataset captured near the Sydney Opera House is shown in

Figure 3.3.

Figure 3.3 – Navigation solution from the GPS/INS (blue) and open loop ICP (red)
for data collected near the Sydney Opera House, superimposed on aerial imagery
(aerial data © Microsoft Corporation).

3.1.3 Ground Detection and Segmentation

In Section 2.1.1 we described generically the process of extracting observations from

a continuous stream of data. Class-specific methods have been developed to detect

pedestrians in Velodyne data (for instance [93] which uses an SVM based detector),

however it is more common to use a background-subtraction approach to identify

separate objects for tracking, without relying on particular object models [43, 76].

Velodyne-based approaches commonly operate on a per-scan basis and partition each

48 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

scan into ground and non-ground points, before clustering the non-ground points

into separate observations [28, 43, 69, 76]. In this work we apply the “mesh-based”

method for ground detection and segment the non-ground points into observations

by the “cluster-all” approach (both from [28]).

The “mesh-based” ground detection method does not rely on an assumption of flat

ground, nor does it first create an elevation map (which can be confused by overhangs).

Rather, it expects the ground to be smoothly varying and uses a mesh data structure

designed to suit the scan pattern of the Velodyne lidar. The steps of the algorithm

are as follows, but for a more complete explanation, see [28].

1. A mesh is constructed by linking points according to the scan pattern of the

rotating Velodyne sensor (Figure 3.4a).

2. A gradient field is computed over all the points, based on their links to neigh-

bours in the mesh.

3. Working from the inner-most scan ring outwards, the ground label is propagated

to connected points where the gradient is below a threshold value. Transition

zones are also determined by analysing the statistics of the gradient over a

sliding window (Figure 3.4b).

(a) (b)

Figure 3.4 – Mesh-voxel segmentation. (a) The mesh generated by linking points
according to the Velodyne scan pattern. (b) Ground detection result, showing
ground points (blue), object points (green), and transition zones (red).

3.1. 3D LIDAR AND PRE-PROCESSING 49

After the ground points have been detected, the remaining points are then clustered

according to the ‘cluster-all’ approach. Non-ground points are placed into a voxel

grid of a fixed resolution, and connected voxels are considered to be part of the same

cluster. An example of the output of clustering was shown previously in Figure 2.2.

A problem with this clustering approach is that it assumes gaps in the point cloud

always indicate boundaries between objects. Consider Figure 3.5, which shows a top

down view of two trees in front of a wall, with lidar measurements shown in red.

Segmentation has resulted in 4 observations, marked A to D. In 3D space, there is a

separation between observations A and C, and the clustering algorithm has correctly

separated the two trees. However the presence of the trees means that the section

of wall between clusters B and D is not observed. The clustering algorithm makes

no distinction between unobserved space and free space, and as there are no lidar

measurements connecting B and D it treats them separate objects. The assumption

that a gap in lidar data indicates a new object works well for discrete objects such

as people, cars and bicycles, but breaks continuous surfaces such as fences or walls at

occlusion boundaries.

sensor motion

wall

treetree

wall

treetree

sensor motion

apparent motion

A

B

C

D

A

B

C

D

Figure 3.5 – Top down view of a scene containing two trees and a wall, as seen by a
lidar sensor on a moving platform. Occlusions cause the wall to be split into two
segments (B and D), and as the sensor moves, changing occlusion boundaries make
it appear that segment B is also moving.

50 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

A secondary problem caused by this clustering is “apparent motion”, which is also

demonstrated in Figure 3.5. The sensor moves from left to right between the two

snapshots, measuring the same scene from a slightly different angle. The foreground

objects are observed to be in approximately the same location, but the changing

occlusion boundaries mean that the section of wall between the two trees appears to

have moved.

3.1.4 Change Detection

Change detection is an alternative way to extract observations from point cloud data,

and solves the apparent motion problem by explicitly detecting which objects in

a scene are moving before tracking. Change detection has different strengths and

weaknesses compared to the ground detection and segmentation approach described

in the previous section, and both are used in this thesis as a component in the overall

system.

In this work we use the approach described in [109]. This approach is described as

‘explicit’ change detection in that it distinguishes between parts of the scene that

have been observed to change, and parts that only appear to have changed due to

exploration frontiers or occlusions. The method uses ray tracing in spherical co-

ordinates and the computational requirements are linear in the number of points

processed, which makes it appropriate for tracking because it can handle data from

the Velodyne in real-time.

A key parameter of any change detection algorithm is the time interval between the

compared scans. For example, an interval of 0.5 seconds can be used to detect moving

objects, whilst an interval of 1 year could detect changes such as the construction of

a new building. For the purposes of tracking, we are interested in moving objects so

a fixed interval of, say, 0.5 seconds is a sensible first approach. However the moment

an object stops moving, it will stop being detected and the track will be lost. Cars

stopped momentarily at traffic lights, or pedestrians at intersections will not register

as changes.

3.1. 3D LIDAR AND PRE-PROCESSING 51

(a) (b)

Figure 3.6 – Comparison of change detection strategies: (a) A fixed interval of 1.0
seconds. (b) An adaptively sampled set of reference scans with ∆t = 1.0s and
∆x = 3.0m. Notice the pedestrians who have stopped to take a photo are detected
in (b) but not in (a).

There are two conflicting requirements here. Increasing the time interval, ∆t, means

that objects that are stationary for less than ∆t seconds can still be detected, but

for a moving sensor vehicle, the increased time interval means that the vehicle will

have moved further and the overlap between the two scans is diminished. This will

result in fewer changes being detected. The strategy that will maximise the number

of changes detected in the environment is to use all possible values of ∆t, or effectively

compare every scan to every other scan that has an overlapping FOV. This, however,

is computationally intractable for large datasets.

We developed, therefore, a strategy that balances the number of changes detected

with computational requirements. From a dataset, we sample a set of reference scans

along the sensor vehicle’s trajectory such that each scan is sampled no further than

∆x metres from or more than ∆t seconds since the previous. During detection, a scan

is compared against all overlapping scans in the reference set. This method allows us

to choose a sampling time interval that detects the changes we are interested in, whilst

ensuring a good spatial coverage even when the sensor vehicle is moving quickly. A

comparison between this approach and the fixed-interval sampling mentioned earlier

is shown in Figure 3.6. When using the fixed-interval sampling, two pedestrians who

have stopped to take a photo are not detected.

52 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

3.1.5 The pre-processing pipeline

The pre-processing steps described above form modules in a data pipeline, shown in

Figure 3.7, that starts with raw data packets from the Velodyne sensor and delivers

a globally registered, segmented, 3D point cloud, which serves as an input to the

tracking system.

Sensor
data

Intrinsic
transform

Object
detection

Extrinsic & nav
transform

Tracking

Figure 3.7 – The lidar pre-processing pipeline. Modules may be rearranged depending
on the exact implementation used for a component – for example, the extrinsic and
navigation transforms might need to be applied before object detection.

This figure represents the main flow of data in a lidar-based perception system, and

the modular structure reflects the way the on-board software is separated into com-

ponents. The “ground detection and segmentation” and “change detection” methods

discussed in Section 3.1.3 and Section 3.1.4 are two possible implementations for

the “object detection” module, and modules may be re-ordered depending on imple-

mentation details (for example object detection might occur after the point cloud is

transformed into global coordinates).

The output of this pre-processing pipeline is a stream of Velodyne scans, where each

scan has been separated into background points and observations. Each observation

comprises a subset of 3D points from the lidar scan, registered in a locally-smooth

coordinate frame. In the remainder of this chapter we describe and evaluate tracking

systems that build upon this pipeline.

3.2 3D lidar tracking approaches

Tracking approaches for 3D lidar data have historically been based upon techniques

developed for 2D lidar which, in turn, were inspired by radar-based techniques from

as early as the 1970s. In 1971, Sea described an algorithm that tracks multiple targets

3.2. 3D LIDAR TRACKING APPROACHES 53

using Kalman filters, and performs nearest-neighbour data association to link obser-

vations to tracks [90]. In the intervening years many variants have been designed to

better address various aspects of the multi-target tracking problem. For instance the

PDAF [5] and joint probabilistic data association filter (JPDAF) [33] were developed

to better represent the uncertain relationship between observations and targets in

cluttered environments by using data assignment probabilities to weight the various

measurements, whilst the MHT [83] creates a tree of data-association solutions that

it prunes based on the assignment probability. Sample-based approaches such as the

sample-based joint probabilistic data association filter (SJPDAF) have also been pro-

posed [88]. The PHD filter, discussed in Section 2.1.3 has also been applied to lidar

data [50].

Amongst the first algorithms for multi-target tracking using a vehicle mounted 3D

lidar were those used by teams in the 2007 DUC. These approaches can be understood

in terms of the “tracking-by-detection” framework outlined in 2.1.1. Incoming data is

separated into observations, which are associated with tracks. Tracks matched with

observations are updated, new tracks are created for unmatched observations, and

unobserved tracks are propagated until their uncertainty grows too large and they

are eventually deleted.

A key change in the transition from radar to 3D lidar data is the increase in the

amount of information available about an individual target. Whilst radar systems

are usually designed to generate a single return per target, 3D lidar observations

may consist of tens or even hundreds of points. Teams in the DUC made use of this

information to some extent by modelling cars as rectangles [67, 110]. The Carnegie

Mellon team, for instance, detected corners in observations and used these as key-

points to improve estimation of target heading and tracking accuracy. Observations

that were not shaped like a car, or were far enough away from the robot that they

comprised only a few points were represented by their centroid [110].

“Tracking by detection” methods that are not tied to a specific object model usu-

ally require objects to be represented by a keypoint and hence they discard poten-

tially useful information from the 3D point cloud. An alternative approach, designed

54 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

specifically for the Velodyne lidar and which makes use of a full 3D object model

was proposed in [70]. The technique uses ICP to align tracked objects with Velodyne

scans resulting in a 6 degrees of freedom (DOF) trajectory estimate. This method is,

however, best suited to tracking rigid objects such as cars, and we have found in prior

work [71] that the open-loop nature of the ICP estimate leads to drift in the tracked

coordinate frame. For pedestrian tracking, we found that the tracking performance

from the algorithm did not justify its increased computational cost [71].

Segmentation errors are a major cause of tracking failure [71, 91]. Particularly in

urban scenes with high pedestrian density, targets are often in close proximity to

one another, making segmentation based on lidar data unreliable. In this section we

focus on tracking performance in these situations and develop methods with improved

robustness against segmentation errors.

3.2.1 Methods

In order to evaluate the effects of occlusion and segmentation failure on the tracking of

interacting, moving objects, we compare three different tracking strategies. The tech-

niques, which we will refer to as centroids, split and split-cost, are all designed

to track arbitrary objects using 3D lidar data. They do not differentiate between

class of objects such as pedestrians, bicycles and cars by using specific motion models

or target representations. The first, centroids, is a standard multi-target tracking

approach, whilst split was introduced by Shackleton et al. [91] to solve tracking prob-

lems caused by under-segmentation. We describe these two approaches, and propose

our own method, split-cost. These methods are then evaluated in Section 3.2.4.

3.2.1.1 Centroids

The first tracking method, centroids, is a standard multi-target tracking approach.

The method is the same as that shown Figure 2.1 with the data association step

detailed here. Observations are represented by their centroid, the mean of their 3D

points as measured in the global coordinate frame.

3.2. 3D LIDAR TRACKING APPROACHES 55

To perform data association a distance matrix is calculated, where the distance be-

tween a predicted track state (x̂) and an observation (Z) is measured by the Maha-

lanobis distance (Equation 3.1). S represents the innovation covariance and H is the

observation model.

DM(x̂, Z) =
√

(Hx̂− Z)ᵀ S−1 (Hx̂− Z) (3.1)

The innovation covariance is computed from the state covariance (P) by Equation 3.2,

where R is the sensor measurement noise.

S = HPHᵀ +R (3.2)

From this distance matrix, the “Hungarian” (or “Kuhn-Munkres”) algorithm [53] is

used to determine the track-to-observation assignments (Ω) that minimise the sum of

the assignment distances, or equivalently maximise the observation to track assign-

ment probability.

Whilst observations are represented by their centroids for the purpose of filtering, each

observation is made up of a subset of the 3D point cloud. To improve data association

accuracy, it is useful, therefore to have a model that takes into account the shape of

the observation. For rigid objects, box models [110] (discussed previously) or generic

shape models [89] have been proposed, and pedestrian tracking in 2D lidar has been

achieved using contour models combined with the Hausdorff distance [63].

For tracking generic objects in 3D lidar data, shape is far less stable, and so rather

than explicitly representing the shape of an observation we instead measure the spread

of the observed points by a covariance matrix CZ . Given that a track is made up of

observations, we can also estimate the shape of the object being tracked in the same

manner (Cx̂). Whilst the underlying shape of an object is unlikely to be representable

as a Gaussian, the compounding of centroid estimation errors due to changing view-

points, occlusions and sensor noise, make the Gaussian distribution a useful approx-

imation that incurs minimal computational overhead. The adjusted equation for the

56 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

innovation covariance is shown in Equation 3.3. Figure 3.8 shows an example of how

including the point covariance terms (CZ and Cx̂) improves the track-to-observation

distance measure.

S = HPHᵀ + CZ + Cx̂ (3.3)

R

HPHT

(a)

HPHT+ Cx

CZ

ˆ

(b)

Figure 3.8 – Computing track to observation distance during data association. (a) An
observation, shown in grey dots, is represented by its centroid and has uncertainty
given by the sensor noise, R (red). Two tracks (green and blue), with state un-
certainty P , are equidistant from the observation. (b) If we take into account the
extent of the observation (CZ), as well as the estimated shape of each tracked ob-
ject (Cx̂) and apply Equation 3.3, then the observation will be correctly associated
with the green track.

3.2.1.2 Split

The second method evaluated, which we will refer to as split, was proposed in [91] and

attempts to solve problems caused by under-segmentation. The centroids method

above assumes that there is a one-to-one correspondence between tracks and obser-

vations, however due to the nature of the segmentation methods that are popular in

the lidar tracking literature, objects that come close together are likely to be grouped

together into the same observation. An example of such under-segmentation is shown

Figure 3.9.

Systematic under-segmentation caused by objects remaining close together will even-

tually cause tracking of one or both of the interacting objects to fail. Shackleton

3.2. 3D LIDAR TRACKING APPROACHES 57

(a) (b)

Figure 3.9 – Example of (a) correct segmentation and (b) under-segmentation of three
pedestrians walking side-by-side. Unique colours represent different segments.

et al. solve this problem through the use of a re-clustering step on observations that

could be associated with multiple tracks [91]. During the track-to-observation match-

ing process, multiple tracks are allowed to match to the one observation. When this

occurs, K-means [65] is is used to split the observation. K-means is initialised using

the predicted track states and after convergence tracks are updated using the new

clusters.

A scenario in which this method is successful is shown in Figure 3.10a. Under-

segmentation causes the lidar points (shown in black) to be clustered into one obser-

vation (grey). During data association, both tracks are matched to this observation

and re-clustering is performed using K-means, resulting in new observations (shown

in red and blue). These observations are used to update the corresponding tracks,

and tracking continues successfully.

A disadvantage of split is that it will always re-cluster the observation into as many

parts as the number of tracks that are associated with it. This makes sense so long

as the observation includes points from each object being tracked, however under-

segmentation also occurs when objects are occluded. If a tracked object is occluded,

the observation contains points from only one object and the split method will divide

these points between the two tracks. The two tracks will then “lock on” to the

58 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

track 1

track 2

view

observation

(a)

track 2

track 1

view

observation

(b)

Figure 3.10 – Example of using K-means to re-segment an observation. In (a), the
observation (grey) is separated into two parts (red) and (blue) which are used to
update track 1 and 2 respectively. In (b) track 1 is occluded and so the observed
points are all from track 1. Attempting to split the observation using K-means
results in two observations which come from the same object and both tracks end
up converging to track the first object.

observable object, resulting in the track of the occluded object being lost. An example

of how this can happen is shown in Figure 3.10b.

3.2.1.3 Split-cost

We propose a new method, referred to here as split-cost, which avoids this problem

whilst maintaining the desirable ability to split the observation in certain cases. It

does so by calculating a cost function after K-Means clustering and using this to

determine whether to update tracks with the re-clustered points, or to use the original

observation as-is.

The cost for matching a track (represented by its predicted state, x̂) to the points

(p) of a re-clustered observation (Z ′) is given by Equation 3.4 where the Mahalanobis

distance is as shown in Equation 3.1, using the standard innovation covariance from

Equation 3.2.

3.2. 3D LIDAR TRACKING APPROACHES 59

cost(x̂, Z ′) =
∑
p∈Z′

Dm(x̂, p) (3.4)

A data association hypothesis Ω maps tracks to (perhaps re-clustered) observations.

The total cost for a given hypothesis is then given by Equation 3.5.

cost(Ω) =
∑

(x̂,Z′)∈Ω

cost(x̂, Z ′) (3.5)

For both of the scenarios shown in Figure 3.10, three data association hypotheses will

be generated:

Hypothesis Ω1: The observation is associated with track 1, and track 2 is not ob-

served.

Hypothesis Ω2: The observation is associated with track 2, and track 1 is not ob-

served.

Hypothesis Ω3: The observation is split into two parts and each track is associated

with an observation.

In case (a) of Figure 3.10, cost(Ω3) is the smallest and so the observation is split.

In case (b), cost(Ω1) < cost(Ω3) < cost(Ω2) and so the observation will be used to

update track 1.

Taking the minimum cost works well for the case where objects are both observed,

or one object is completely occluded. However, when objects are close to each other

the costs can become similar and it becomes ambiguous whether or not the observa-

tion should be re-clustered. To detect these ambiguous situations, the ratios of the

hypothesis costs are considered. All hypotheses with a cost less than a given multiple

α times the minimum cost are considered to be valid. From these hypotheses we

then choose the one that updates the fewest number of tracks. Effectively, this means

that we bias the tracker towards data association hypotheses that treat some tracks

60 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

as occluded and assign the observation to the fully visible tracks. When the tracker

detects an ambiguous situation and updates the foreground track, the background

track is deemed to be lost and reset.

In this way, the tracker is designed to be conservative and, in terms of the V-measure

analysis described in Section 2.4.4, is designed to maximise track homogeneity, possi-

bly at the expense of completeness. The method resets tracks that are ambiguous and

thereby aims to prevent an “identity switch”, where the same track starts to follow

a different physical object. This ability of the tracker to detect ambiguous situations

and maximise homogeneity is an important part of the group tracking algorithm that

will be described in Section 3.3.1.

Through its hypothesis generation and ranking scheme, split-cost copes with some

degree of under-segmentation without having problems due to näıve re-clustering that

is possible in the split method. The effectiveness of this approach is evaluated in the

experiments that follow.

3.2.2 Dataset

To evaluate the performance of these different tracking methods, a range of scenarios

of varying complexity were designed. The focus of these scenarios is on tracking

objects as they interact with each other and so the experiments were performed on the

unmanned aerial vehicle (UAV) runway at the ACFR facility “Marulan”, which is an

open space free of clutter from trees, buildings or other moving objects (Figure 3.11).

These experiments were executed using the ACFR mobile sensor platform “Shrimp”:

a skid-steer vehicle based on the Segway RMP-400 platform, which carries a tactical-

grade real time kinematic (RTK) GPS/INS system, on-board computing and a com-

prehensive sensor payload (Figure 3.12). For the experiments in this chapter, only

the Velodyne lidar sensor was used to perform tracking.

A number of interaction scenarios of varying complexity involving pedestrians and

cyclists were collected and are shown in Figures 3.13 and 3.14. The scenarios were

3.2. 3D LIDAR TRACKING APPROACHES 61

Figure 3.11 – Photograph of the area used to perform the “Marulan” experiments,
with the sensor vehicle ‘Shrimp’ in the centre. (Photo taken during the merge-bb
experiment from Figure 3.14.)

deliberately designed to test tracker performance in ambiguous situations, by includ-

ing trajectories that cross and merge. The complexity ranges from two pedestrians

following planned trajectories to four pedestrians or two pedestrians and two cyclists

interacting in an unscripted manner.

3.2.3 Ground Truth

The ground truth trajectories of each object were manually labelled using the open-

source 3D creation software, “Blender” [102]. To accelerate the labelling process

for this thesis, we developed a custom extension module that displays Velodyne and

camera data simultaneously and allows 3D bounding boxes to be drawn around each

object. Object bounding boxes were labelled at key frames spaced 0.5 to 1.0 second

apart, and interpolation was then used to give the full object trajectory. Through

this process, 54 separate object tracks were labelled across the 16 datasets in a total

of total of 22072 scans. The centroids of these labelled bounding boxes form the

trajectories shown in Figures 3.13 and 3.14. A screenshot of the application is shown

in Figure 3.15. The fact that bounding boxes are labelled rather than just centroids

means that the 3D lidar data corresponding to each object can be extracted. An ex-

ample of the observations extracted from a labelled trajectory is shown in Figure 3.16.

62 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

Velodyne
HDL-64
Lidar

Ladybug Panospheric
Camera

Sick Lidars

Segway
RMP400

Novatel
INS

Bumblebee XB3
stereo camera

Thermal IR
camera

Prosilica GigE
colour camera

Figure 3.12 – The ACFR perception robot “Shrimp” that was used to acquire data
for the experiments in this thesis.

3.2.4 Results and discussion

The tracking performance of the methods listed in Section 3.2.1 were evaluated ac-

cording to the metrics described in Section 2.4. Figure 3.17 shows the MOTA and

MOTP for each tracker on the dataset described in Section 3.2.2. The mean values

across the different experiments are shown in Table 3.1.

In terms of MOTP, where better performance is reflected by lower scores, split and

split-cost outperformed centroids across all datasets. The ability of those trackers

to re-cluster under segmented observations means the lidar returns used to build each

track are more likely to come from a single target. As a result, the object locations

estimated by these methods were closer to the ground truth.

In Figure 3.17b, split-cost achieves the highest scores on average and therefore ex-

hibits best performance on the MOTA measure. Whilst there are a few instances

where split-cost performs slightly worse than split, it outperforms centroids in all

3.2. 3D LIDAR TRACKING APPROACHES 63

pass2-a pass2-b

merge2-a merge2-b

merge3-a merge3-b

merge3-c merge4-a

merge4-b merge4-c

Figure 3.13 – Pedestrian interaction scenarios used to evaluate trackers. Each plot
shows manually labelled object centroids, coloured per track, as seen from above.
Targets move from left to right in the figures, and the start and end time is in-
dicated. The sensor vehicle is manually driven approximately 10-15m behind the
targets. In the 2 and 3 person interaction scenarios there is an extra track rep-
resented as a dashed grey line. This person is controlling the sensor vehicle and
walks behind it, not interacting with the other people.

64 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

pass-bp merge-bp

pass-bb merge-bb

merge-bbp merge-bbpp

Figure 3.14 – Pedestrian and cyclist tracking scenarios. As in the previous figure, each
plot shows manually labelled object centroids, coloured per track, as seen from
above. Targets start at the left and end on the right, and observer trajectories are
shown as dashed lines. Cyclist trajectories are indicated with additional circular
markers.

3.2. 3D LIDAR TRACKING APPROACHES 65

Figure 3.15 – Screenshot of the open-source 3D creation software Blender [102] as
used to label object trajectories. The left-hand pane shows 3D bounding boxes
around the pedestrian targets, whilst the right hand pane shows these bounding
boxes projected into a image from the forward-facing camera.

Figure 3.16 – Example trajectory labelled with Blender. The labelled object is shown
in a different colour for each scan. For clarity, only every 10th scan is displayed,
and to give some context the background points from one scan are shown in black.

cases. The split method also outperformed centroids except in three instances. In

each of these cases, the tracking failure was caused by the problem shown in Fig-

ure 3.10b, where an incorrect split results in trackers converging on the same target

and producing a duplicate trajectory. To further illustrate this issue, the result of

split on the dataset merge4-b is shown in Figure 3.18.

V-measure, when used as a tracking metric as described in Section 2.4, is designed

to evaluate the ability of a tracker to maintain the correct identity for each target

66 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

(a)

(b)

Figure 3.17 – MOTP and MOTA for the Marulan datasets. Lower numbers indicate
better MOTP, whilst higher numbers represent better MOTA.

MOTP MOTA homogeneity completeness vmeasure

centroids 0.097 0.926 0.816 0.640 0.712
split 0.084 0.951 0.921 0.889 0.904
split-cost 0.089 0.979 0.976 0.854 0.908

Table 3.1 – Mean tracking performance for the Marulan datasets.

3.2. 3D LIDAR TRACKING APPROACHES 67

Figure 3.18 – Tracking result of split on the merge4-b scenario. There are only four
different objects in the scene, but 5 tracks terminate at the right hand side of the
figure. A tracking error has caused the track that ends at the lower right of the
figure to be duplicated.

and the homogeneity, completeness and V-measure scores of the tracking methods

are shown in Figure 3.19 and summarised in Table 3.1.

Split and split-cost generally achieve higher V-measure scores than centroids, but

the difference between split and split-cost is less clear. Split-cost is designed to

be conservative with its data association, so that when there is an ambiguous assign-

ment it will favour the foreground track and reset occluded tracks. This helps the

method avoid the re-clustering errors of split discussed above and results in very high

homogeneity scores (Figure 3.19a). The downside to this high homogeneity is that

the method will sometimes be overly conservative, and this reduces its completeness

score (Figure 3.19b). Since split always re-clusters and doesn’t reset occluded tracks,

it achieves higher completeness but lower homogeneity. V-measure, which combines

homogeneity and completeness, shows a slight advantage to split-cost.

An interesting example that highlights the difference between MOTA and V-measure

as a metric is merge3-c. The trajectories estimated by each method are shown in

Figure 3.20, and the various metrics are shown in Table 3.2.

On this example, split performs very well according to MOTA with a score of 0.998

(due to 2 misses, 2 false positives and 2 mismatches), whilst split-cost (with 174

misses and 5 mismatches) achieves a MOTA of 0.944. In terms of V-measure, however,

the ordering is reversed, and split-cost outperforms split significantly. The reason for

this becomes apparent upon comparison of the estimated trajectories to the ground

68 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

(a)

(b)

(c)

Figure 3.19 – Homogeneity, completeness and V-measure for the Marulan datasets.
The highest homogeneity is achieved by split-cost in all cases, whilst split oc-
casionally has better completeness. In terms of the combined metric, V-measure,
split-cost has the best performance.

3.2. 3D LIDAR TRACKING APPROACHES 69

(a) Ground truth (b) centroids

(c) split (d) split-cost

Figure 3.20 – Comparison of trajectories estimated by the different tracking methods
for the merge3-c dataset. Although the split method results in three continuous
trajectories, the identities switch at the point marked by the arrow. Both the cen-
troids and split-cost method create more tracks for the same number of targets,
but split-cost does a better job. The track corresponding to the robot operator
is removed for clarity.

MOTP misses false positives mismatches MOTA vmeasure

centroids 0.083 549 0 8 0.827 0.632
split 0.062 2 2 2 0.998 0.761
split-cost 0.066 174 0 5 0.944 0.859

Table 3.2 – Tracking performance on merge3-c dataset

70 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

truth. At the point in the experiment marked by an arrow in Figure 3.20, split

switches the identity of two tracks. According to MOTA this is two mismatch errors,

which reduces the score by only a small amount, however this makes the rest of the

trajectory also incorrect resulting in a low V-measure score. In terms of providing

a track estimate that is as consistent as possible, starting a new track in the case

of ambiguous associations is desirable. As V-measure measures identity consistency

(defined in terms of homogeneity and completeness) it is a more appropriate metric

to capture this property.

These experiments demonstrate that when objects get close together, conventional

tracking methods fail and methods that näıvely perform re-clustering can become

confused when the data association becomes ambiguous. We propose in split-cost

an extension to the re-clustering approach which is shown to improve upon centroids

without failing as badly as split in difficult cases. As we have seen, though, split-

cost pays for its improved homogeneity with reduced completeness. The desire for

a tracking approach that can maximise both homogeneity and completeness leads us

to ‘group tracking’, which is the focus of the next section.

3.3 Group Tracking

When tracking closely spaced targets such as interacting pedestrians the difficulty

of matching observations to tracks has inspired a number of ‘group tracking’ ap-

proaches, whereby the data association algorithms lift the assumption that each track

corresponds to one physical object. Instead, tracks can represent groups of objects

with their formation either explicitly modelled, or implicitly obtained from the data.

Grouping approaches have been developed for 2D lidar data [55, 73] as well as vision

[97, 106]. The benefits of group tracking have also been applied with the PHD filter

[21].

Grouping tracks together improves performance in terms of computation time (track-

ing fewer targets is faster), consistency (by avoiding ‘hard’ data association decisions)

3.3. GROUP TRACKING 71

and can also give semantic information about the relationship between objects. How-

ever, in order to reason about the identities of individual targets after they emerge

from a group, a history of interactions needs to be maintained. Such a data structure

is called an ‘event graph’.

In this section we describe an event graph framework for lidar based tracking. This

is only part of an identity tracking system. To be able to recover the identities

of individual targets after they emerge from groups, we need appearance models and

graph reasoning algorithms, which will be presented in Chapters 4 and 5, respectively.

3.3.1 Event Graph

An ‘event graph’ or ‘track graph’ [77, 106] is a data structure used to represent the

higher-level interactions between tracked targets in a scene. In this thesis, we adapt

the event graph formulation of [106] to 3D lidar data. The complete event graph

tracking framework shown in Figure 3.21 (which we presented in [72]) includes the

use of camera data to solve the identities of each node in the graph. This section

however, focuses on the construction of the graph from lidar data (the modules shaded

in grey in the Figure 3.21); appearance models are discussed in Chapter 4, and identity

reasoning in Chapter 5.

3.3.1.1 Track extraction

In conventional tracking (such as the methods in Section 3.2.1.1), data association

ensures each track is updated by one observation at each time step. As part of this

there is an assumption that each observation contains only one object.

Whilst objects remain well separated from each other this assumption is not violated

and the track extraction module can use the same centroid-tracking methods discussed

previously to estimate the trajectory of each target. If the module detects that

the expected one-to-one track-observation matching has been violated, then track

extraction stops and a new event will be recorded in the event graph.

72 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

Lidar Camera

Segmentation
Projection

and sampling

Observations

Track
extraction

Graph
construction

Appearance
modelling

Identity
reasoning

track
sections

Object trajectories

scans images

3D segments image patches

graph models

Figure 3.21 – The event graph tracking framework. Parts of the framework discussed
in this chapter are shaded in grey.

Groups of people may be tracked in the same way – for example if two people are

consistently segmented into one observation, then a “track section” will be created

for these two objects together.

The role of the track extraction module, therefore, is to associate consistent sets

of observations (represented by their centroids) together into ‘track sections’. The

module is designed to be conservative in the same way as the split-cost method from

earlier in this chapter. Track sections should be homogeneous, and the reduction in

completeness that this entails is compensated for elsewhere in the system.

3.3.1.2 Graph Construction

The event graph represents the relationships between the track sections extracted in

the previous module. Each track section is represented as a node in the graph and

edges represent the relationship between sections (e.g. two objects coming together

to form a group, or a group splitting into multiple objects).

3.3. GROUP TRACKING 73

An example of an event graph is shown in Figure 3.22. Two pedestrians walk from

top to bottom of the image starting as two tracks (shown as nodes 1 and 2 in the

graph (Figure 3.22a)).

3

4 5

1 2

(a) (b) (c)

Figure 3.22 – Event graph (a) for the merge-split trajectories shown in (b) and (c),
where two people walk from the top of the figure, merge and split apart again. The
event graph captures the ambiguity in the objects’ final positions, and scenarios
(b) objects cross and (c) objects don’t cross are equally likely.

As the pedestrians move together, the data-association between observations and

tracks becomes ambiguous. The track extraction module stops tracking the individual

objects, and starts a new track for the group. The relationship between this group

track (node 3) and its parent tracks is captured in the graph.

Whilst the objects remain together, under-segmentation causes them to be measured

as a single observation so the data association is clear and the group track (node 3)

continues to be updated. As the objects move apart, the system receives multiple

observations that overlap with the group track. This causes the track extraction

module to stop updating the group track and spawn two new single-object tracks

that are linked into the event graph (nodes 4 and 5). The event graph captures

the ambiguity inherent in centroid-only tracking, encoding the fact that the target

represented by node 5, for example, could be the same object as either node 1 or node

2.

74 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

3.3.1.3 “Ambiguity”

The preceding sections described that track extraction stops and an event is created

in the graph any time the data association becomes ambiguous. The only requirement

for this is that a tracker declares the situation to be ‘ambiguous’ before it makes any

data association errors. Therefore exactly what is defined as ambiguous depends on

the capabilities of the tracking algorithm.

In the original version of this work, which we published in [72], data association

was driven entirely by the observations generated by the segmentation process. The

track-to-observation distance matrix (introduced in Section 3.2.1.1) is used to match

observations to tracks and ambiguous situations occur when one track matches mul-

tiple observations, multiple tracks match one observation, or there is a many-to-many

matching.

An implementation detail worth noting is that a single-object track section might be

observed to split. This could occur when, for example, two pedestrians enter the field

of view of the sensor whilst close together, then move apart. In this case, a split event

is recorded, and the parent node is promoted from a single-object track to a group.

This method is referred to here as centroids-graph as it is based upon centroids

from Section 3.2.1.1. Its behaviours in the various ambiguity cases are described

below, where nx and nZ refer to the number of tracks and number of observations

involved in a match

(nx > 1, nZ = 1)

One observation matches multiple tracks – objects have merged together. Create

a new group track which is a child of the parent tracks.

(nx = 1, nZ > 1)

A track has split into multiple parts – create two new tracks which are children

of the current track.

(nx > 1, nZ > 1)

Multiple tracks and multiple observations, but since they are all within associ-

3.3. GROUP TRACKING 75

ation range of each other the correct decision is ambiguous. The observations

are merged together into one, and then a group node is created in the same

manner as the (nx > 1, nZ = 1) case.

As shown in Section 3.2.4 tracking performance can be improved by allowing for a

re-clustering step during data-association. Split-cost improves upon the basic re-

clustering of split by using a cost function to determine the best data association

decision as well as to detect ambiguous situations.

We propose here a new event graph tracking method, called split-cost-graph, which

builds upon the logic of split-cost by modifying the handling of ambiguous situations.

Whereas split-cost uses the cost term to make a conservative tracking update, split-

cost-graph uses ambiguity as a trigger to create a merge event in the graph.

Figure 3.23 shows this process. Firstly, all data association hypotheses are evaluated.

The set of hypotheses below the ambiguity threshold are found, and any common

data association decisions are applied. In the example shown, hypothesis Ω4, Ω5 and

Ω6 are considered ambiguous, but all have a common assignment for the blue track

so it can be updated independently. The remaining tracks are then merged into a

group.

3.3.2 Results and discussion

The description of group tracking approaches in this thesis so far covers the formation

of an event graph, but does not explain how to reason about the objects represented by

each node. Nodes in the graph correspond to track sections, which represent only part

of an object’s trajectory and are expected to be homogeneous but not complete. These

track sections must be linked together in order to form full trajectories. This graph

solving logic first requires the introduction of appearance models, which we present

in Chapter 4. The complete tracking framework is then described in Chapter 5.

In the absence of a full graph solution, we can not analyse the identity-tracking

performance of centroids-graph and split-cost-graph in terms of MOTA and V-

76 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

(a) input (b) Ω1 (c) Ω2 (d) Ω3 (e) Ω4

(f) Ω5 (g) Ω6 (h) Ω7 (i) (j) output

Figure 3.23 – Example of split-cost-graph data association process. (a) During
minimum cost matching, 3 tracks (red, yellow and blue) map to the same obser-
vation (lidar points represented by black dots). Various hypotheses are generated
and costed, with the colour of the points indicating the track to which they are
assigned. The hypotheses are: (b-d) one object was observed, (e) all three objects
were observed, (f-h) two objects were observed. After generating these hypotheses,
Ω4, Ω5 and Ω6 are below a pre-defined cost threshold. These three hypotheses
each assign the same set of points to the blue track (i), so it is updated directly.
However the hypotheses disagree about the assignment of points to the red and
yellow tracks (i.e. the association is deemed ambiguous), so these tracks are merged
together into a group (j).

measure. Instead, we can evaluate how successful graph formation was by comparing

the number of individual tracks created to the actual number of objects in the scene.

For example, Figure 3.24a shows the graph created by the split-cost-graph method

for the merge3-c dataset. The fact that the graph has four start nodes (nodes with

no parents) and four end nodes (nodes with no children) means that four people have

been tracked through this dataset.

Figure 3.25 shows the difference between the number of tracks created by the tracker

and the number of labelled objects in each scenario. Because the split-cost method

is designed to be conservative, and starts tracking from new when an object be-

comes occluded, it creates more new tracks than does split. On the pedestrian-only

dataset, split-cost-graph estimates the number of objects correctly in all cases,

whilst centroids-graph does well in most experiments but creates two extra tracks

on merge4-b. On the bike and pedestrian datasets, centroids-graph has a bit

more difficulty, creating extra tracks on pass-bp, pass-bb and merge-bbp, and

3.3. GROUP TRACKING 77

7

9

2

4

6

8

11

14 13

10

3

12

1 0

5

(a)

10

30

4

11

5

6

8

9

1

2

7

(b)

Figure 3.24 – (a) Event graphs created by the split-cost-graph approach. (a) Suc-
cessful graph generation for the merge3-c experiment. (b) Inconsistent graph
created for the merge-bbp experiment. There are five starting nodes but only
four end nodes. A correct graph solution would have a link between nodes 4 and
5.

split-cost-graph has graph errors on merge-bbp and merge-bbpp. An example

of a graph error is shown in Figure 3.24b.

Of the evaluation metrics used in Section 3.2.4, MOTP and homogeneity can be

used to analyse the performance of these graph methods, even though we have not

yet discussed how to determine object identities. MOTP measures the positional

accuracy of a tracker, irrespective of any identity decisions it has (or in this case, has

not) made and the results are shown in Figure 3.26.

The event graph approaches incur a MOTP performance penalty whenever they create

a group node, since the estimated centroid of the group as a whole will be further

away from the ground truth than estimates of each object’s individual centroid. This

MOTP trade off is a necessary part of the event graph’s ability to represent identity

ambiguity but approaches that minimise the effect are desirable. The ability of split-

78 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

Figure 3.25 – Number of extra tracks created by the trackers on each dataset. Split-
cost-graph gets the number of targets correct on all but the merge-bbp and
merge-bbpp experiments.

Figure 3.26 – MOTP results (recall that lower MOTP indicates better positional
accuracy). Centroids-graph creates many more groups then split-cost-graph,
and this results in increased MOTP.

cost-graph to re-cluster observations means that it creates many fewer groups than

centroids-graph and as a result the impact of its grouping behaviour on MOTP is

less noticeable. This is evident in Table 3.3, which shows the average MOTP across

the data shown in Figure 3.26. The average MOTP score of split-cost-graph is

much closer to split and split-cost than is centroids-graph.

Figure 3.27 shows the homogeneity of the various tracking solutions. Since we haven’t

yet linked graph nodes together into object trajectories, this graph only considers the

homogeneity of individual track sections. Split-cost-graph obtains high homogene-

3.3. GROUP TRACKING 79

MOTP

split 0.087
split-cost 0.089
centroids-graph 0.134
split-cost-graph 0.095

Table 3.3 – Average MOTP across the data shown in Figure 3.26.

ity scores across almost all datasets, indicating that if we can increase completeness

by correctly linking track sections together into full trajectories we will be able to

achieve high V-measure scores.

Figure 3.27 – Homogeneity score of the tracking methods.

An additional benefit of the split-cost-graph method’s ability to re-cluster obser-

vations is that it creates simpler event graphs. For the same input data, split-cost-

graph encounters ambiguous situations less often than centroids-graph and records

fewer merge/split events. Figure 3.28 shows the number of nodes created by the two

graph-based methods. This reduction in complexity will become relevant in Chap-

ter 5 when we introduce methods that solve for node identities. A graph with fewer

nodes for the same data means that longer track sections have been extracted. As was

demonstrated in Figure 3.27, split-cost-graph acheived these longer track sections

whilst still obtaining the highest homogeneity scores.

The experiments in this section have established the utility of our proposed graph-

based tracking approaches. Split-cost-graph in particular was able to correctly

80 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

Figure 3.28 – Number of nodes in the event graphs created by split-cost-graph and
centroids-graph. Split-cost-graph results in simpler graphs, which becomes
relevant when we solve for node identities in Chapter 5.

determine the number of objects present in a scene in almost all cases, with only a

slight decrease in metric tracking accuracy. The method achieved high homogeneity

indicating that track sections, as desired, correspond to stable configurations of ob-

jects. As objects interact, form groups and move apart, split-cost-graph is able to

record a graph structure that correctly reflects these events.

The results shown in this section are not the complete picture. False positives and

missed observations have not been analysed nor have identity assignments. As pre-

sented, there is no way to associate the identity of objects to nodes in the event graph,

and the full trajectory of individual objects can not be recovered. These algorithms

will be covered in Chapter 5 and it is in that chapter that we will evaluate the full

performance of these tracking methods in terms of V-measure and MOTA.

3.4 Summary

In this chapter we considered methods for tracking interacting objects using lidar

data. We described the pre-processing steps required to convert lidar data into obser-

vations (the input to the tracking system) and considered issues such as calibration,

coordinate transforms and segmentation via both ground detection and clustering,

and change detection.

3.4. SUMMARY 81

We compared a number of different approaches to tracking, including a novel method

that offers improved robustness against under segmentation, whilst achieving a sig-

nificant increase in track homogeneity. From the detailed experimental evaluation

of these methods, we concluded that there was a need for tracking methods which

could maintain this level of homogeneity whilst increasing the completeness of the

trajectories obtained.

This motivated the exploration of group tracking approaches, with a specific focus

on methods that maintain a record of object interactions such that sets of ambiguous

identities can be explicitly determined. To this end, we adapted an “event graph”

strategy from the computer vision literature, and demonstrated that graph complex-

ity can be significantly reduced by applying our our proposed lidar-based tracking

method.

In the next chapter, we introduce the concept of “appearance models”, target rep-

resentations that can be used to resolve node identities after periods of ambiguity.

Algorithms that combine event graphs and appearance models to determine full ob-

ject trajectories are presented in Chapter 5.

82 CHAPTER 3. TRACKING INTERACTING OBJECTS WITH 3D LIDAR

Chapter 4

Appearance modelling for tracking

In the previous chapter, we presented the case for a tracking system that allows

for objects to be tracked as groups rather than individual targets during times of

ambiguity. Occlusion, or other problems with segmentation caused by the proximity

of tracked targets to each other, means that more stable tracking can be achieved by

merging tracks together.

Whilst the event graph approach described in Section 3.3.1 does maintain some aspect

of object identity by recording the links between track sections, the position-based

tracking system cannot resolve the mapping between the parent and child nodes of

a group. Referring to the diagram of a basic merge and split, which is repeated for

convenience in Figure 4.1, the graph represents that the positional tracker deems

situations (b) and (c) to be equally likely.

Some situations do, however, require that the identities of tracked targets be preserved

and to achieve this, additional information is needed. This chapter discusses the

concept of appearance modelling, that is, representing tracked objects in ways that

enable their identities to be recovered after periods of ambiguity such as interactions

or occlusions. Appearance information can be extracted from the 3D lidar itself via

additional processing, or from a complementary sensor such as a camera.

In this chapter we introduce the concept of appearance models and how they can

83

84 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

(a) (b) (c)

Figure 4.1 – Event graph (a) for the merge-split trajectories shown in (b) and (c),
where two people walk from the top of the figure, merge and split apart again. The
event graph captures the ambiguity in the objects’ final positions, and scenarios
(b) “objects cross” and (c) “objects don’t cross” are equally likely.

be used to provide identity information for tracking. We discuss extracting appear-

ance information from 3D lidar scans and camera images, and how to use 3D lidar

observations to drive the selection of image data. We describe and experimentally

examine the various parameters of an appearance modelling system, and show how

these models perform over time and as the complexity of interactions increases.

4.1 Identity and Appearance

We define in this thesis an appearance model as a representation that captures the

remotely observable properties of an object in a manner that is invariant to both the

state (position, orientation, velocity) of the object, and the environment surrounding

it (lighting, background, etc.).

Appearance modelling is strongly related to two concepts, recognition and categori-

sation. Recognition is the task of retrieving a label for an object, given that the

object has been seen before. The object could have been previously seen in a differ-

ent context, from a different angle or in a different environment. Categorisation is the

task of labelling object type. Having seen instances of a type of object (for example,

cars), a categorisation system seeks to generalise the label such that it can determined

4.1. IDENTITY AND APPEARANCE 85

whether or not a previously unseen object is also a car. A human categorising an

object might say something like “that is a cup”, whilst when recognising and object

could say “that is my cup”.

Whilst the recognition and categorisation problems both notionally make use of the

concept of object appearance, the properties of the models they require are quite

different. When performing categorisation, the goal is to ‘abstract away’ or ‘average

out’ appearance details that are irrelevant to the task at hand. For example, if we are

trying to categories vehicles as sports cars or sport utility vehicles (SUVs) the shape

of the vehicle is a more relevant detail than its colour.1 If, however, you are trying to

recognise your car in a parking lot, colour becomes more important.

Determining the identities of tracked objects after interaction events is an object

recognition problem. Furthermore, it is a constrained version of the problem in that

the set of objects under consideration is clearly defined. Usually, when performing

object recognition, the test object may or may not have been seen previously, and

the set of possible objects (both seen and unseen) could be arbitrarily large. However

when using appearance information in a tracking scenario, the event graph limits the

objects we need to ‘recognise’. For example, to determine the identity of a track

that split from a group of three objects, we only need to recognise which of the three

objects it is.

In this sense, recognition for tracking can be posed as a self-supervised multi-class

classification problem, where the different classes represent individual objects in the

scene. When resolving the identities of objects after a merge-split event, the input

nodes provide labelled training data. Output nodes are then the test sets, which can

be classified against the trained models to determine identities.

An advantageous aspect of self-supervision in the context of tracking is that track

sections provide a whole sequence of training data. Tracking an object before an

interaction results in not one but a set of observations, potentially from a changing

viewpoint whilst the object being tracked changes poses and moves in front of varying

1excepting maybe a prior on the colour red.

86 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

backgrounds. Likewise after a split event, the tracker may observe the object for some

period of time. This gives the system the opportunity to learn models which take

into account the appearance variations caused by such changes.

4.2 Feature Extraction

In this section we describe how appearance information can be extracted from sensor

data. There are many options for the choice of appearance features, which is an active

area of research in its own right, and advancing the state-of-the-art in this area is

outside the scope of this thesis. Instead, this chapter uses some common features

from the literature to examine the requirements of appearance models in the context

of identity tracking. This section presents the appearance features that will be used

in this thesis, and describes the additional processing requirements when combining

lidar and camera data.

An overview of the extraction process is shown in Figure 4.2. Lidar scans are seg-

mented to form observations, the basic input to the tracking system (as described

in Chapter 3). Appearance features can be computed from the lidar data directly

(Section 4.2.1) or extracted from the corresponding camera data (Section 4.2.2). To

obtain the camera data corresponding to lidar observations, the 3D laser measure-

ments are projected into the camera frame (Section 4.2.3.1), whereupon a sampling

strategy is applied in order to select the relevant image data (Section 4.2.3.2).

4.2.1 Appearance from lidar data

To date, most of the work relating to appearance information from 3D lidar has been

with respect to the categorisation problem described earlier. Himmelsbach et al. look

at the binary classification problem of finding cars in lidar data [42], Wang et al.

classify foreground versus background objects [115], and Teichman and Thrun use

tracking information to increase classification performance on cars, pedestrians and

4.2. FEATURE EXTRACTION 87

Observations

(Chapter 3)

Projection

(Section 4.2.3.1)

LidarCamera

Lidar Features

Height

Radius

HeightAndRadius

SpinImage

(Section 4.2.1)

Sampling

(Section 4.2.3.1)

Camera Features

Hist-HSV

SplitHist-HSV

Hist-RGB

Spatiogram-RGB

(Section 4.2.2)

Figure 4.2 – Feature extraction from lidar and camera data. The sections in which
the various elements are discussed are shown in parentheses.

bicycles when starting from a small labelled set [101]. Quadros et al. develop a fea-

ture specifically for object categorisation using Velodyne data to separate the classes

“building”, “car”, “pedestrian”, “sign”, “tree” and “trunk” [82]. These methods are

all designed to represent the appearance differences between classes, and minimise

the effects of intra-class variations.

To discriminate targets, however, we’re interested in capturing the appearance vari-

ation between all objects regardless of class. For a human looking at Velodyne data

this is a difficult problem. Figure 4.3 shows some examples of point cloud observa-

tions of pedestrians and cyclists. Notice that it’s much easier to tell the cyclists from

the pedestrians than it is to tell one pedestrian or cyclist from another.

Despite this difficulty, some methods have been proposed to make use of 3D lidar

data for determining target identity. Schöler et al. use target height as part of the

88 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Figure 4.3 – Cyclists and pedestrians from Velodyne data. Note it is much easier to
see the variation between classes (pedestrians versus cyclists) than it is to see the
variation within classes.

particle weighting function in a tracking system [86], and Shackleton et al. use spin

images [47] when computing the track association cost function [91]. Whilst height

was found to provide some benefit in [86], the authors of [91] state that the “impact

of [spin images] is minimal, and only affects the most pathological cases.” Both of

these methods combine appearance information directly into tracking and the utility

of the appearance models have not been tested in isolation. In this work we explicitly

measure the ability of these appearance models to determine the identity of tracked

objects from Velodyne data.

In the experiments in Section 4.4 we employ height and radius, both independently

and in combination, as a source of appearance information. Observation height is

measured by the difference between the maximum and minimum lidar returns with

respect to the global Z axis, whilst radius is computed from the minimum size circle

that encloses all lidar returns projected on the X/Y plane. We also present results

for the use of spin images. We use an image size of 1 metre, and as per [91] compute

20 spin images per observation.

4.2.2 Appearance from camera data

Camera data, particularly colour video, is a more intuitive choice for capturing the

appearance of objects for the purposes of recognition. As humans, we make use

of both object shape and colour to recognise objects, with an increased reliance on

4.2. FEATURE EXTRACTION 89

Figure 4.4 – Camera observations for the same objects as in Figure 4.3. It is much
easier (for a human at least) to separate the pedestrians and cyclists from each
other in camera data than it is with 3D lidar.

colour for recognition amongst categories with similar shape [99, 103]. In remote-

sensing systems we can also measure both shape and colour data. Whilst 3D lidar

captures object shape, and can therefore be used to categorise objects with differing

geometric appearance, colour data is a more powerful cue for recognition.

At least for a human, telling the difference between objects is much easier with camera

data than it is with lidar data. Figure 4.4 shows the same four objects as Figure 4.3,

this time as seen by a colour camera. A human can immediately see that these are

four distinct objects, not one cyclist and one pedestrian, both imaged twice.

Camera-based multi-target tracking is an active area of research and many state of

the art approaches have commonalities with the event graph approach described in

Section 4.2.1, which is itself adapted from the camera-based tracking literature [106].

In [119] track sections are extracted based on local associations, and then trajectories

are formed by linking these sections together based on appearance models, whilst

in [9] ambiguities stemming from object interactions are resolved using appearance

models.

Recent work in camera-based object categorisation has moved away from the manual

specification of image features towards “feature learning” strategies that determine

the best object representation directly from data (e.g. [52]). However, appearance

modelling for tracking often relies on representing colour statistics with simple his-

tograms [9, 119]. More advanced models seek to improve performance by training

discriminative models that can better separate objects with similar appearance [117].

90 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Name Colour Space Bins Comment

Hist-HSV HSV 6,3,3 As per [106]
SplitHist-HSV HSV 6,3,3 Independent Hist-HSV for top and

bottom half of image
Hist-RGB RGB 8,8,8 For comparison with Spatiogram-RGB
Spatiogram-RGB RGB 8,8,8 As per [13]

Table 4.1 – Colour models used in the appearance evaluation experiments. The “Bins”
column gives the number of quantisation levels for each channel of the joint his-
togram. For example, Hist-HSV has 6 bins in the hue axis, and 3 in both saturation
and value, for a total of 6 × 3 × 3 = 54 bins. The chosen colour space affects the
computation of histogram similarity measures, so both the RGB and HSV colour
space are tested.

For reasons discussed later in this chapter, models that can be trained indepen-

dently for each track section are preferred over discriminative models, so we focus

our attention on histogram-based approaches. Whilst these methods are not gener-

ally considered to be the state of the art they are sufficiently powerful to highlight

general properties of the appearance matching problem, which will be discussed in

Section 4.4. Table 4.1 is a summary of the histogram models employed.

Colour histograms measure only the frequency of colour ranges within an image re-

gion and do not account for the spatial distribution of colour in an image. Various

strategies that do incorporate this information have been proposed in the literature,

including the spatiogram [13], which represents the spatial distribution of each colour

bin as a 2D Gaussian. Some pedestrian-specific methods separate observed objects

into parts (e.g. head, torso, legs) and learn colour models for each part [12]. We

remove the pedestrian-specific assumption of [12], whilst retaining some concept of

spatial distribution, by learning models on the top and bottom halves of each image.

The four histogram features compared in this work are therefore joint histograms

with HSV and RGB colour spaces (Hist-HSV , Hist-RGB), spatiograms (Spatiogram-

RGB) and independent histograms from the top and bottom halves of an image region

(SplitHist-HSV).

An additional modality also tested in this work is thermal infrared (IR). The IR

camera installed on “Shrimp” has a spectral response of 7 to 14 µm and provides only

4.2. FEATURE EXTRACTION 91

relative thermal information, not calibrated temperature readings. Pixel intensities

encode thermal information and the IR camera has a narrower field of view than the

Ladybug camera, but in all other respects the data can be processed in the same

pipeline as colour camera data. A sample of the IR data is shown in Figure 4.5.

Figure 4.5 – Sample of thermal infrared camera data

Since the data from the IR camera is monochrome, the colour histograms described

are not used. Instead we evaluate a single channel histogram Hist-gray , and SplitHist-

gray which splits the image into upper and lower regions and computes independent

histograms in the same manner as SplitHist-HSV .

4.2.3 Combining camera and lidar data

So far we have discussed ways to extract appearance information from an observation

obtained from a 3D lidar point cloud or region of an image. In the system described

in this thesis, tracking is driven by lidar and we wish to augment the lidar observa-

tions with camera data. To do so, we must be able to match point cloud segments

with image regions that correspond to the same physical object or objects in the

environment.

The first step to enabling this is to ensure that the sensors have an overlapping FOV.

To maximise this overlap, the Velodyne is paired with an omnidirectional camera,

92 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

the Point Grey Ladybug-3 [81], shown mounted above the Velodyne on the ACFR

experimental platform “Shrimp” in Figure 3.12. This positioning ensures that the

Ladybug-3 has an uninterrupted 360° view of the scene that fully encompasses the

FOV of the Velodyne lidar.

The two sensors (being different modalities) have very different data formats, sam-

pling patterns, and acquisition times, yet so long as their field of views overlap, their

data can be combined. Laser points can be used to add a sparse depth channel to

the colour images or colour information can be added to the 3D point cloud.

Due to the differences in sensor positioning, sampling and timing, there are a number

of issues that must be considered when combining camera and lidar data. We discuss

two of these issues, calibration and sampling in the sections that follow. For a more

complete examination of the topic, the reader is referred to [85].

4.2.3.1 Camera to lidar calibration

When projecting 3D lidar points into the camera frame, there are three important

considerations: the intrinsic parameters specific to each sensor, the “extrinsic” trans-

form between the sensors, and any timing differences between them. We discussed

the intrinsic parameters of the Velodyne in Section 3.1.2 and for the Ladybug we

make use of the factory-calibrated parameters supplied with the camera.

The transform between the sensors is established by calibration. The pairing of the

Ladybug-3 and Velodyne sensors has proven popular in the literature and a number

of methods of performing the requisite calibration have been proposed [60, 78]. In

this work we used the approach of Levinson and Thrun [60], which is an automatic

method that requires neither hand-labelling nor a specific calibration scene.

There are two factors relating to the timing of data acquisition that must be taken into

consideration. The first is that any clock offsets between the Velodyne and Ladybug

sensors must be accounted for. Whilst this offset could potentially be optimised as

part of the same method used for computing the sensor transform, in this work it was

adjusted manually by synchronising events visible in both the lidar and camera data.

4.2. FEATURE EXTRACTION 93

The second consideration is the differences in the sampling times of the lidar and

camera systems. On our robot, the Velodyne is configured to rotate at 1200 RPM

(20 Hz), whilst the Ladybug acquires images at approximately 5.25 Hz. Therefore, to

project points into the camera frame, they must be transformed from the navigation

solution (the pose of the vehicle in a global frame) at the time each point was measured

to the navigation solution at the time the image was taken2. Additionally, we only

associate Velodyne scans with the closest camera image in terms of timestamps, which

means that only about 1 in 4 lidar scans have associated image data.

Figure 4.6 shows an example Velodyne data projected into the camera frame. Ac-

curate calibration and time synchronisation ensures that laser points sampled from

objects in 3D coordinates are projected onto those same objects in image coordinates.

(a) (b)

Figure 4.6 – (a) Segmented data from the Velodyne lidar. (b) The same segmented
data projected into the Ladybug camera frame.

4.2.3.2 Image sampling

Once the intrinsic and extrinsic parameters and time synchronisation offsets have

been accounted for, we have the ability to project lidar data into the camera image.

However, to extract the camera data that corresponds to a lidar observation, more

design decisions must be made.

2For efficiency during data projection we make the approximation that all lidar points are cap-
tured at the same (i.e. we do not compensate for motion). Since the dynamics of the sensor vehicle
are slow with respect to the frame rate of the sensor, this is a reasonable approximation

94 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Figure 4.7 shows an example of synchronised camera and lidar data. Processing of

the lidar data has produced observations of two targets, shown in green and blue.

To build appearance models of each target, we want to extract all the pixels in the

image that correspond to each person, but using the image data corresponding to the

projected Velodyne points provides a sparser sampling.

(a) (b)

Figure 4.7 – Synchronised camera and lidar data

In this section we describe several alternatives for how to extract camera data for a

given set of 3D lidar points projected into an image, which we describe as ‘sampling’.

An example of each option is shown in Figure 4.8, and the performance of these

different methods will be evaluated in Section 4.4.

The first such method, rect , refers to the bounding rectangle of all the lidar points

after projection into the image plane. Sampling all pixels within this rectangle results

in an image patch that fully encompasses all the lidar returns, but also potentially

includes a lot of the background (Figure 4.8a).

The sampling method points samples the colour values of the pixels within a given

radius of each project laser return. For example points-0 refers to the pixels which

correspond exactly to projected Velodyne points, whilst points-5 includes all image

data within a 5 pixel radius. An example of the points sampling strategy is shown in

Figure 4.8b.

Increasing the selection radius in the points method includes more of the image data

from between projected lidar returns, but for data at the very edge of an object will

4.2. FEATURE EXTRACTION 95

(a) (b) (c)

Figure 4.8 – Image sampling from Velodyne data (a) rect , (b) points-1 , (c) hull

also sample additional background pixels. The sampling strategy, hull , is designed to

include all image data from within the projected lidar segment, but maintain closely-

cropped edges. The hull is computed as the alpha shape (or α-shape) [30] of the

projected lidar points and is a generalisation of the convex hull which allows for some

amount of concavity, depending on the parameter, α. Figure 4.8c shows the α-shape

for the same observation as before.

The performance of the various sampling strategies on the example image of Figure 4.8

are shown in Table 4.2. Performance was measured with respect to a manually labelled

image. Perfect precision would mean that the sampled pixels all correspond to the

target, whilst perfect recall would mean that all pixels corresponding to the target

were sampled. The F1 score or “F-measure” is the harmonic mean of precision and

recall and reflects overall performance.

pixels precision recall F1

rect 5049 0.31 0.92 0.47
points-0 209 0.80 0.10 0.17
points-1 948 0.79 0.43 0.56
points-3 2043 0.68 0.80 0.74
points-5 2739 0.57 0.91 0.70
hull 1762 0.76 0.77 0.77
manual 1728

Table 4.2 – Performance of the image sampling strategies on the example observation
shown in Figure 4.8.

96 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

This table demonstrates the potential gains from using a more sophisticated sampling

strategy such as hull . Using the projected lidar points alone means that only 10% of

the image pixels corresponding to the target were selected. We can increase this to

over 90% by using rect or points-5 , however these methods increase the number of

background pixels selected and therefore achieve lower precision. The best balance

of precision and recall (reflected by the F1 score) is achieved by hull , closely followed

by points-3 . Note that this table is computed for one image only and is in intended

for illustration purposes only. A more complete examination of how sampling affects

appearance model quality is presented in Section 4.4.

4.3 Appearance models

The preceding section discussed how to extract features from 3D lidar and/or camera

observations. In this section we use these features to create appearance models, and

describe how these models are used to determine target identity.

Figure 4.9 shows the steps to compute an appearance model for a track section. Track

sections are constructed by using data association to group segmented lidar observa-

tions together into tracks as discussed in Chapter 3. Using the methods described

in Section 4.2.3, these observations can be augmented with camera data. From each

observation, appearance features are computed and therefore every track section is

associated with a set of features.

There is no limit to the duration of a track section. So long as an object does not

interact with others or become occluded, the methods described in Chapter 3 can

continue to track it indefinitely. This means that the number of observations in the

track section, and hence the number of features extracted, grows at a constant rate.

An appearance model, therefore, may choose to maintain only a representative set of

features, or compress the feature set in other ways.

As well as a set of features, an appearance model also specifies how those features are

used to compare the appearance of different track sections. During identity reasoning,

4.3. APPEARANCE MODELS 97

Track section

(Chapter 3)

Track section

(Chapter 3)

Observations

Observations

Features

Features

Appearance Model

Appearance Model

Similarity

Hellinger

mean

adaptive

dual-adaptive

collect-max

collect-weight

(Section 4.3.2)

Figure 4.9 – Building appearance models from track sections. Each track section is
made up of a set of observations. Features are computed for each observation inde-
pendently, and these features combine to form an appearance model. Appearance
models also specify a similarity measure (described in Section 4.3.2), which is used
to compare pairs of track sections and determine if they share the same identity.

similarity measures are used to measure the likelihood that two appearance models

represent the same target. In Section 4.3.1 we explain why appearance models that

allow the computation of similarity measures are the best fit for event graph identity

reasoning. We discuss the computation of these similarity measures in Section 4.3.2.

4.3.1 Using appearance models to determine identity

Appearance models are needed to resolve targets whose identities have become am-

biguous during tracking. Chapter 3 discussed how this ambiguity occurs and proposed

tracking methods that could detect such situations. Ambiguous situations are rep-

resented by group nodes in the event graph; when the group splits apart again and

individual tracks are observed, appearance models can be applied.

Figure 4.10 shows an example merge/split event. Four track sections (T1, T2, T3, T4),

merge to form a group, which then splits and we observe four new track sections

(T6, T7, T8, T9). The task of determining the identity of a single output node (e.g. T6)

demonstrates why we described this as a self-supervised classification problem: the

features corresponding to each input node provide training data to a model which

can then be used to classify the output. Indeed, in this example it is possible to solve

the problem using an off-the-shelf classification algorithm such as a multi-class SVM.

98 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

1 2 3 4

5

6 7 8 9

Figure 4.10 – The independent appearance evaluation problem. Four track sections
(nodes 1 to 4) merge to form a group. When the objects move apart, four new
track sections (6 to 9) split from the group node. The identity of an output node
(e.g. node 6) is determined by comparing its appearance model to the appearance
model of each input node. The other output nodes are not considered in this case.

However, in this thesis, we use appearance models that allow for the computation

of similarity measures, rather than building discriminative classifiers. Some of the

reasons for this are as follows.

1. In the discriminative case, a new classifier (SVM or otherwise) must be learnt for

every interaction that occurs. That is, a classifier used to distinguish objects 1

and 3 must be completely re-trained to distinguish objects 2 and 3, and again to

distinguish all three objects together. When using a similarity measure, models

can be learnt individually for each track section and used to solve arbitrary

interactions without retraining.

2. The event graph provides additional constraints that become difficult to in-

corporate into discriminative models such as an SVM. For example, when de-

termining the identity of T6 in the example from Figure 4.10, we also have

appearance information from output nodes T7, ..., T9. We know there must be a

one-to-one mapping from inputs to outputs and this constraint should be taken

into account when determining node identities.

3. An output node from a merge/split even can also act as an input node to another

event. Consider the graph shown in Figure 4.11. The identity of node 6 could

be the same as node 1, 2 or 5, and if node 6 matches to nodes 1 or 2 then it

4.3. APPEARANCE MODELS 99

must also be the same object as node 4. Further to this, knowing something

about the identity of node 3 also helps constrain the identity of nodes 6 and 7.

In fact in this example, the only nodes that don’t have any dependency are 3

and 5.

1 2

G1

3 4 5

G2

6 7

Figure 4.11 – A more complex interaction scenario. Tracks 1 and 2 merge to form
a group, then split again. One of these tracks then merges with another track
before splitting once more. To fully exploit the appearance information of each
node requires modelling of the dependencies of the tracks.

For these reasons we use appearance models that allow for the computation of a

pairwise similarity measure. Similarity measures give the likelihood that the corre-

sponding track sections have the same identity. Given two track sections Ti and Tj,

with associated appearance models, Ai and Aj, the likelihood that Ti is the same

object as Tj, can be computed from the appearance models as:

P (Ti = Tj) = P (Ai, Aj) ≈ s(Ai, Aj) (4.1)

Where s(Ai, Aj) is a similarity function in the range [0, 1], the computation of which

we will describe in the following section. The identity of a node is computed as the

maximum likelihood estimate, therefore, for the example shown in Figure 4.10, the

identity of T6 is found as

T6 = argmax
Ti

(P (T6 = Ti)) , where Ti ∈ {T1, T2, T3, T4} (4.2)

100 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

The equations above are for the independent case, where we consider the identity of

T6 with respect to the input nodes only. We can, however, choose to consider the

identities of all output jointly, and impose the additional constraint that two output

nodes cannot share the same identity. We assume that the appearance models them-

selves are independent, and therefore the joint likelihood of output node identities

is the product of the appearance model similarities. The joint probability is this

likelihood normalised over all possible identity configurations.

In Chapter 5 we discuss two frameworks which use these pairwise similarity models

to solve target identities, whilst taking into account the constraints imposed by the

event graph.

4.3.2 Similarity measures

In the previous section we assumed the availability of a pairwise similarity function

between appearance models (s(Ai, Aj)). The form of this function depends on the

features used in the appearance model.

Histogram features

The visual appearance of an object changes as it moves about in the scene due to

changing view point, occlusions and varying illumination. An ideal model would

capture this variability by combining the information from multiple features. Fig-

ure 4.12 shows example observations from a tracked object. The object interacted

with another object midway through tracking, and therefore the trajectory is broken

into track sections (A) and (B), separated by a group. A good appearance model will

recognise that track sections (A) and (B) correspond to the same object, by reporting

a high similarity between the models. The event graph will contain other nodes for

the other targets in the scene, but here we focus on just this one object.

Normalised image histograms are probability density functions and there are numer-

ous ways to compute similarity measures between them [18]. Appearance models,

4.3. APPEARANCE MODELS 101

track section (A) group track section (B)

adaptive

dual-adaptive

meanobservation
importance

observation
importance

observation
importance

Figure 4.12 – Observation importance in different histogram strategies.

however, consist of many features computed from different observations of the same

object so we need a way to compute the similarity between sets of features. Five

methods for achieving this are evaluated in this work: mean, adaptive, dual-adaptive,

collect-max and collect-weight .

One simple strategy is to simply take the mean histogram. That is, sum up all the

histograms from the different observations within a track section and re-normalise

(Equation 4.3, where HM is the mean histogram, and Hk is the histogram computed

from the observation at time k).

HM =
1

N

N∑
k=1

Hk (4.3)

This method gives each observation equal weight, as represented in Figure 4.12. The

similarity between two appearance models is then computed as the similarity of their

mean histograms, which in turn is computed by a standard histogram similarity

measure. In this work we use the histogram intersection (Equation 12 from [18]).

Another technique from the literature is to sequentially blend the histograms from

each observation into the model [106, 116]. This “adaptive” histogram (HA) is com-

puted from observations up to time k as

Hk
A = (1− α)Hk−1

A + αHk (4.4)

102 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

The parameter α affects the adaptation rate of the histogram. As for the mean

histogram, the similarity between adaptive histograms is calculated using histogram

intersection. This approach has the advantage of adapting to the changing appearance

of a tracked object, whilst having constant storage requirements regardless of track

length. As a result of blending, the importance of an individual observation to the

appearance model decays over time with the most recent observations being the most

important.

It is likely, however, that the observations immediately after a split event are most

similar to the observations of the object before the merge, and should perhaps be given

higher weight. As a track section increases in length it is likely that the appearance

will drift from what it was at the time of the interaction and the adaptive adaptation

strategy may reduce the performance of the appearance model.

We introduce therefore, a new method, referred to as dual-adaptive. It creates, in

effect, two adaptive histograms, one of which gives initial observations the highest

weight. This results in the effect shown in red and blue lines in Figure 4.12. When

comparing the similarity of two appearance models, they are ordered temporally.

The forwards adaptive histogram (red) of the first track section is compared to the

reversed adaptive histogram (blue) of the second. Observations closest (in terms of

time) to the group event will therefore have the highest weight in the models, which

may result in better performance.

Finally, we propose two methods which collect representative histograms from the

set of appearance features, rather than blending them all together with some weight.

Each track section maintains a set of histograms H, and associated counts, c. Ini-

tially H is empty. For an observation at time k, the histogram Hk is computed and

compared to the current set of histograms (by the histogram intersection measure as

before). If the maximum of these similarities is above a threshold, then that obser-

vation is deemed to be adequately represented by the current set, and the counter,

c, corresponding to the most similar histogram is incremented. Otherwise, the his-

togram Hk is added to the set H and the corresponding counter is set to one.

When computing the similarity between appearance models A1 and A2, we can take

4.3. APPEARANCE MODELS 103

the maximum similarity between their two sets of representative histograms (H1 and

H2). This method is referred to in the experimental section as collect-max .

s(A1, A2) = max
H1∈H1

(
max
H2∈H2

s(H1, H2)

)
(4.5)

Alternatively, we can take the sum of the product of histograms, each weighted by

their normalised counts. This method is referred to as collect-weight and is calculated

as shown below, where H1,i refers to the ith histogram in the set H1, and c1,i is its

associated ‘count’.

s(A1, A2) =

i=|H1|∑
i=1

j=|H2|∑
j=1

c1,i · c2,j · s(H1,i, H2,j) (4.6)

Lidar features

For the height and radius features, we assume that the measurements are Gaussian

distributed around the true values.3 From the set of observations in a track section,

we compute the mean and variance, and compute the similarity via the Hellinger

Distance [41].

For spin images the computation is more involved. The spin image correlation [47]

provides a similarity measure between pairs of spin images, but as was the case for the

appearance models, we need to measure the similarity between sets of features. We

also need to reduce the number of features in the model; computing 20 spin images

per observation over a 10 second track section, with the Velodyne spinning at 20Hz,

would result in a total of 4000 spin images. To more efficiently compare tracks, we

use K-means clustering to reduce the feature set to 50 representative images.

To compute the similarity between two sets of spin images (denoted S1 and S2), by

matching each spin image in S1 to its closest neighbour in S2 and computing the

average correlation. In the equation shown below S1,i represents the ith spin image in

3Sampling effects due to the angular resolution of the laser, and partially occluded objects can
invalidate this assumption.

104 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

the set S1 and R is the spin image correlation coefficient defined by [47]. Since spin

image correlation ranges from 1 (completely correlated) to -1 (anti-correlated), the

result is divided by 2 and 0.5 added to give a similarity value in the range [0, 1].

s(A1, A2) =

 1

2|S1|

|S1|∑
i=1

max
j∈{1..|S2|}

R(S1,i, S2,j)

+ 0.5 (4.7)

4.4 Evaluation of appearance models

In this section we evaluate appearance models by testing their ability to recognise

previously-tracked targets. Manually labelled data is used to create “interaction

scenarios” and appearance models are used to infer the identities of the targets in-

volved. This section describes the definition of interaction scenarios and introduces

the datasets used for evaluation, followed by experimental results and analysis.

4.4.1 Methodology

When evaluating appearance models, we wish to answer questions of the form “if

person A interacted with person B, would the model be able to recognise who is who

after they separate?”. Interactions cause an object’s trajectory to be divided into

“track sections”, and the ability of an appearance model to determine identity can

be tested on labelled interactions.

Whilst in a given dataset, objects may only interact once, or not at all, we can

simulate an arbitrary number of interactions by manually dividing trajectories into

a number of track sections. Each track section is simply a set of observations, and

an interaction experiment selects some sections as inputs, others as outputs, and

tests if the appearance model can correctly link inputs to outputs. To isolate the

performance of appearance modelling from segmentation and tracking we use as input

to this process manually labelled trajectories obtained through the method described

in Section 3.2.3.

4.4. EVALUATION OF APPEARANCE MODELS 105

For example, manually labelling the dataset merge4-b gives us four trajectories. If

each trajectory is split in three, we obtain a total of 12 sections, pictured in Fig-

ure 4.13. We will refer to these track sections as 1A, 1B, ..., 4C. We can then exper-

iment with arbitrary hypothetical interactions. For example, in one experiment, we

test what would happen if target 1 and 3 interact. Sections of each trajectory (say

1A and 3B) are used to train appearance models. Then, we want to examine the

behaviour of the appearance models if target 1 is observed again, and so a different

section from target 1’s trajectory (e.g. 1C) is selected. This hypothetical interaction

is depicted in Figure 4.14a. If the model correctly groups the section from target

1 together then the test is successful. A second example, depicting another valid

hypothetical test situation is depicted in Figure 4.14b.

Section A Section B Section C

Track 1

Track 2

Track 3

Track 4

Figure 4.13 – Example track sections extracted from labelled trajectories.

This method of testing treats the observed output node independently of any others

and so corresponds to Figure 4.10, above. We average the accuracy of the appearance

models across all possible interactions. For a given dataset with N labelled trajecto-

ries, each divided into M sections, where we simulate interactions between T of those

targets (T <= N), the total number of simulations, S, is given by Equation 4.8.

106 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

1B 3B

1C

G

Not
considered

(a)

1B 3B

3C

G

Not
considered

(b)

Figure 4.14 – Example of simulated interactions, using the data from Figure 4.13.
Both (a) and (b) simulate interaction of the same objects, but use different track
sections and test a different outcome. This is for the “independent” appearance
reasoning case, where we only consider the appearance model of one of the output
nodes.

S =

(
N

T

)
MT (M − 1)T (4.8)

In Section 4.3.1 we described how it is possible to jointly solve for the identity of

multiple nodes which split from a group. The number of simulations to perform in

this case to exhaustively try all combinations is given by Equation 4.9.

S =

(
N

T

)
[M(M − 1)]T (4.9)

These numbers grow very quickly in the size of N , M and T . For example in a dataset

with 4 labelled objects split into 10 section, there are 48600 interactions to simulate

between 2 objects. This jumps to 2916000 for 3 objects, making the simulation of

all interactions intractable, so for large combinatorial sets we may randomly sample

from the possible interactions. The results below are across all possible interactions

unless explicitly noted.

In the experimental results that follow, trajectories were split into 5 second sections.

For trajectories with a much longer duration than this, the time separation between

the track sections in an interaction scenario will vary. Some interaction scenarios will

include track sections which are immediately subsequent to one another, whilst others

4.4. EVALUATION OF APPEARANCE MODELS 107

will be separated by some multiple of 5 seconds. This variable separation simulates

a group node or occlusion of this same duration.

4.4.2 Dataset

For the evaluation of appearance models, we make use of some of the experimental

data presented in Chapter 3, which was gathered with the ACFR research platform

“Shrimp” (Figure 3.12). Whilst the experiments in Chapter 3 required only navigation

and lidar data, here we also make use of the Ladybug-3 omnidirectional camera and

thermal IR camera.

In addition to the scenarios selected from those already presented in Figure 3.13 and

Figure 3.14, we include same-shirt-a and same-shirt-b, 3-person interaction ex-

periments in which two of the pedestrians are wearing similar-coloured shirts. The

goal of these scenarios was to see if the appearance models were able to discrimi-

nate targets wearing similar colours, however, it as can be seen from the image in

Figure 4.15b that the appearance of the two targets is still fairly distinct.

We also introduce a city dataset. Whilst the Marulan datasets comprise controlled

interaction scenarios of varying complexity, the city datasets were captured from

driving throughout the city of Sydney and therefore represent realistic appearance

information for an urban scene. Tracks were extracted from two scenes, a pedestrian

crossing at an intersection in the CBD and a stretch of road near the Sydney Opera

House. intersection contains 14 labelled tracks and a combined 3118 observations,

manually labelled using the same procedure as described in Section 3.2.3. For the

opera-house dataset, the split-cost tracking method described in Chapter 3 was

used to initialise labelling. Tracks less than 5 seconds in duration were removed, and

the remaining tracks were manually verified and corrected as required using Blender.

A total of 111 tracks were labelled in this manner, comprising 32088 observations.

Some example images taken during the Sydney city dataset are shown in Figure 4.16.

108 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

(a) same-shirt-a (b)

(c) same-shirt-b

Figure 4.15 – Labelled trajectories from the same-shirt-a and same-shirt-b ex-
periments, along with an image taken by the forward-facing camera during the
trials.

4.4.3 Results and Discussion

The results and discussion presented in this section are divided according to sensor.

We first evaluate appearance features for lidar data, followed by colour camera data

and finally thermal IR.

4.4.3.1 Lidar

Figure 4.17 shows the performance of lidar based appearance models from Sec-

tion 4.2.1 on the interaction simulations. The average performance across all datasets

is summarised in Table 4.3. The experiments are simulations of two interacting ob-

jects, so a random assignment would have an accuracy of 0.5. Given this, an appear-

ance model which makes use of observation radius does not do that much better than

chance, however height does appear to be discriminative, successfully resolving almost

80% of interactions. Using height and radius jointly results in performance about as

good as height, indicating that the radius measurement is not greatly influencing the

4.4. EVALUATION OF APPEARANCE MODELS 109

(a)

(b)

Figure 4.16 – Images from the intersection and opera house dataset. The robot
“Shrimp” was mounted on the back of a utility vehicle, which was driven around
the Sydney CBD.

model.

The one experiment where radius does have an impact on performance is merge-

bbpp, which was deliberately chosen because it includes objects which are geometri-

cally quite different. The scenario contains four objects: two cyclists and two pedes-

trians.

Figure 4.18 shows the radius and height statistics of the four objects (in different

colours) for each of the track sections in merge-bbpp. Blue and yellow (tracks 1

and 2) represent cyclists and red and black (tracks 3 and 4) are pedestrians. It is

evident that the observations of bikes have an (unsurprisingly) larger radius and so

the data in Figure 4.18a can be separated into two classes. However, radius does not

110 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Figure 4.17 – Classification performance using lidar features. Height is a more use-
ful feature than radius when tracking pedestrians. The merge-bbpp experiment
(shown in Figure 3.14) involves two bicycle riders (b) and two pedestrians (p).

Appearance Model Accuracy

Height 0.793
Radius 0.655
Height & Radius 0.810
Spin Image 0.721

Table 4.3 – Average classification performance using Velodyne-based appearance mod-
els across all datasets.

help to distinguish the cyclists from one another, nor does it help separate the two

pedestrians. Figure 4.18b shows the height statistics for the four objects. Targets

2 and 4 are marginally taller than 1 and 3. Serendipitously, though there are pairs

of people with approximately the same height, in each case one was riding and the

other walking. Therefore height and radius both split the problem along different

dimensions, and the resulting classifier shows an increase in performance over both

the individuals. This is a very convenient dataset, in that if targets 2 and 4 were

both riding bicycles the height would likely give us no useful information, but does

illustrate that different geometric features can be combined without degrading the

performance of the more informative feature used individually.

The results for the spin image appearance models are also shown in Figure 4.17. On

4.4. EVALUATION OF APPEARANCE MODELS 111

(a)

(b)

(c) Height (d) Radius (e) Combined

Figure 4.18 – Radius (a) and height (b) of target track sections in the merge-bbpp
dataset. The bikes (targets 1 and 2, shown in blue and yellow) are separable
from the pedestrians (targets 3 and 4, shown in red and black) by radius, whilst
height can separate the targets 2 and 4 from 1 and 3. This results in the com-
bined HeightAndRadius feature having significantly improved performance on this
dataset in Figure 4.17. (c-e) show the confusion matrices for the Height , Radius
and HeightAndRadius features.

112 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

average, spin images did not perform as well as the height feature, but did perform

significantly better than chance. Spin images capture object shape, and therefore

would be expected to show the best performance when separating different types of

objects. This is reflected by the fact that the spin image appearance model receive

its highest score on the merge-bbpp dataset.

Whilst spin images capture the height of an observation to some extent, an appearance

model which incorporates all of the features described above may show increased

performance, and in general the topic of combining different types of appearance

features would be an interesting avenue for future research.

4.4.3.2 Camera

In this chapter we have discussed three main design decisions for camera-based ap-

pearance models: the image sampling strategy, choice of feature, and definition of

the similarity measure. Table 4.4 lists the various implementation options presented.

The implementation options for each decision are largely independent, in that we can

choose to combine any sampling strategy, feature and similarity measure together.

The exception to this are Spatiogram-RGB features, which, because of the way they

represent positional information, cannot readily be added or averaged and therefore

are only compatible with the collect-max and collect-weight similarity measures. Vi-

sualising the possible combinations of all these parameters simultaneously is difficult,

so in this section we examine projections of this parameter space.

Sampling Feature Similarity
(Section 4.2.3.2) (Section 4.2.2) (Section 4.3.2)

rect Hist-HSV mean
points-0 SplitHist-HSV adaptive

. . . Hist-RGB dual-adaptive
points-n Spatiogram-RGB collect-max

hull collect-weight

Table 4.4 – The three main parameters for the camera-based appearance models pre-
sented in this chapter, shown with the implementations options discussed.

4.4. EVALUATION OF APPEARANCE MODELS 113

Figure 4.19 shows the accuracy of the appearance models at the task determining

target identity after a two-object interaction. This is the average performance across

all features, sampling strategies and similarity measures and the results will be broken

down further in subsequent figures. The average performance across all datasets was

0.95 indicating that the models could on average resolve 95% of two-object interac-

tions.

Figure 4.19 – Identity solving accuracy using colour image data from the Ladybug
camera, averaged across all parameters presented in Table 4.4.

We now consider the different measures for computing the similarity between sets

of features, discussed in Section 4.3.2. Figure 4.20 shows the accuracy of appear-

ance models using the various strategies averaged over the other parameters. The

accuracies all appear fairly similar except for a peak for dual-adaptive on inter-

section. The reason for this peak is to do with the way the track sections are

extracted. As described earlier, trajectories are broken up into 5 second pieces which

are used for model evaluation. In intersection most trajectories are quite short

and many of the trajectories are divided into only two parts. This means that the

testing data is sampled immediately after the training data from within a trajectory.

The dual-adaptive algorithm, which uses forward and reverse histograms, will weight

the observations closest to the training/testing split the highest and therefore achieve

better performance. This result is artificially high, because in a real use-case some

kind of interaction occurs between the track sections, and the appearance may change

more significantly in this time.

114 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Looking at the average score of the methods across all datasets (Table 4.5) shows an

advantage to mean. However, the differences are only minor, and for the remainder of

the experiments in this work we use collect-weight . We choose this method because it

has comparable performance to the others and the way it collects exemplar histograms

is helpful for visualisation and diagnostics.

accuracy

adaptive 0.900
collect-max 0.939
collect-weight 0.937
dual-adaptive 0.950
mean 0.945

Table 4.5 – Accuracy for the different similarity measures averaged across all datasets.

Figure 4.20 – Appearance model performance when using different similarity mea-
sures.

The next parameter we analyse is the feature computed from each observation, as

described in Section 4.2.2. The results are shown in Figure 4.21, and the mean

performance across all datasets is shown in Table 4.6. As mentioned, this and the

following results are computed using the collect-weight similarity measure.

In this set of experiments, SplitHist-HSV , which uses two histograms to capture

the colour distribution of the top and bottom halves of the image independently

had the best performance. However, Spatiogram-RGB which captures spatial colour

4.4. EVALUATION OF APPEARANCE MODELS 115

Figure 4.21 – Effect of histogram choice on appearance model accuracy (Ladybug
data).

accuracy

Hist-HSV 0.934
Hist-RGB 0.942
Spatiogram-RGB 0.906
SplitHist-HSV 0.952

Table 4.6 – Accuracy for the different colour image features averaged across all
datasets.

distribution in more detail actually has the worst performance of all the methods.

This suggests that Spatiogram-RGB may be over fitting the data, and that more

colour variation occurs during tracking than what is predicted by the model. The

advantage of SplitHist-HSV was more pronounced on the city scenes, where there

were many more targets, and having the additional spatial information added to the

ability of the method to discriminate targets. We continue to use the best feature,

SplitHist-HSV , for the remainder of the experiments in this section.

Figure 4.22 shows the effects of image sampling on appearance model accuracy, given

the choices of SplitHist-HSV as feature and collect-weight as similarity measure. Re-

calling Figure 4.8, rect samples image data from the rectangular bounding box of

the projected lidar points. This bounding box often includes background pixels, so

as expected it has the worst accuracy in this set of experiments. Sampling from the

116 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

α-shape hull of the points improves performance as the majority of the background

can be excluded whilst preserving foreground pixels.

Interestingly, the points-0 strategy, which samples image data at the locations of

the projected lidar points does about as well as hull , showing that even though less

image data is sampled (as was shown in Table 4.2) it contains sufficient information

for identity discrimination.

Sampling all data within a 1-pixel radius of the projected Velodyne points (points-1)

improves performance slightly, and then there is a gradual fall off as this radius in-

creases. This effect reflects the results from Table 4.2. Increasing the sampling radius

improves the proportion of foreground pixels selected, but also increases the number

of background pixels included into the model. There is a trade-off between the two,

and at some point increasing the sampling radius will decrease overall performance.

From the results shown in Table 4.7, this occurs at a radius of somewhere between 1

and 3 pixels.

Figure 4.22 – Effect of image sampling on appearance model accuracy (Ladybug data).

The experiments above explore part of the parameter space that an engineer must

consider when developing a system that combines lidar and camera data to extract

appearance information. Other properties of the appearance modelling problem are

determined by the data, so whilst one can not necessarily control these effects, un-

derstanding them will aid in the design of reliable appearance models.

4.4. EVALUATION OF APPEARANCE MODELS 117

accuracy

hull 0.961
rect 0.921
points-0 0.960
points-1 0.965
points-3 0.958
points-5 0.948

Table 4.7 – Accuracy for the image sampling methods averaged across all datasets.

One parameter over which the designer has little control is the amount of time between

observing a target, and it interacting with another. A shorter time limits the number

of observations available to train the appearance model, which may limit its ability to

recognise a target after an interaction. Figure 4.23 shows the results of an experiment

which limited the number of camera observations used to train the appearance model.

As expected, the performance is worst when training with only one observation and

improves as the number increases. This improvement tails off as the number of

observations increases, suggesting that for the datasets tested, around 15 observations

are sufficient to learn a good appearance model of the target. Note that for the

Sydney city datasets there were an insufficient number of tracks with more than 15

camera samples to calculate this trend. Therefore, only the results from the Marulan

experiments are presented. The mean performance across these experiments is shown

in Table 4.8.

accuracy

1 0.945
2 0.956
5 0.978
10 0.983
15 0.988
20 0.993
25 0.996
no limit 0.996

Table 4.8 – Average accuracy of the camera based appearance models when trained
with a limited number of image samples

118 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

Figure 4.23 – Comparison of appearance model performance as the number of images
used to train the model changes.

A second important factor from the data is how many targets interact at a given time.

All the experiments so far show the appearance model recognition accuracy when two

random targets interact. In this case, represented previously in Figure 4.10, the job

of the appearance model is to determine which input track the output is most similar

to. As more targets interact, the appearance model has to discriminate between more

and more targets, and we would expect the accuracy of the system to decrease. This

is confirmed by the experimental results shown in Figure 4.24. As the number of

inputs (shown on the x-axis) increases, the ability of the appearance model to resolve

them decreases. This figure is shown only for the intersection experiment, but a

similar trend is observed across the other datasets.

Figure 4.24 also shows the difference between reasoning jointly about object identities

versus determining the identity of each output node independently. If we observe

multiple output nodes splitting from a group node, then we can make use of the

knowledge that there must be a one-to-one mapping between inputs and outputs.

Computing the joint likelihoods greatly improves classification performance.

This increase in performance motivates the use of a framework that can reason about

appearance identity jointly, even in situations where there is not a simple mapping

of inputs to outputs (like the example shown in Figure 4.11). Such a framework will

be discussed in the following chapter.

4.4. EVALUATION OF APPEARANCE MODELS 119

Figure 4.24 – Comparison of “independent” and “joint” reasoning using colour ap-
pearance models from the Ladybug camera on the intersection dataset. As
the number of targets involved in an interaction increases, the appearance model
accuracy decreases. Joint reasoning shows a distinct performance advantage.

4.4.3.3 Thermal IR

We also evaluated the accuracy of appearance models based upon a thermal IR sensor.

From the example image in Figure 4.5 it is evident that a human may have trouble

determining the identities of pedestrians based solely on IR data. The results in

Figure 4.25 show that the appearance models described in this chapter also struggle

to identify the individuals, and identity recognition accuracy was not much greater

than random chance. This is with the exception of the same-shirt-a experiment.

Figure 4.25 – Identity solving accuracy using IR data

The reason for the increased performance on this one experiment is difficult to deter-

mine. Figure 4.26 shows some track sections extracted from both the same-shirt-a

120 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

and same-shirt-b experiments, which involve the same pedestrian targets. The data

for same-shirt-b was recorded immediately after same-shirt-a. Each row of the

figure corresponds to one of the three pedestrians (A, B and C), and shows two of the

track sections extracted for appearance model evaluation. The figure shows that the

difference between target A and targets B and C is slightly more pronounced in the

same-shirt-a experiment, which could explain the increased performance on this

dataset in Figure 4.25.

A)

B)

C)

(a) same-shirt-a

A)

B)

C)

(b) same-shirt-b

Figure 4.26 – Thermal IR data from the same-shirt experiments. Each row corre-
sponds to one target, and shows two different sections extracted from the trajectory.
Target A is slightly more distinctive in the same-shirt-a experiment, which might
explain the higher accuracy in Figure 4.25.

Whilst a more sensitive IR camera may be able to read the temperatures of targets

accurately enough to be able to identify the differences between them, the sensor used

in this thesis did not have the ability to do so. Thermal IR data offers advantages,

such the ability to detect pedestrians in situations where colour vision might fail (an

example of this is shown in Figure 4.27), but for the type of identity tracking problems

4.5. SUMMARY 121

discussed in this thesis, colour images were found to provide more useful information.

(a) Colour camera image (b) Thermal IR image

Figure 4.27 – Synchronised thermal IR and colour camera images captured in an
urban environment. The pedestrians, shadowed by an overpass, are difficult to see
in the camera data (a), but stand out in thermal IR data (b)

4.5 Summary

In this chapter we examined the concept of appearance models and how they can be

used to represent identity information extracted from tracked targets. We covered

possible sources of identity information from 3D lidar and discussed using histograms

to represent colour information.

Section 4.2.3 studied methods to combine appearance information from 3D lidar and

camera data, and included a discussion of the issues of calibration and time synchro-

nisation. We considered the problem of sampling high resolution image data based

on the projection of much sparser Velodyne data points and proposed the use of the

α-shape for computing the region within which to sample. The utility of this method

was demonstrated in the experiments of Section 4.4.

Experiments showed that lidar data often provides sufficient information to deter-

mine target identities, but that thermal IR does not. We demonstrated that, for

colour images, representing the top and bottom half of observations as independent

histograms captures additional useful information, but that the use of spatiograms

122 CHAPTER 4. APPEARANCE MODELLING FOR TRACKING

decreases recognition performance. Additionally, methods for computing a similarity

measure between appearance models were evaluated.

Appearance modelling parameters relevant to a system designer were explored in

extensive experimentation using real-world data gathered both under controlled con-

ditions and in a city environment, using a testing scheme that simulated arbitrary

object interactions from labelled data. We demonstrated empirically that increasing

numbers of interacting objects make appearance methods more likely to fail, but that

significant performance gains can be achieved by jointly computing the identity of

sets of outputs.

Appearance models designed with respect to the lessons of this chapter will be used

in Chapter 5 to solve the 3D lidar event graphs and provide robust identity tracking

in complex scenes.

Chapter 5

Robust identity tracking

In the preceding chapters we have described the components of a perception system for

robust identity tracking of dynamic targets. Chapter 3 studied multi-target tracking

using 3D lidar data, resulting in the proposal of a grouping strategy and the event

graph framework shown in Figure 5.1. We covered the aspects of the framework which

relate to lidar data, namely segmentation, track extraction and graph construction.

Chapter 4 considered appearance models, and we analysed their ability to resolve

object interactions independent of any graph structure. We discussed the parts of

the event graph framework relating to camera data: projection and sampling and

appearance model generation.

In this chapter we describe the remaining module, “identity reasoning”. This is the

process of taking the appearance models, learnt according to the methods discussed

in Chapter 4, and using them to reason about the identities of nodes in the graph.

Section 5.1 describes two different methods for solving identities in the event graph;

a greedy approach that links the most similar graph nodes together (HGraph) and

a global approach that considers fully the dependencies of each node in the graph

(BNet). We analyse the performance of these methods and demonstrate that they

enable robust identity tracking even in situations involving complex interactions be-

tween objects.

123

124 CHAPTER 5. ROBUST IDENTITY TRACKING

Lidar Camera

Segmentation
Projection

and sampling

Observations

Track
extraction

Graph
construction

Appearance
modelling

Identity
reasoning

track
sections

Object trajectories

scans images

3D segments image patches

graph models

Figure 5.1 – Event-graph tracking framework. Parts of the framework discussed in
Chapter 3 are shaded in light grey and parts discussed in Chapter 4 are shaded in
a darker grey. The remaining module, “identity reasoning” is the subject of this
chapter.

Section 5.2 describes experiments on data collected in a city environment. A dataset of

this size is infeasible to manually label, so we present a detailed analysis of two smaller

sections of the data. Additionally, we present tracking statistics from experiments as

a whole, and some conclusions drawn from the data.

5.1 Solving the event graph

Solving the event graph, referred to in this section as ‘appearance reasoning’ or ‘graph

inference’, is the process of taking an event graph and determining which objects are

represented by each node. When nodes merge together to form a group, then the

group contains all of the objects represented by its parent nodes, however when a

group splits, appearance information must be used to perform data association. The

‘path’ of an object through an event graph is the sequence of nodes in which that

5.1. SOLVING THE EVENT GRAPH 125

object appeared. An example of a solved event graph is shown in Figure 5.2. The

‘path’ of node 12 was determined to be {2, 4, 5, 9, 10, 12}.

11

13 14

3

4

0

10

12

7

9 8

5

6

2 1

Figure 5.2 – Example event graph solution. Following the coloured lines shows the
path of each object through the graph.

In this section we consider two different ways to solve the event graph. The first

(HGraph) is a greedy method that has the advantage of being fast to compute, whilst

the second (BNet) provides a close approximation to the global optimal solution.

The common input to the methods described below is the combined results of the

work described in Chapter 3 and Chapter 4, that is, an event graph where each node

126 CHAPTER 5. ROBUST IDENTITY TRACKING

(i) is associated with an appearance model (Ai). From the appearance models we are

able to calculate the similarity between nodes s(Ai, Aj). So long as this similarity can

be calculated then the exact nature of the appearance model is not important. The

abilities of different models were explored in Chapter 4, and the same set of models

will be used in the experimental results that follow in Section 5.1.3.

5.1.1 Hypothesis Graph (HGraph)

The first approach we describe was proposed by Torabi and Bilodeau in 2009 [106].

Whilst their work uses camera and thermal IR data [106, 107], the event graph is a

more general construct and their appearance reasoning method applies equally well

to graphs and appearance models constructed from 3D lidar data. The method makes

use of a secondary graph structure called the “hypothesis graph” which is constructed

in parallel with the event graph.

For each single-object node in the event graph, a node is created in the hypothesis

graph. Edges connect each hypothesis node to all of its descendants in the corre-

sponding event graph. This means that each hypothesis node is linked to all nodes

which could share the same identity, whilst respecting the temporal constraint that

nodes must occur in the order they were observed. Referring to Figure 5.3, which

shows an example event graph and corresponding hypothesis graph, hypothesis node

0 is linked to nodes 5, 6, 8, and 9. This reflects the fact that according to the event

graph the person observed in node 0 could have been observed in track section 5, 6,

8 or 9 after the merge event which created node 4.

Edges are weighted according to the similarity of the nodes they connect (computed

from their appearance models) and the solid lines Figure 5.3b show the highest weight

edge emanating from each node. Note that the method in [106] computes the distance

between appearance models and therefore the ‘preferred’ edges are those with the

lowest weight, where in this work we seek to maximize similarity scores. We choose

to work with similarity rather than distance here because similarity is required for the

BNet method discussed below and it is convenient to keep a common implementation.

5.1. SOLVING THE EVENT GRAPH 127

1

4

7

9 8

0

6 5

(a)

0

5 6

89

1

 0.51

 0.71

 0.48

 0.68 0.68

 0.71

 0.58

 0.34

 0.40

 0.68

 0.46 0.37

(b)

Figure 5.3 – An event graph (a) and corresponding hypothesis graph (b). Each node
in the hypothesis graph represents a non-group node in the event graph, and is
connected to nodes which may have the same identity. Edge weights show the
similarity between pairs of nodes, with a solid line connecting a node to it’s most
similar child.

Since we are only interested in the ordering of edge weights, maximising similarity is

equivalent to minimising distance.

Preferred edges are used to define “best hypothesis” or BH sets that link nodes to

their ancestors. In Figure 5.3b, BH(n8) = {n5, n0} because node 8 is the highest

weighted link from both node 0 and node 5. Similarly, BH(n9) = {n6}, BH(n6) =

{n1} and BH(n5) = ∅. Identities are determined by tracing back from a node to the

ancestors in its BH set; node 8 will be linked to nodes 5 then 0 (since they appear in

its BH set). Following the same algorithm (described in more detail in [106]) node 9

will be linked to node 6, then BH(n6) will be expanded and the link will be made to

node 0. The final paths are therefore found to be {0, 4, 5, 7, 8} and {1, 4, 6, 7, 9}.

This particular example could be solved using a simpler algorithm; isolate each

merge/split event and solve it independently, by matching input nodes to their most

similar output nodes. Solving the merge/split event around group 4 would link nodes

128 CHAPTER 5. ROBUST IDENTITY TRACKING

0 and 5, whilst solving group 7 would link 5 to 8 thereby recovering the full trajectory.

However the HGraph algorithm has two advantages over such an approach. The first

is that it can handle the case where some appearance information is ambiguous. If for

example, node 5 was partially occluded and the appearance model wasn’t very good,

but the appearance models of nodes 8 and 0 indicated that they were the same object

with high probability, then HGraph can cope with the poor appearance information

in node 5 and determine that nodes 0 and 8 are on the same path.

The secondary advantage of the method is that it can reason about node identities in

cases where the merge/split events are not well separated like they are in the previous

example. Figure 5.2 showed an event graph where we cannot solve the merge/split

mapping for each group node independently. Group 6 splits into two nodes (7 and

8) but its input is a group node. Therefore we need to consider further back into

the graph history to make an identity decision. This is handled automatically by the

HGraph algorithm.

Whilst the HGraph algorithm can handle missing or poor appearance models and

determine an object’s path through complex sequences of merges and splits, it can be

considered a ‘greedy’ algorithm. The method always connects nodes with the most

similar appearance models together, and so if two different paths ‘compete’ for the

same node then the highest similarity will win and the other path will be cut short. In

this case the correct identity decision might be to accept a locally sub-optimal node

assignment in order to create the globally optimal solution. A method that achieves

this is described in the following section.

5.1.2 Bayesian Network (BNet)

The method presented in this section (referred to as BNet) is adapted from [77] and

includes a contributed extension that expands the variety of graphs that the method

is able to solve.

An outline of the method is shown in Figure 5.4. As for HGraph, the method

takes as input an event graph and associated appearance models and determines the

5.1. SOLVING THE EVENT GRAPH 129

identity of each graph node. We first present the method as developed by Nillius et al.

[77], then describe our extension in Section 5.1.2.4. Experimental results verifying

the performance of the method are shown in Section 5.1.4.

Event
graph

Appearance
models

Determine state space

Generate Bayesian network

Compute CPDs

Solve junction tree

Section 5.1.2.1, 5.1.2.4

Section 5.1.2.2

Section 5.1.2.3

Section 5.1.2.2

Chapter 4, 3

Figure 5.4 – Overview of the steps in solving the event graph using the BNet approach.
The column on the right indicates in which sections the corresponding step is
discussed.

5.1.2.1 ‘Switch’ states

An innovation in the work of Nillius et al. [77] was to determine the minimal set

of variables that represent all possible paths of targets through the graph. They

recognised that the path of each target through the graph can be represented by the

mapping of inputs to outputs for each group node. Each group node can be seen as

a ‘switch’ that maps inputs to outputs, and the solution state space is composed of

one state variable for each switch.

To adopt the notation from [77], nodes in the graph (track sections) are represented

as Ti. If Ti is a group node, then it has a discrete state variable Si (the ‘switch’ state)

which represents the way a node’s input edges connect to its outputs. All possible

graph solutions can then be represented by S, the set of state variables for all the

group nodes (Equation 5.1).

130 CHAPTER 5. ROBUST IDENTITY TRACKING

S = {Si;Ti is a split node} (5.1)

The number of values that each Si can take on must be chosen such that the state

space uniquely represents all possible paths taken by objects through the graph.

For a group node containing N targets that splits into m tracks (each output track

comprising ni targets) the number of choices per track is combinatorial and the total

number of states for the switch node is given by Equation 5.2 [77].

m∏
i=1

(
N −

∑i−1
j=1 nj

ni

)
(5.2)

For example, when a group containing two targets splits into two tracks, there are only

two possible ways in which the inputs can be mapped to the outputs (Figure 5.5a).

Track sections may contain multiple targets and so the situation can arise where a

node with three inputs has only two output tracks. If the number of targets in each

output are known to be 2 and 1 respectively, then there are three possible mappings

Figure 5.5b. When multiple input objects map to the same output track, their relative

ordering is preserved.

(a) (b)

Figure 5.5 – Switch states for (a) a node with two input and two output tracks. (b)
a node with three input and two output tracks, where the number of objects on
each output are known to be 2 and 1 respectively.

An event graph comprising both of these group nodes is shown in Figure 5.6. Of the

three objects that entered node 4, two of them remain together and become group

node 5 before splitting apart. Node 5 (which is the same as Figure 5.5a) can switch

the order of its outputs, so the fact that node 4 preserves their relative order ensures

5.1. SOLVING THE EVENT GRAPH 131

that there is no redundancy in the state space. Notice that whether the red and

yellow arrows switch sides of each other depends only on S5. The total state space

comprises 6 possible solutions, since we have S4 ∈ {1, 2, 3} and S5 ∈ {1, 2}. This

makes sense in that if we collapse the two groups together the problem is effectively

to map 3 inputs to 3 outputs. The number of possible permutations in such a case

would be 3!
(3−3)!

= 6.

1

4

2 3

5 8

6 7

(a) s = {1, 1}

1

4

2 3

5 8

6 7

(b) s = {2, 1}

1

4

2 3

5 8

6 7

(c) s = {3, 1}

1

4

2 3

5 8

6 7

(d) s = {1, 2}

1

4

2 3

5 8

6 7

(e) s = {2, 2}

1

4

2 3

5 8

6 7

(f) s = {3, 2}

Figure 5.6 – All possible graph solutions, s, for the state space S = {S4, S5} where
S4 ∈ {1, 2, 3} and S5 ∈ {1, 2}. Each colour represents the path of one object
through the graph.

5.1.2.2 Bayesian network representation

Once the state space of the graph has been determined, solving the graph involves

finding the most probable state given the observed appearance information

132 CHAPTER 5. ROBUST IDENTITY TRACKING

Ŝ = argmax
S

P (S|A) (5.3)

where A is the set of appearance models from the single-target track sections.

A = {Ai;Ti is a single-target track section} (5.4)

Using Bayes’ rule, we can convert this into a product of the prior and a likelihood

function.

P (S|A) ∝ P (A|S)P (S) (5.5)

This enables us to represent the problem in a Bayesian network where the hidden

nodes are the ‘switch’ states described in the previous section and the observed

nodes represent the appearance information gathered during tracking, according to

the methods described in Chapter 4.

As described in the previous section, each state configuration defines a unique set of

paths through the graph, where each path represents one distinct object. The set of

appearance models for each single (i.e. non-group) node on such a path is described as

the appearance path and is given by Equation 5.6, where Ai represents the appearance

model of track section Ti.

path(Ai, s) = {Aj;Tj is on the same path as Ti given S = s} (5.6)

Taking the event graph from the previous section as an example, the appearance path

of a node can be found by tracing the coloured lines back from a given node. For

example, under the state hypothesis s = {1, 1}, the appearance path of node 6 is

found by tracing the red line in Figure 5.6a. The object in node 6 started in node 2,

and was present in group nodes 4 and 5. Hence

path(A6, s = {1, 1}) = {A6, A2}.

5.1. SOLVING THE EVENT GRAPH 133

path(A8)

S4

path(A6)path(A7)

S5

Figure 5.7 – Bayesian network for the event graph shown in Figure 5.6. The rectangles
represent ‘switch’ variables and the ellipses are observed nodes which define the
appearance CPDs described in Section 5.1.2.3. The path through the graph that
leads to node 8 is not dependent on switch state S5, and so they are not linked.

A path always ends in a node with no children (a tail node), and so the paths of

the tail nodes fully define a graph solution. Therefore, the likelihood function from

Equation 5.5 can be factorised as

P (A|S) =
∏

Ai∈tail nodes

P (path(Ai, s)|S = s). (5.7)

The appearance paths of objects may be dependent on multiple ‘switch’ state vari-

ables (for example in Figure 5.6, path(A6) is dependent on S4 and S5). These con-

ditional dependencies are captured as links between ‘switch’ nodes and ‘appearance

path’ nodes in the Bayesian network. The Bayesian network for the example graph

presented in the previous section is shown in Figure 5.7.

As in [77] inference is performed by message propagation using the junction tree al-

gorithm [46] and we reduce the complexity of the problem by limiting the depth in

the graph within which we allow nodes to be considered dependent. This approxima-

tion limits the size of the cliques in the junction tree, hence speeding up the message

passing. We use max-marginalisation in the message propagation (as implemented in

the Bayes Net Toolbox for MATLAB [75]) to solve the inference problem.

5.1.2.3 Node likelihoods

The previous section described the structure of the Bayesian network used to solve

the inference problem. We now define the node conditional probability distributions

134 CHAPTER 5. ROBUST IDENTITY TRACKING

(CPDs). The node CPDs are tables of probabilities for each appearance path, con-

ditioned on the state variables to which they are linked. For example, the table of

CPDs for path(A6) in Figure 5.7 will contain 6 entries (1 for each permutation of

{S4, S5}), each computed according to Equation 5.8 [77].

P (path(Ai, s)|S = s) ≈
∏

Aj∈path(Ai,s)\Ai

P (Ai, Aj) (5.8)

P (Ai, Aj) is the pair-wise similarity function for the appearance models Ai and Aj, as

defined in Equation 4.1. Computing these similarity functions for specific appearance

models was discussed in Section 4.3.2.

5.1.2.4 Number of Targets

The previous sections made the assumption that we know the number of targets

represented by each node in the event graph. For example, to determine that the

size of state space for the node in Figure 5.5b is three, we need to know that two

targets leave split to the left, and one to the right. Nillius et al. describe a technique

for computing the number of targets in each node of an event graph, however they

note in [77] that “in practice there will be inconsistencies and some links will be left

undefined”.

An example of such a situation where a node represents an unknown number of tracks

is shown in Figure 5.8a. Node 5 is a group node containing 3 targets, and it splits

into two tracks (6 and 7). They merge again to form node 8. From looking at the

graph we can conclude that node 8 must represent three targets, and that track 6 and

7 together represent three targets, but how these targets are distributed between the

tracks is unknown. In this example there is one free parameter, but more complicated

event graphs may yield more. In this section we contribute a novel algorithm that

finds the minimal number of free parameters (referred to as ‘count’ variables) required

to represent the number of targets in all graph nodes, and determines their range of

allowable values. We then show how these variables can be incorporated into the

5.1. SOLVING THE EVENT GRAPH 135

0

3

1

2

4

5 6

7

8 9 10

(a)

0(1)

3(2)

1(1)

2(1)

4(3)

5(-n6 + 3) 6(n6)

7(3)

8(1) 9(1) 10(1)

(b)

0

3

1

2

4

5 6

7

8 9 10

(c)

Figure 5.8 – The BNet algorithm applied to simulated data. (a) shows the event
graph built by applying the track extraction algorithm to segmented point cloud
data. Each track section is associated with a set of image patches, an example of
which is shown in each of the nodes. (b) shows the number of targets for each node
(in parentheses), as determined by Algorithm 1. In this example there is one free
variable with the allowed values n6 ∈ {1, 2}. The solution to the graph determined
by solving the state variables is shown in (c). The inference process has determined
that n6 = 2.

Bayesian network formulation described above such that they can be solved using

appearance information.

The event graph naturally leads to a set of constraints; for example if two groups

merge, then the number of objects in the merged group is the sum of both groups

that formed it. Likewise, when a group splits, the number of objects in the child nodes

must sum to that of the parent group. Starting nodes (i.e. nodes with no parents) are

assumed to contain only one object each. This logic can often be used to correctly

propagate the number of objects to each node in the graph, however if breaks down

when a group node known to contain n objects splits into m tracks, where m < n.

Each resulting track contains one or more objects, and the way the n objects are

distributed amongst m tracks may be unclear.

Algorithm 1 establishes a set of constraints that determines the number of targets in

each node. Lines 2 through 7 start by setting the initial constraints that single start

nodes contain one target, and that the minimum number of targets represented by a

136 CHAPTER 5. ROBUST IDENTITY TRACKING

Algorithm 1 Determine constraints on the number of objects in each node.

Require: graph made up of nodes and edges
node.min = minimum number of objects in node
node.num, edge.num = number of objects in node, edge
node.in = set of input edges to a node
node.out = set of output edges from a node

1: constraints← ∅
2: for node in graph do
3: if |node.in| = 0 and not group node then
4: constraints.add (node.num = 1)
5: end if
6: node.min← max(|node.in|, |node.out|)
7: end for
8: for node in graph do
9: if |node.in| > 0 then

10: constraints.add (node.num =
∑
{edge.num for edge ∈ node.in})

11: end if
12: if |node.out| > 0 then
13: constraints.add (node.num =

∑
{edge.num for edge ∈ node.out})

14: end if
15: constraints.add (node.num ≥ node.min)
16: end for
17: return constraints

node is the number of input or output edges (whichever is higher). This logic is based

on the fact that each edge represents at least one target, or otherwise that link would

not be present in the graph. Line 10 states that the number of targets represented by

a node is equal to the sum of the number of targets represented by each input edge,

whilst line 13 states that this number is also equal to the sum of the number of targets

on each output edge. Finally, line 15 stipulates that the number of targets represented

by a node must be equal to or greater than the minimum number, determined in line

6. Note that the constraints in lines 10 and 13 rely on the assumption that targets

don’t spontaneously appear or disappear within groups. Of course, pedestrians don’t

randomly materialise or vanish, and this should be a reasonable assumption to make,

however in practice these situations can arise, such as when the lidar-based tracker

loses an object and spawns a new track later. In such cases the constraints will be

invalid and this method is unable to compute a graph solution.

5.1. SOLVING THE EVENT GRAPH 137

Whilst this might seem like a limitation of the BNet approach, the problem really

lies in the event graph methods computing inconsistent graphs. The feedback of the

constraints determined using Algorithm 1 into the online tracking algorithms could

perhaps aid in graph consistency, and is an area for future research.

The constraints determined by Algorithm 1 are a set of linear equations, which can

include inequalities. Due to the way the constraints are created, many equations are

trivial and variable elimination can be used to reduce the constraint set. After variable

elimination, variables may be fully determined, or their range may be constrained.

Figure 5.9 shows the constraints generated by Algorithm 1 for the event graph shown

in Figure 5.8. After variable elimination, we are left with one free ‘count’ variable,

n6. Knowing that n5 and n6 are integers of value 1 or greater, we can determine that

n6 must be in the set {1, 2}.

In practise, the constraints are solved in two parts. First, the equality constraints

(lines 10 and 13 of Algorithm 1 define a system of linear equations which are solved

using fraction-free Gaussian elimination (as implemented in SymPy [98]). Line 10

adds inequality constraints and serves to limit the ranges of the remaining variables.

These constraints may be multivariate and cannot presently be solved by SymPy, so

instead we iterate through all permutations of the remaining variables, eliminating

permutations which do not meet the constraints.

Any free variables left remaining after the constraint reduction (‘count’ variables) are

part of the Bayesian network’s solution space. The appearance paths of nodes, which

were previously conditional upon ‘switch’ states may additionally become dependent

on ‘count’ states. Figure 5.10 shows the Bayesian network that represents the event

graph from Figure 5.8. Note the variable “n6” which represents n6 ∈ {1, 2}. These

additional state variables increase the complexity of the Bayesian network, but do not

change its overall form, meaning that the maximum likelihood for the state variables

(‘switch’ and ‘count’ states) can be found, as before, through a max-marginalisation

message-passing algorithm.

An additional complexity is that ‘count’ states may be dependent on one another. For

138 CHAPTER 5. ROBUST IDENTITY TRACKING

n0

n3

e0,3

n1

e1,3

n2

n4

e2,4e3,4

n5

e4,5

n6

e4,6

n7

e5,7 e6,7

n8

e7,8

n9

e7,9 e7,10

n10

(a)

reduced constraints
n0 = 1
n1 = 1
n2 = 1
n3 = 2
n4 = 3
n5 ≥ 1
n6 ≥ 1
n5 = 3− n6

n7 = 3
n8 = 1
n9 = 1
n10 = 1

(b)

line constraint
(4) n0 = 1
(13) n0 = e0,3

(15) n0 ≥ 1
(4) n1 = 1
(13) n1 = e1,3

(15) n1 ≥ 1
(4) n2 = 1
(13) n2 = e2,4

(15) n2 ≥ 1
(10) n3 = e0,3 + e1,3

(13) n3 = e3,4

(15) n3 ≥ 2
(10) n4 = e2,4 + e3,4

(13) n4 = e4,5 + e4,6

(15) n4 ≥ 2
(10) n5 = e4,5

(13) n5 = e5,7

(15) n5 ≥ 1
(10) n6 = e4,6

(13) n6 = e6,7

(15) n6 ≥ 1
(10) n7 = e5,7 + e6,7

(13) n7 = e7,8 + e7,9 + e7,10

(15) n7 ≥ 3
(10) n8 = e7,8

(15) n8 ≥ 1
(10) n9 = e7,9

(15) n9 ≥ 1
(10) n10 = e7,10

(15) n10 ≥ 1

(c)

Figure 5.9 – Using Algorithm 1 to solve for the number of targets in each node. (a)
The same event graph data as in Figure 5.8, with node and edge labels. (b) The
reduced set of constraints, after applying variable elimination. (c) The full set
of constraints where ni represents the number of targets in node i, as produced
by Algorithm 1 and annotated with the line of the algorithm that generated the
constraint. From the reduced constraints, we are left with one free variable (n6)
and can determine that it must be either 1 or 2.

5.1. SOLVING THE EVENT GRAPH 139

n6

path(A5)path(A6) path(A8) path(A9) path(A10)

S3 S4 S7

Figure 5.10 – Bayesian network for the event graph shown in Figure 5.8. The rectan-
gles represent ‘switch’ variables (which determine the way inputs link to outputs
in group nodes). The hexagon represents a ‘count’ variable (n6 in Figure 5.8b),
and the ellipses are observed nodes which define the appearance CPDs described
in Section 5.1.2.3. n6 affects the appearance path of all the tail nodes and so is
connected to each.

example Figure 5.11 shows an event graph where a node containing 5 targets splits

into two nodes. One of these child nodes then splits again before they all recombine,

and the number of targets represented in nodes 9, 10, 11, 12 and 13 are dependent

upon two variables which are constrained with respect to each other. In this case,

the variables are considered jointly and are represented by a meta ‘count’ state. In

this case, the meta ‘count’ state is (n12, n9) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
These meta states are fit into the Bayesian network in the same way as regular ‘count’

states (Figure 5.12).

5.1.2.5 Computational Complexity

In the BNet algorithm, the biggest computational cost is the evaluation of the node

CPDs. The size of each CPD is exponential in size of the state space of the linked

nodes, so for densely connected graphs this cost grows quickly. To improve the run-

time performance of the algorithm, we make use of the approximation described in

[77] and mentioned earlier, that limits the size of cliques in the network and speeds

up message passing. This approximation, by ignoring dependencies between nodes

with sufficient separation in terms of the original event graph, also limits the size of

the CPDs.

Whilst our implementation was written in Python and not optimised for speed, our

experience suggests that BNet would not be able to achieve identity reasoning at the

sensor frame rate of 20Hz. This is not necessarily a problem, however, since identity

140 CHAPTER 5. ROBUST IDENTITY TRACKING

0(1)

6(2)

1(1)

7(3)

2(1)

3(1)

5(2)

4(1)

8(5)

9(n9)

10(-n9 + 5)

11(-n12 + n9) 12(n12)

14(5)

13(n9)

15(1) 16(1) 17(1) 18(1) 19(1)

Figure 5.11 – An event graph with dependent ‘count’ states. The number of tar-
gets in nodes 9, 10, 11, 12 and 13 are unknown but can be represented by
two free parameters. After applying the constraints from Algorithm 1 and solv-
ing for the minimal set of variables, the variables n9 and n12 are found to
be dependent. Therefore a meta ‘count’ state is created, with possible values
(n12, n9) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

S5

path(A10) path(A11) path(A12)

S6S7 S8 S9

path(A18) path(A15) path(A16) path(A17) path(A19)

S14n12n9 S13

Figure 5.12 – Bayesian network with meta ‘count’ state, computed for the event graph
above. n9 and n12 are dependent on each other and so are merged into the one
state variable.

5.1. SOLVING THE EVENT GRAPH 141

reasoning is carried out independently from graph construction. Tracking and event

graph construction can proceed at full frame rate, with an identity solution computed

perhaps every few seconds, or as required by the particular application.

The HGraph method, which greedily computes identities, requires fewer model com-

parisons, and is therefore suitable for identity reasoning at every frame.

5.1.2.6 Marginalisation and information gain

A benefit of using a Bayesian network to solve for node identities that wasn’t explored

in [77] is the ability to determine the marginal likelihoods of specific variables.

Before adding appearance information, the prior probabilities of a ‘switch’ state vari-

able with two choices is {0.5, 0.5}, which corresponds to an entropy of 1 bit. If, after

incorporating appearance information, the marginal probabilities for the state vari-

able are {0.1, 0.9} the corresponding entropy is 0.47 bits. This enables the system to

examine how ‘certain’ a particular data association decision is, which could be used

to request intervention from a human operator, or data from an additional sensor.

The latter option, requesting data from additional sensor, is limited in the sense that

appearance information must have been captured by that sensor before the interaction

occurred. Observing two objects after they split is not sufficient to determine their

identities unless you have the appearance models from before they merged. One case

in which this could be useful is if a particular sensor is expensive to process but can

be logged continuously. Then, if an interaction occurs and the entropy in that state

variable remains high, additional information can be extracted from the sensor log.

This is quite applicable to the Ladybug as it is a high bandwidth sensor, for which

operations such as rectification, Bayer decoding and subsequent processing are non-

trivial. Only processing the data as needed would reduce the overall computational

resources required by the system.

Even without such a system, it is still useful for the identity reasoning algorithm to be

able to understand the uncertainty in its own predictions. A further use case for such

information is in the context of multiple sensor systems. As part of the appearance

142 CHAPTER 5. ROBUST IDENTITY TRACKING

model evaluation in Chapter 4, we introduced the concept of simulated interactions.

By simulating interactions between targets, then measuring the entropy in the graph

solution, a tracking system is able to predict target interactions that will result in

ambiguity. This could enable the system to bring another sensor on line, or request an

additional perspective from another sensor platform before the targets even interact.

The marginal probabilities computed by the BNet algorithm will be considered in

more detail in the experimental section that follows.

5.1.3 Experiments

To evaluate the ability of the HGraph and BNet methods to solve the identities

of nodes in an event graph, we make use of the same datasets presented previously

in Chapters 3 and 4. As in Chapter 3, identity-tracking performance is measured

with respect to a hand-labelled ground truth and reported in terms of the V-measure

score.

The simulated data used for the scenarios shown in Figures 5.8 and 5.11 was generated

using “BlenSor” [37], an extension to “Blender” [102] (the open source 3D content

creation application used for labelling in Section 3.2.3). “BlenSor” simulates the 3D

data captured by a variety of range sensors, and combined with the image rendering

capabilities of “Blender” was used to generate simulated Velodyne and camera data.

Figure 5.13 shows a screenshot from the application and a simulated camera frame.

Due to the modular nature of the tracking systems described in this thesis, the process

of obtaining object trajectories can be factored into three separate stages:

1. 3D lidar tracking is performed as per the methods in Section 3.3, resulting in an

event graph. The camera data associated with each observation is also recorded.

2. Appearance models (as described in Chapter 4) are constructed for each node

in the event graph, using the recorded camera data.

5.1. SOLVING THE EVENT GRAPH 143

(a) (b)

Figure 5.13 – Sensor simulation. (a) shows a screen shot of the “BlenSor” [37] simula-
tion environment, with a generated Velodyne scan. The properties of the simulated
Velodyne scan closely match real data. (b) Simulated camera data.

3. The graph is ‘solved’ using the methods described in this chapter, and track

sections (nodes) are linked together to form complete trajectories.

This separation allows us to compare specific implementations of parts of the system

independent of other design choices. For instance we can compare HGraph and

BNet on the same event graph, using exactly the same appearance models. Alter-

natively, we could the measure impact of changing the appearance model, without

changing the event graph structure or appearance reasoning algorithm.

5.1.4 Results and Discussion

In this section we evaluate the event graph solving methods described in Section 5.1.1

and Section 5.1.2. The 3D lidar tracking approaches are as described in Chapter 3,

and so the analysis of MOTP and the difference between the predicted and true

numbers of independent objects (shown in Figures 3.25 and 3.26 respectively) still

apply. In Chapter 3, however, we had no way to determine which nodes in the event

graph corresponded to which objects, so we did not analyse the identity tracking

performance.

144 CHAPTER 5. ROBUST IDENTITY TRACKING

We begin by quantitatively evaluating tracking performance on the simulated scenar-

ios used previously in this chapter. We then turn our attention to real-world data

and measure the identity tracking ability of the HGraph and BNet methods, com-

paring their performance on appearance models built from camera, lidar and finally

thermal IR data. The results from split-cost, reported in Chapter 3, are included

for comparison.

5.1.4.1 Simulated data

Our extension to the BNet method, presented in Section 5.1.2.4, can use appearance

information to solve for the number of targets represented by nodes in the event graph

in situations where the graph itself is ambiguous. How often such situations occur

depends both on the observed data and on the nature of the graph building algorithm

itself, so to focus on the determination of the ‘count’ state variables we make use of

simulated data.

Figure 5.14 shows the tracking performance of the HGraph and BNet methods on

the simulated data, with split-cost included for comparison. The event graph for

sim-three was already used as an example in Figure 5.8, where the BNet method

correctly determined that there were two objects present in node 6. The HGraph

algorithm is not designed to handle nodes containing an unknown number of targets,

and this is reflected by the lower V-measure score.

The second dataset sim-five corresponds to the event graph shown in Figure 5.11. In

this case there are two dependent variables that must be solved as one ‘meta’ state in

the Bayesian network. BNet automatically calculates the state space of these ‘count’

variables, and solves for them using the appearance models, result in the paths shown

in Figure 5.15, and a high score for this method in Figure 5.14.

5.1.4.2 Camera-based appearance models

From the evaluation of appearance models in Section 4.4 we found that Ladybug

camera data can be used to reliably solve multi-object interaction scenarios. We

5.1. SOLVING THE EVENT GRAPH 145

Figure 5.14 – Tracking performance on simulated data. The BNet solutions for sim-
three and sim-five are shown superimposed on the event graphs, in Figure 5.8c
and Figure 5.15 respectively.

would expect, therefore, that combining these models with the event graph reasoning

methods described in this chapter should result in a tracking system that can correctly

maintain object identity.

Figure 5.16 shows the V-measure score of both the HGraph and BNet reasoning

methods applied to the event graph created by split-cost-graph. As a reference,

the V-measure score from split-cost, the best of the non graph trackers, is also

shown. As expected, the event graph methods consistently matched or outperformed

split-cost across all of the datasets with near-perfect scores. Note, however, that

the event graph created for merge-bbp was inconsistent, so appearance information

could not be used to solve for node identities using the BNet method. In this case,

the V-measure score is that of the graph prior to integrating appearance information.

BNet and HGraph performed similarly well across the datasets, with BNet showing

slightly better performance on the same-shirt-a and merge-bbpp experiments.

With same-shirt-a, the event graph created by split-cost-graph contained one

split event where the number of targets in each branch was ambiguous. This section

of the event graph is shown in Figure 5.17. BNet correctly determines that there is

one object in node 4 and two in node 5. HGraph, on the other hand, is not able

to reason about the number of objects in such nodes, resulting in a lower V-measure

score.

146 CHAPTER 5. ROBUST IDENTITY TRACKING

0

6

1

7

2

3

5

4

8

9

10

11 12

14

13

15 16 17 18 19

Figure 5.15 – Solved graph for sim-five. The BNet algorithm has determined that
there were three objects in node 9 and two in node 12, and has correctly solved
the paths of all the objects in the graph.

The centroids-graph tracking approach also produces event graphs and so we evalu-

ate the performance of the HGraph and BNet methods applied to these graphs. Fig-

ure 5.18 shows the V-measure scores obtained. As described in Chapter 3, centroids-

graph creates more groups than split-cost-graph, which often results in a more

complicated event graph, possibly involving nodes that contain an unknown num-

ber of targets. BNet, with its ability to resolve these ‘count’ variables, outperforms

HGraph on such datasets.

The centroids-graph approach is also more likely to create inconsistent event graphs.

5.1. SOLVING THE EVENT GRAPH 147

Figure 5.16 – Identity tracking performance with Ladybug camera data.

3

4 5

2 1 0

Figure 5.17 – Section of the event graph for same-shirt-a. The number of targets in
nodes 4 and 5 is successfully determined by BNet to be one and two respectively

Referring back to Figure 3.25, there were four cases in which centroids-graph incor-

rectly determined the number of objects in the scene. For these experiments, BNet

is unable to generate a solution, and the V-measure score is that of the graph prior

to identity reasoning.

The mean performance across these datasets is summarised in Table 5.1, which in-

cludes all the tracking methods from Chapter 3. Overall split-cost-graph is the

best-performing method, and achieves best results when paired with the BNet graph

solving algorithm. As mentioned in Chapter 3, the MOTP performance of the graph

148 CHAPTER 5. ROBUST IDENTITY TRACKING

Figure 5.18 – Identity tracking performance using Ladybug data and centroids-
graph. Four of the event graphs recorded were inconsistent, so BNet fails to
generate a solution.

methods is worse than that of split and split-cost, due to the presence of group

nodes. Centroids-graph creates groups more often then split-cost-graph so has

the worst MOTP.

MOTP MOTA homogeneity completeness vmeasure

centroids 0.099 0.929 0.810 0.625 0.700
split 0.086 0.961 0.917 0.884 0.900
split-cost 0.086 0.989 0.976 0.848 0.905
centroids-graph-HGraph 0.137 0.991 0.995 0.938 0.964
centroids-graph-BNet 0.138 0.991 0.991 0.880 0.916
split-cost-graph-HGraph 0.094 0.997 0.999 0.980 0.989
split-cost-graph-BNet 0.094 0.997 0.999 0.972 0.983

Table 5.1 – Mean tracking performance with Ladybug camera data used in the
HGraph and BNet appearance models.

The Bayesian network applied in the BNet approach allows us to compute the uncer-

tainty of a graph solution from the entropy associated with each state variable. This

is an important advantage of the BNet method – it means the system can monitor its

own performance and could, for example, trigger warnings or request human interven-

tion when uncertainty passes a threshold. Figure 5.19 shows the total entropy of the

graph before and after appearance reasoning was applied. The reduction in entropy

effectively shows the amount of information added to the system by the appearance

5.1. SOLVING THE EVENT GRAPH 149

models. The reason why a few of the experiments show zero entropy is because the

number of state variables in each of these track graphs was zero. Since there were no

appearance decisions to be made, the prior entropy is zero, and adding appearance

information can not reduce it further.

Figure 5.19 – Event graph entropy before and after applying appearance reasoning.

5.1.4.3 Lidar-based appearance models

Whilst Chapter 4 showed that appearance models built from camera data were the

most useful for resolving multi-object interactions, we demonstrated that in some

cases shape statistics from the 3D lidar data aid in object recognition. Figure 5.20

shows the appearance reasoning results when using observation height and radius

(as measured from 3D lidar data) as appearance features. The entropy in the graph

variables before and after integrating appearance information is shown in Figure 5.21.

In most cases, the graph-based methods outperform split-cost, indicating that the

lidar features could be used to discriminate between targets. However, this was not

always the case and HGraph in particular performed poorly in a few instances.

The merge3-c experiment was the only one in which HGraph outperformed BNet

and so warrants explicit attention. The experiment involves four people (one of

whom is an operator and doesn’t interact with the others). The event graph recorded

by split-cost-graph is shown in Figure 5.22a. BNet allows us to examine the

150 CHAPTER 5. ROBUST IDENTITY TRACKING

Figure 5.20 – Appearance reasoning performance, using observation height and radius
as the appearance model.

Figure 5.21 – Entropy of geometry-based appearance reasoning solution.

uncertainty in a graph solution as shown in Figure 5.21, however these entropies are

marginalised over all state variables. To get a closer understanding of the decisions

made by BNet, we can examine the marginal probability distribution over individual

state variables. Looking at node 6, where the red and blue targets split, the marginal

probability distribution was {0.501, 0.499}, indicating that the system did not know

which target went in which direction.

A more intuitive way of understanding the uncertainty in the graph solution is to

map these state uncertainties onto node identity likelihoods. Figure 5.22b shows a

representation of these likelihoods: rows correspond to nodes from the event graph,

columns to individual object identities and the value in a cell represents the likelihood

5.1. SOLVING THE EVENT GRAPH 151

that an object is present in the corresponding node. Cells are also coloured by object

id, with the intensity proportional to the likelihood.

Initially, the system is confident it is tracking four distinct objects, since they haven’t

yet interacted. Then, three objects merge into a group, and node 4 contains objects

B, C and D. The ‘switch’ state of node 6 was very uncertain, and this is reflected by

the fact that the system gives equal likelihood to the presence of objects B and D

being in node 7. From this point onwards, objects B and D remain confused. The

system knows when they are in the same group (e.g. nodes 10 and 11), but when

they are separated it can’t tell which is which.

The reason for the confusion between objects B and D is simple. The heights of

pedestrians A, B, C and D are 1.83m, 1.72m, 1.80m and 1.69m respectively, and

the 3D lidar data is not sufficiently accurate to measure this 3cm height difference.

Given that there is a similarly small height difference between pedestrians A and C,

we would expect that if they interact then their identities will become confused.

This is indeed the case in merge4-b. The final section of the event graph and the cor-

responding identity likelihood table is shown in Figures Figure 5.22c and Figure 5.22d

respectively. All four targets interact, and there is confusion primarily between the

pairs (A, C) and (B, D). Even though there is a height difference of approximately

10cm between the two pairs, there is still a small chance that any of the pedestrians

could be in any of the final four nodes. This is due to the fact that the lidar doesn’t

measure the height of every target perfectly each time. Occlusions and other noise

means that there is some uncertainty in height and radius measurements and this

uncertainty is reflected in the identity likelihoods. Also, according to BNet, object

B is the most likely object for both nodes 24 and 25. Whilst the BNet algorithm

resolves this conflict when generating the maximum likelihood solution, in this case

the solution it finds does not match the ground truth and this is reflected in the lower

V-measure score for merge4-b in Figure 5.20.

The V-measure analysis does not take into account the uncertainty of node identities,

and evaluates only the maximum likelihood solution provided by BNet. This means

that cases where there is ambiguity, BNet will sometimes get it right, and at other

152 CHAPTER 5. ROBUST IDENTITY TRACKING

13

7

9

12

3

4

10

5

6

1 0

11

14

8

2

(a) (b)

23

24 27 26 25

(c) (d)

Figure 5.22 – Node identity likelihoods, computed from lidar-based appearance mod-
els. (a) and (b) correspond to the merge3-c experiment, whilst (c) and (d) are
from merge4-b. The tables on the right give the likelihood that a given object
(columns) is present in a node (row). For example in (b), node 6 contains targets
B and D. Node 12 is very confidently target 12, whilst node 13 could represent
either target B or D. Each column is coloured by the approximate colour of the
target with saturation corresponding to the value of the cell.

5.1. SOLVING THE EVENT GRAPH 153

times it will fail. Likewise HGraph, which maintains no concept of uncertainty,

will sometimes settle upon the correct solution when the appearance information is

ambiguous. This is the reason why HGraph performs better than BNet on merge3-

c; the appearance information is ambiguous, and HGraph happened to make the

right decision, whilst BNet did not. The ability to obtain uncertainty information

from BNet makes it a more attractive algorithm for real-world applications.

5.1.4.4 Thermal IR

Finally we consider thermal IR data. In Chapter 4 we showed that appearance models

built with thermal IR data would likely be ineffective at resolving object interactions.

This is confirmed by the experiments in this section.

Figure 5.23 shows the V-measure of the tracking results. Although appearance rea-

soning based on thermal IR data did, in a number of instances, improve tracking

performance over the comparison method, split-cost, on the majority of datasets

there was no change in the graph entropy. This means that the system did not re-

duce its overall uncertainty by incorporating appearance data, or put another way,

no identity information was gained from the IR data.

As described in the previous section, the V-measure score is computed on the max-

imum likelihood solution; in the case of ambiguous appearance information when

there are multiple solutions with very similar likelihoods, the system will sometimes

make the correct decision and sometimes fail. The fact that BNet receives a high

V-measure score for merge3-a, but a low score for merge3-b, is an example of this.

In both cases, Figure 5.23 shows that the graph entropy is not reduced by adding

appearance information.

Since the entropy reported in Figure 5.24 is measured across the entire graph, a small

decrease in entropy does not necessarily imply an increase in performance and there-

fore V-measure. A reduction in entropy might indicate that an object is sufficiently

distinct from the others such that it’s identity can be determined. For example, in

the example presented in Figure 5.22a and 5.22b, the decrease in overall entropy cor-

154 CHAPTER 5. ROBUST IDENTITY TRACKING

Figure 5.23 – Tracking performance using thermal IR.

Figure 5.24 – Graph entropy with thermal IR data.

responded to the fact that the path of object C was completely resolved, and the

remaining entropy indicated that objects B and D remained confused. However, a

reduction in entropy might also be distributed across many state variables, indicating

a slight decrease in uncertainty, but not resolving the path of any one object. This

is the case for same-shirt-a when using IR appearance models. Even though the

appearance models reduced the overall graph entropy, the identity of any one given

node (shown as a likelihood table in Figure 5.25) is still unclear.

5.1. SOLVING THE EVENT GRAPH 155

1

3

8

10

9

15

18

20

21 22

11

0

16

17

2

4

6

14

5

7

12

13

19

(a) (b)

Figure 5.25 – Node identity likelihoods, computed from IR-based appearance models
for the same-shirt-a experiment. Despite the reduction in entropy observed in
Figure 5.24, the identity of any given node is uncertain. The shade of each cell
reflects the likelihood, with darker shades corresponding to higher likelihood.

156 CHAPTER 5. ROBUST IDENTITY TRACKING

5.2 Large scale experiments

The experiments so far in this thesis have for the most part shown tracking results

on experimental data gathered in controlled conditions. We have demonstrated the

ability of our proposed methods to track the position and identities of interacting tar-

gets, in situations with up to four targets in close proximity. In this section we apply

the proposed methods to datasets collected in an unconstrained urban environment.

We qualitatively show the nature of the performance of split-cost-graph in combi-

nation with the HGraph and BNet appearance reasoning algorithms, highlighting

their strengths and weaknesses in particular unconstrained examples.

The analysis in this section builds upon the results of Section 5.1. There, we demon-

strated, through detailed experimentation on a large number of manually labelled

scenarios, that our graph-based tracking approach extracts homogeneous track sec-

tions that can be linked together via appearance reasoning to form complete object

trajectories. In this section we consider datasets that are too large to manually label.

We present, therefore, a detailed analysis of two scenarios extracted from the data

(which are small enough to label) as well as overall tracking statistics, which, when

viewed in the context of Section 5.1 demonstrate the utility of our approach.

5.2.1 Experiments

For these large scale experiments, we applied our tracking algorithms to two urban

datasets, recorded in the city of Sydney. In order to gather the datasets, “Shrimp” was

mounted on a utility vehicle and driven through city streets. Batch change detection

(described in Section 3.1.4) was used to find moving objects, which were then tracked

using the methods described in this thesis.

Opera House

The opera-house dataset is the same as that used for appearance model evaluation

in Chapter 4. However, unlike in Chapter 4 where we made use of labelled tracks

5.2. LARGE SCALE EXPERIMENTS 157

to test the appearance models, here we apply the full tracking pipeline, from change

detection and segmentation to event graph construction and appearance reasoning.

The dataset was gathered on the Sydney Opera House promenade, which is a predom-

inantly pedestrian area and no other vehicles are observed in the dataset. Figure 5.26

shows the path of the sensor vehicle and the trajectories of all tracked objects (ob-

tained using the split-cost-graph method) superimposed on aerial imagery. The

duration of the dataset was 2 minutes and it comprises 2400 Velodyne scans. Due to

the nature of the area in which the data was gathered the sensor vehicle was driven

at a fairly slow pace, with a median speed of 8.3 km/h. Figure 5.27 (duplicated from

Figure 4.6b) shows Velodyne points superimposed on a camera image taken during

the experiment.

Figure 5.26 – Tracking output of split-cost-graph on the opera-house dataset.
The trajectory of the sensor vehicle is shown in red. The short trajectory in the
upper right of the image, which may appear to be an error, is actually a correctly-
tracked pedestrian walking in the open area under the Opera House. Aerial imagery
© Microsoft Corporation.

158 CHAPTER 5. ROBUST IDENTITY TRACKING

Figure 5.27 – Segmented Velodyne lidar data superimposed upon an image from the
Ladybug camera.

CBD

The CBD dataset was gathered in the Sydney central business district on a Friday

during lunchtime hours. Heavy traffic and frequent stopping for traffic lights meant

that the speed of the sensor vehicle varied from completely stopped up to a maximum

of 30 km/h. The dataset lasts for 20 minutes and 50 seconds, and comprises 24975

Velodyne scans. Figure 5.28a shows the route taken by the sensor vehicle during

the experiment. A zoomed in region from the route, showing tracks obtained by the

split-cost-graph method, is shown in Figure 5.28b. Figure 5.29 shows examples of

objects detected by the change detection algorithm.

5.2.2 Evaluation of specific scenarios

Evaluating tracking performance in the same manner as we did for the previous

section would require the position of all objects to be labelled in all scans. Labelling

is a time consuming process, and it would not be practical to label all 27375 frames

of the datasets. To understand the behaviour of the object tracking methods on

5.2. LARGE SCALE EXPERIMENTS 159

(a)

(b)

Figure 5.28 – (a) Route of the CBD dataset through the city of Sydney, shown
overlaid on aerial imagery. (b) Zoomed in region (marked with a blue rectangle on
(a)) showing a section of the tracking result that contains a large number of tracks
crossing at an intersection. The trajectory of the sensor vehicle is shown in red.
Aerial imagery © Microsoft Corporation.

160 CHAPTER 5. ROBUST IDENTITY TRACKING

(a)

(b)

Figure 5.29 – Objects extracted by change detection in the CBD dataset. Background
points are shown in grey, and segments are drawn in different colours.

5.2. LARGE SCALE EXPERIMENTS 161

real-world data, therefore, we explore some specific cases selected manually from the

longer datasets.

5.2.2.1 Opera House - Three Pedestrians

This section analyses some trajectories extracted from the opera-house experiment.

Three pedestrians cross the road and walk parallel to it, moving in the same direction

as the sensor vehicle. Figure 5.30 shows some images captured by the forward facing

camera during the time the pedestrians were being tracked.

(a) (b) (c)

Figure 5.30 – Three pedestrians walking side-by-side during the opera-house ex-
periment, as seen by the forward facing camera on the sensor vehicle. Images are
taken at approximately 90, 105 and 127 seconds into the experiment.

The three pedestrians walk side-by-side and maintain the same positioning relative

to each other, so a correct tracking solution would record three parallel trajectories.

Figure 5.31 shows the results of the centroids and split-cost method applied to

this data. Since the pedestrians are walking close together, they are occasionally

under-segmented, and the tracking system receives only two or even one observation.

Centroids is not designed to handle this case, and the extracted trajectories shown

in Figure 5.31a demonstrate its poor performance. When under-segmentation occurs,

tracks are lost or their identities become confused.

Split-cost, on the other hand, is able to re-cluster these under-segmented obser-

vations and does a much better job of determining object trajectories. In order to

maximise homogeneity, the tracker resets tracks in the case of data association ambi-

162 CHAPTER 5. ROBUST IDENTITY TRACKING

(a) centroids (b) split-cost

Figure 5.31 – Tracking results from (a) centroids and (b) split-cost extracted from
a section of the opera-house experiment that contains three people walking side-
by-side. Centroids creates a total of 12 tracks for the 3 objects as a result of its
inability to cope with under-segmented data. Split-cost fragments one object into
3 tracks, one into 2 tracks, and the other is tracked correctly. The tracks generated
by split-cost are homogeneous in that they each contain only observations from
one object.

guity. This causes some of the trajectories to be fragmented into several pieces, and

therefore results in reduced completeness.

Split-cost-graph behaves similarly to split-cost in that it seeks to maximise the

homogeneity of individual track sections. Unlike split-cost, however, it also main-

tains the relationships between track sections in the event graph, and can therefore

link these sections into longer trajectories, thereby increasing the completeness of

the tracking solution. The track sections extracted by split-cost-graph (each of

which corresponds to a node in the event graph) are shown in Figure 5.32a. The

corresponding event graph is shown in Figure 5.32b.

The event graph recorded by split-cost-graph during tracking contains errors. The

most apparent of these is the fact that there are five start nodes (nodes with no

parents) in the graph, which means the tracker found five distinct objects when there

were really only three. This problem is caused by occlusion during group formation,

and is explored in detail in Figure 5.33. If one object is occluded for a period of time,

the group track is updated with data from the other object only and its state estimate

shifts to match that object’s location. When the other object reappears, it may do

so outside the association distance of the group and so instead of being interpreted

5.2. LARGE SCALE EXPERIMENTS 163

(a)

437

187

210

211

425

431

438

413

372

407

189

432

186

381

412

(b)

412

425

437

432

189

210

381

407

211

X

438

187

413

372

Y

431

186

(c)

Figure 5.32 – Behaviour of split-cost-graph whilst tracking the three pedestrians.
(a) shows the track sections, each colour corresponds to a separate node in the event
graph, shown in (b). The event graph in (b) contains errors; for instance there are
five start nodes (nodes with no parents), which implies five distinct objects in the
scene. In reality, though, there are only three. The graph can be fixed by adding
split events to nodes 210 and 372. This requires two additional nodes (X and Y)
and corresponding links. The manually corrected event graph is shown in (c).

164 CHAPTER 5. ROBUST IDENTITY TRACKING

as a split event, a new track is created.

(a) (b)

(c) (d)

Figure 5.33 – Example of event graph construction error. (a) Successfully tracking
two objects. (b) Under-segmentation results in a group observation and causes
tracks to be merged into a group track. (c) One object is occluded, and the group
track “locks on” to the other object. (d) Second object reappears, and the group
should split. However, the observation is outside the association distance of the
group track, so a new track is created.

To evaluate the performance of the appearance reasoning algorithms in isolation from

any errors in the graph itself, we manually adjusted the graph to reflect what actually

happened in the data. The resulting graph is shown in Figure 5.32c. Two groups

(nodes 210 and 372) exhibited the problem described in Figure 5.33, whereby a new

track should have been linked to the group in a split event. To correct this, we

manually created split events, linking the appropriate tracks (211 and 381) to the

corresponding group nodes. Additionally, any observations that were assigned to the

group node after the split event occurred are separated into a new track section and

form the other output of the split event. These extra track sections are shown as

nodes X and Y in Figure 5.32c.

We now apply the appearance reasoning methods described in Section 5.1 to this

5.2. LARGE SCALE EXPERIMENTS 165

corrected event graph. Figure 5.34 shows the graph solutions obtained by applying

the HGraph and BNet methods along with trajectories coloured by identity.

The correct solution is three pedestrians walking side-by-side. They do not change

their relative positions, so whilst BNet outperforms HGraph, it makes an error

when it changes the track order (as seen in the lower left corner of Figure 5.34e).

From the likelihood table presented in Figure 5.34c, we can see that the identity

assignments of the last few nodes have high uncertainty.

One reason the appearance models performed relatively poorly is because of the way

the pedestrians were positioned relative to the sensor vehicle. At the start of the

experiments, when nodes 186, 187 and 189 were created, the pedestrians were aligned

parallel to the camera’s imaging plane, as shown in Figure 5.35a. This meant that

the region of camera data corresponding to each target can be extracted cleanly, as

indicated by the bounding boxes marked.

Later in the experiment, when the appearance models for nodes 211, 412 and 413

were being created, the targets were arranged perpendicular to the sensor. As Fig-

ure 5.35b shows, the bounding boxes of the targets overlap and even though the hull

sampling strategy (discussed in Chapter 4) improves the likelihood that appearance

information will be sampled from the desired target, the occlusion means that the

quality of the models is reduced. Although appearance models dynamically update

and should reflect the changing target perspective, systematic occlusion means that

little information from the furthest of the targets can be extracted. This increases

the uncertainty in target identities.

Given this scenario, where we have a sensor vehicle moving through an environment

seeking to track all dynamic objects, there is not much that can be done to resolve this

particular issue. If the targets were of particular interest, then the sensor vehicle could

be actively positioned to reduce the uncertainty in the object identities, or a secondary

sensing vehicle could be used to get a better perspective of the targets. These solutions

are beyond the scope of this thesis, however it is worth noting that a probabilistic

identity tracking solution such as this is an ideal input for active perception. The

control loop can be closed around this measure of identity uncertainty.

166 CHAPTER 5. ROBUST IDENTITY TRACKING

187

210

211

X

432

438

407

413 412

186

372

Y 381

189

425

431

437

(a) HGraph

210

211

X

372

381 Y

437

407

187

425

431 432

438

413 412

186

189

(b) BNet (c)

(d) Trajectories from HGraph (e) Trajectories from BNet

Figure 5.34 – Event graph solutions via the HGraph and BNet methods. BNet gets
closer to the correct solution, but switches the ordering of the three pedestrians
after node 425. The likelihood table (c), in which each cell gives the likelihood that
that node (row) contains a given identity (column), shows that the BNet identity
assignment has low confidence.

5.2. LARGE SCALE EXPERIMENTS 167

(a) (b)

Figure 5.35 – Example of the changing target perspective during tracking. Early in
the dataset, the targets are arrange parallel to the camera’s imaging plane, and so
the appearance information from the three targets is well separated. Later during
tracking, the targets are perpendicular to the image plane and the targets occlude
each other.

This worked example qualitatively examined the performance of the tracking algo-

rithms in an unconstrained urban setting, demonstrating both strengths and weak-

nesses of the event graph and appearance reasoning approaches. We showed in Fig-

ure 5.33 an important failure mode of the event graph construction algorithm (a

potential solution to this problem is discussed in Chapter 6 as a topic for future

work) and demonstrated the advantages of the BNet appearance reasoning algo-

rithm, particularly with regard to the estimation of identity uncertainty.

5.2.2.2 CBD - Intersection

The previous section analysed the behaviour of the tracking systems on three closely

spaced targets, observed walking together for a significant length of time (75 seconds).

In this section we consider a section of data collected at a busy city intersection, during

which 14 pedestrians cross paths. This is the same section of data used in Chapter 4

for the evaluation of appearance models and the change detection results from one

scan were shown in Figure 5.29b.

A region of interest (ROI) around the intersection area was manually selected, and the

trajectories of all objects within that region labelled. An overlay of the tracked objects

projected onto an image from the forward facing camera is shown in Figure 5.36, along

168 CHAPTER 5. ROBUST IDENTITY TRACKING

with an overhead view of the trajectories.

(a) (b)

 sensor
(c)

Figure 5.36 – Labelled objects overlaid on camera data, for the CBD intersection
example. Frame (b) is approximately 1.25 seconds after frame (a). Image levels
have been manually adjusted to improve contrast. (c) Shows the object trajectories,
viewed from above.

Given these ground truth trajectories, we can compute the same supervised evaluation

metrics that have been use throughout this thesis. The results of all the different

tracking methods discussed in this thesis are shown in Table 5.2. This is a complex

dataset and determining which tracking method had the best performance requires

the comparison of all available different metrics.

According to the MOTP metric (where lower values are preferred) the split-cost

had the best performance, followed closely by split. With their ability to correct

under segmentation issues, these methods achieve higher positional accuracy. Split-

cost-graph can also re-cluster observations, but sometimes creates group nodes.

Group nodes result in a less accurate positional estimate, and therefore slightly higher

MOTP.

id-sensor # tracks MOTP misses FP MOTA homogeneity completeness vmeasure

centroids N/A 16 0.118 637 4 0.791 0.937 0.916 0.926

split N/A 15 0.091 270 23 0.903 0.987 0.981 0.984

split-cost N/A 17 0.088 186 4 0.937 0.980 0.954 0.966

centroids-graph-HGraph Ladybug 12 0.181 487 4 0.837 0.882 0.842 0.862

Lidar 12 0.181 487 4 0.836 0.891 0.834 0.862

centroids-graph-BNet Ladybug 12 0.181 487 4 0.841 0.918 0.958 0.937

Lidar 12 0.181 487 4 0.842 0.956 0.997 0.976

split-cost-graph-HGraph Ladybug 15 0.100 94 4 0.965 0.975 0.932 0.953

Lidar 15 0.100 94 4 0.966 0.988 0.948 0.968

split-cost-graph-BNet Ladybug 15 0.100 94 4 0.967 0.989 0.959 0.974

Lidar 15 0.100 94 4 0.967 0.989 0.959 0.974

Table 5.2 – Tracking performance on the intersection example (FP refers to the number of false positives). There are 14
labelled objects in the dataset, but none of the methods manage to determine the correct number of tracks. Although
split has the highest V-measure, it generates a large number of misses and false positives, and split-cost-graph has
a higher MOTA score. Split-cost-graph combined with the BNet appearance reasoning results in the highest overall
performance. Split-cost and split do a slightly better job of determining the locations of targets, although only by around
1cm on average.

170 CHAPTER 5. ROBUST IDENTITY TRACKING

Split-cost-graph in combination with the BNet appearance reasoning algorithm

achieved the highest performance in terms of MOTA and did so using either camera

or lidar based appearance models. Split-cost-graph shows considerably fewer missed

observations than the other methods and also achieves highest track homogeneity.

In terms of V-measure, however, split achieved the highest results. This illustrates

a disadvantage of the V-measure score. Since it only evaluates identity decisions

it must be considered with the additional context of false positives and misses. In

this case, although split achieves highest V-measure it has 3 times the false positive

rate, and over 5 times the false negative (miss) rate of split-cost-graph. Overall,

therefore, split-cost-graph-BNet is the best performing tracking method. Despite

V-measure’s disadvantages in cases where there are a high number false positives and

misses, its ability to measure the quality of identity assignments is important. For

this reason, V-measure and it’s component scores are included in Table 5.2.

Figure 5.37 shows the event graphs generated by centroids-graph and split-cost-

graph for the intersection scene. Recall that centroids-graph relies on the seg-

mentation result provided to it and creates a group any time multiple tracks match

to one observation. As a result, it is much more likely to create group nodes than

split-cost-graph, which first attempts to re-cluster such observations. The propen-

sity of centroids-graph towards creating group nodes is reflected in Figure 5.37a.

The event graph created by split-cost-graph Figure 5.37b is not only simpler, but

also more accurate, as demonstrated by the higher performance scores in Table 5.2.

The trajectories computed from a subsection of this data is shown in Figure 5.38.

In this example, three pedestrians pass close to each another, two at a time, and

centroids-graph groups them together. split-cost-graph, however, correctly tracks

the objects without creating any merge/split events. This demonstrates the utility of

the split-cost-graph approach. Periods of under segmentation that do not lead to

identity ambiguity can be tracked accurately without resorting to appearance reason-

ing, and group nodes are only created when they represent genuine confusion between

object identities.

The controlled experiments in Section 5.1 tested specific scenarios to show the im-

5.2. LARGE SCALE EXPERIMENTS 171

42

5

12

39

40

22

23

7

6

1530

26

31

32

34 33

35

38

43

45

16

28

4

18

0

21

27

36

14 13

1

37

29

47

11

44

46

2

17

10

25

41

3

24 19 20

8 9

(a) centroids-graph

21 2

16 17

10 8

18

1

24

22 23

0

11

25

13 14

26

27

19

15

20

95 7 4 3 6 12

(b) split-cost-graph

Figure 5.37 – Event graphs created for the intersection scene. Split-cost-graph is
less likely to create group nodes than centroids-graph as it is able to re-cluster
observations. This is reflected by the much less complicated graph structure in (b).

172 CHAPTER 5. ROBUST IDENTITY TRACKING

(a) centroids-graph

(b) split-cost-graph

Figure 5.38 – Tracks extracted from the intersection example, as three pedestrians
cross paths (moving in the directions indicated by arrows). As they cross paths
centroids-graph creates group nodes and records two merge/split events (a),
whilst split-cost-graph is able to keep the tracks separated (b).

5.2. LARGE SCALE EXPERIMENTS 173

proved performance for graph-based methods for particular types of object interac-

tions. The unconstrained data evaluated in this section, however, contains all kinds

of interactions – including some that are trivial and some that are roughly equivalent

to those tested in the controlled experiments.

That the split-cost-graph methods only perform slightly better than split and

split-cost in this example is likely due to the nature of the interaction patterns

observed. Across a large dataset, the extent to which the graph-based approaches

show an improvement over methods that don’t consider target identity is tied to the

frequency with which complex target interactions occur.

5.2.3 Overall results

In the previous section we considered specific tracking scenarios extracted from long

datasets collected in real-world conditions on the roads of Sydney. These were only

brief snapshots of much longer datasets, so in this section we present some statistics

from each dataset as a whole. We compared the performance of split-cost-graph

against centroids (the baseline approach) and split-cost (our conservative variant

of split).

5.2.3.1 Opera House

During tracking, split-cost-graph records interactions between objects in an event

graph. There is no ambiguity between the identities of objects that do not interact

with each other, so to solve the event graph we can separate it into a number of

subgraphs. From a graph theory point of view, we separate the graph into sets of

nodes that are weakly connected [27]. Consider the event graph for the intersection

scenario, shown in Figure 5.37b. This event graph contains 11 different subgraphs,

8 of which are trivial because they contain only one node. There is no ambiguity

between identities of nodes in different subgraphs, since the objects never interacted.

As a result, we can solve the subgraphs independently of one another, using either

of the algorithms described in Section 5.1. As we showed in previous experiments

174 CHAPTER 5. ROBUST IDENTITY TRACKING

BNet generally leads to better performance, but is only compatible with consistent

graphs. HGraph, however, can be applied in all cases. Therefore, to maximise

the performance of our system on this data we split the overall event graph into

independent subgraphs, then apply the BNet method. If the graph is found to be

inconsistent, we automatically switch to the HGraph appearance reasoning method

instead.

Table 5.3 shows some statistics about the tracking result recorded by split-cost-

graph on the opera-house dataset. During tracking 479 track sections we ex-

tracted, and of these 105 did not interact with any other targets. The remaining

track sections were contained within of one of 45 subgraphs, which on average con-

tained 8.3 nodes each.

The majority of graphs were consistent, meaning they could be solved using the BNet

approach. After identity reasoning, the 479 track sections had been combined into a

total of 261 tracks. The duration results in this table are for individual nodes, prior

to appearance reasoning.

opera-house graph stats

number of track sections 479
mean track section duration (s) 4.847
number of non-interacting tracks 105
mean duration of non-interacting track (s) 8.093
number of subgraphs (more than one node) 45
mean number of nodes per subgraph 8.311
number of subgraphs solved by BNet 30
number of subgraphs solved by HGraph 15
number of tracks extracted 261

Table 5.3 – Graph statistics for the opera-house dataset.

Table 5.4 shows some statistics for comparison against the other tracking methods

evaluated on the same data. After appearance reasoning, split-cost-graph creates

approximately the same number of independent tracks as centroids and split-cost.

The average length of the tracks it extracts however are considerably longer; split-

cost-graph shows on average a 16% increase in track distance and 19% increase in

5.2. LARGE SCALE EXPERIMENTS 175

track duration.

centroids split-cost split-cost-graph

number of tracks 262 284 261
mean track distance (m) 10.957 10.395 12.679
mean track duration (s) 8.475 8.423 10.082

Table 5.4 – Overall statistics for the opera-house dataset.

A histogram of track durations for the three different methods is shown in Figure 5.39.

Split-cost, as described previously, will conservatively kills tracks in order to preserve

homogeneity, meaning that it results in a higher proportion of tracks in the 0 to

5 second range. Split-cost-graph, by combining track sections together, obtains

longer track durations, results in a distribution that is shifted slightly to the right.

Figure 5.39 – Histogram of track durations from the opera-house dataset.

In a histogram like this, longer tracks are less visible. For example an object tracked

correctly for 48 seconds results in a count of 1 in the 45 to 50 second bin. However,

if the same track was broken into 24 pieces, each 2 seconds long, then the histogram

would show 24 counts in the 0 to 5 second range. This results in the histograms being

skewed heavily to the left.

A less biased way to present the same information is to compute the histogram on a

176 CHAPTER 5. ROBUST IDENTITY TRACKING

per-observation basis, weighting each track by the number of observations in it. At a

rate of, 20 observations per second (as provided by the Velodyne) the same example

would result in a histogram 960 counts in the 45 to 50 second range in the first case,

and 960 counts in the 0 to 5 second range in the second. This observation-weighted

histogram is shown in Figure 5.40.

Figure 5.40 – Histogram of track durations from the opera-house dataset, weighted
by the number of observations in each track.

This representation emphasises the ability of split-cost-graph to extract longer

tracks and reveals that split-cost extracted some longer tracks than centroids too.

Whilst split-cost does, in times of ambiguity, cut tracking short to preserve homo-

geneity, resulting in a shorter mean track duration (shown in Table 5.4) it also has

the ability to re-cluster observations, meaning that sometimes it can maintain a track

through instances of under segmentation that cause centroids to fail.

5.2.3.2 CBD

A similar analysis was performed for the CBD dataset. The graph statistics shown

in Table 5.5 reveal that a total of 5565 track sections were created. Of these 2466

were independent, i.e. objects that did not interact with any other objects. The

5.2. LARGE SCALE EXPERIMENTS 177

remaining track sections were divided between 454 subgraphs, each with an average

of 6.8 nodes. As was the case for the opera-house dataset, the majority of graphs

could be solved using the BNet appearance reasoning method, leaving 96 to be solved

by the fall-back method, HGraph.

cbd graph stats

number of track sections 5565
mean track section duration (s) 3.616
number of non-interacting tracks 2466
mean duration of non-interacting track (s) 4.335
number of subgraphs (more than one node) 454
mean number of nodes per subgraph 6.826
number of subgraphs solved by BNet 358
number of subgraphs solved by HGraph 96
number of tracks extracted 3691

Table 5.5 – Graph statistics for the CBD dataset.

In terms of the comparison with centroids and split-cost, split-cost-graph again

computed longer tracks. The amount of improvement, however, was reduced with

split-cost-graph showing a 3.7% increase in track distance and a 4.7% increase in

track duration.

centroids split-cost split-cost-graph

number of tracks 4027 3899 3691
mean track distance (m) 7.755 8.128 8.429
mean track duration (s) 4.941 5.398 5.651

Table 5.6 – Overall statistics for the CBD dataset.

This small improvement means that the differences in histograms are more subtle.

The track duration histogram is shown in Figure 5.41 and the observation-weighted

version is shown in Figure 5.42.

The tracking statistics for the opera-house and CBD experiments presented here

demonstrate that the split-cost-graph approach achieves an increase in average

track length. Coupled with prior experiments showing that split-cost-graph ex-

tracts the most homogeneous tracks across a wide variety of interaction scenarios,

178 CHAPTER 5. ROBUST IDENTITY TRACKING

Figure 5.41 – Histogram of track durations from the CBD dataset.

the results in this section demonstrate the utility of graph-based tracking coupled

with identity reasoning.

5.2.4 Discussion

The track distance and duration results presented above are unsupervised metrics

and thus do not allow the same depth of analysis as the supervised metrics used

in previous sections. However, given the size of the datasets, manual labelling (a

prerequisite for supervised evaluation) is infeasible.

The results do, however, demonstrate that the split-cost-graph method is able to

link track sections together into complete object trajectories that show an improve-

ment in length of other methods. Results presented in Sections Section 5.1.4 and

Section 5.2.2 give us confidence that our methods will also achieve higher identity-

tracking performance on these datasets.

Visual inspection of the tracks and graph solutions obtained on the opera-house

and CBD datasets leads us to the following conclusions.

5.2. LARGE SCALE EXPERIMENTS 179

Figure 5.42 – Histogram of track durations from the CBD dataset, weighted by the
number of observations in each track.

Tracking works best at close ranges

Inspection of individual sub-graphs leads us to conclude that there is a strong re-

lationship between range to targets and graph consistency. Inconsistent graphs are

often caused by interactions near the limits of sensor range.

This is unsurprising given the nature of that data. Cameras and rotating lidar sensors

such as the Velodyne have a fixed angular resolution. This means that as range

increases, the Cartesian resolution of the data decreases and fewer measurements are

sampled from each target. Reduced resolution in the point cloud data makes data

association more ambiguous, which can result in more grouping events, or incorrect

graphs. Additionally, the reduced resolution in the image data extracted for targets

means that appearance models become less discriminative.

Object-specific methods would likely improve performance

In this work we focused on tracking and appearance modelling without consideration

of the particular type of objects involved. Pedestrians, cyclists, trucks, cars and buses

were all segmented in the same pipeline and tracked under the same framework. In the

180 CHAPTER 5. ROBUST IDENTITY TRACKING

scope of this thesis, we could not consider the state of the art detection, segmentation

and classification methods for each and every object type. The methods presented

in this thesis, could, however, be used in conjunction with object-specific methods to

potentially boost performance beyond what either framework can achieve on its own.

One area in particular in which existing approaches could improve the performance

of our methods is vehicle tracking. The teams in the DUC, for example, used strong

shape priors and more specific motion models to navigate amongst traffic and avoid

collisions. Vehicle-specific models would also improve segmentation.

The primary assumption of the segmentation method (that objects can be separated

based on the distance between neighbouring points) is violated for larger objects, par-

ticularly in the presence of occlusion. This results in over-segmentation, an example

of which is shown in Figure 5.43.

Figure 5.43 – Over-segmentation of a truck in the CBD dataset.

Whilst our tracking system can handle occlusions and segmentation errors, changing

segmentation often meant that the tracker would switch between tracking parts of a

vehicle separately, and representing the whole vehicle as a group. In many cases, the

appearance reasoning methods allow full object trajectories to be extracted but the

meaning of the result can be unclear.

For an application specific deployment of our tracking system, we would recommend

the approaches developed in this thesis in conjunction with the best available object-

5.3. SUMMARY 181

specific and application-specific methods for segmentation, classification and motion

prediction.

5.3 Summary

This chapter evaluated a full framework for robust identity tracking using appearance

information to solve the event graphs computed from 3D lidar data.

In Section 5.1 we discussed two frameworks for event graph based identity reasoning.

The first, HGraph is a greedy, local approach from [106]. The second, BNet [77],

uses a Bayesian network to achieve an approximation to the globally optimal graph

solution. We adapted both of these methods from the computer vision literature and

successfully applied them to 3D data. Additionally, we proposed an extension to

BNet, which increases the range of graphs to which the method can be applied.

Through detailed experimentation we showed that these graph reasoning methods,

when combined with our proposed split-cost-graph graph extraction method from

Chapter 3 consistently achieve the best results in terms of identity tracking perfor-

mance. We analysed the ability of BNet to provide an estimate of identity uncer-

tainty, which could be used to “close the loop” around perception and control, and

demonstrated that in many cases lidar data provides sufficient appearance informa-

tion to resolve target identity.

Section 5.2 describes the application of our proposed methods to data gathered in un-

constrained urban environments. We examined some specific tracking cases extracted

from the larger datasets and presented overall tracking statistics. Building upon the

results in Section 5.1, which showed that our tracking methods reliably compute ho-

mogeneous trajectories, we demonstrated that on these large datasets our methods

achieve higher average track duration. This indicates that the HGraph and BNet

approaches were able to use appearance information to combine the track sections

extracted by split-cost-graph into full object trajectories.

182 CHAPTER 5. ROBUST IDENTITY TRACKING

Chapter 6

Conclusion

This thesis has proposed methods that allow for the tracking of multiple, interacting

targets in complex urban scenes. It focused, in particular, on the task of maintain-

ing the identity of targets in situations where phenomena such as occlusions and

interactions may cause them to become ambiguous.

To address this task, this thesis proposed new methods for tracking closely-spaced

targets using 3D lidar data (including the adaptation of a graph-building strategy that

explicitly represents identity ambiguity), developed appearance models that allow ob-

jects to be recognised amongst a set of candidate tracks, and adapted and extended

existing frameworks that combine track graphs and appearance models to solve the

identity management problem. The methods were validated on large, manually la-

belled datasets consisting of both planned interaction scenarios and unconstrained

data collected in an urban environment, showing improved performance in complex

real-world scenarios where these phenomena occur.

This chapter summarises the contributions of this thesis and presents avenues for

future research.

183

184 CHAPTER 6. CONCLUSION

6.1 Summary of contributions

The identity tracking framework developed in this thesis is shown in Figure 6.1. The

system makes use of both lidar and camera data and we discussed the processing

steps required to extract the observations that form the input to the tracking system.

Lidar-based segmentation and change detection methods were presented, and the

requirements relating to the fusion of lidar and camera data described. The methods

developed in this thesis extract “track sections”, homogeneous sets of observations

that represent a consistent object or set of objects. An appearance model is computed

for each track section. The relationships between these track sections are maintained

in an event graph, and identity reasoning methods are used to determine complete

object trajectories.

Lidar Camera

Segmentation
Projection

and sampling

Observations

Track
extraction

Graph
construction

Appearance
modelling

Identity
reasoning

track
sections

Object trajectories

Chapter 3

Chapter 5

Chapter 4

scans images

3D segments image patches

graph models

Figure 6.1 – The tracking framework developed in this thesis. Modules are linked to
the chapters in which they were discussed.

The development of this framework was described across three chapters that explored

lidar based tracking, appearance models and identity reasoning. To evaluated iden-

6.1. SUMMARY OF CONTRIBUTIONS 185

tity tracking performance, we proposed the adoption of the V-measure metric from

clustering analysis. The contributions of this work are summarised below.

6.1.1 Tracking performance evaluation

In order to understand the performance of the tracking methods developed in this

thesis, performance measures are required. We reviewed a standard method from

the literature, the CLEAR MOT metrics, and demonstrated that MOTA does not

adequately capture the ability of a system to maintain object identity.

In Section 2.4 we proposed that V-measure, from the field of clustering analysis, be

adopted as a metric for identity tracking performance. Homogeneity and complete-

ness, the components of V-measure, reflect important qualities of a tracking system

and were used throughout this thesis to understand tracking behaviour.

6.1.2 Tracking interacting objects with 3D lidar

In Chapter 3 we developed lidar based tracking methods that allow accurate tracking

of interacting targets in complex scenes. We proposed split-cost, a method that

offers improved robustness against under segmentation whilst achieving a significant

increase in track homogeneity and validated this method using a large dataset of

manually labelled interaction scenarios.

The analysis of split-cost motivated the development of tracking methods which

could maintain this level of homogeneity on extracted track sections whilst maintain-

ing a record of object interactions. We adapted an event graph strategy from the

computer vision literature and demonstrated the effectiveness of our method.

6.1.3 Appearance modelling

The lidar based tracking methods developed in Chapter 3 explicitly represent identity

ambiguity but do not provide a way to resolve target interactions. A target’s identity

186 CHAPTER 6. CONCLUSION

is not directly observable, but the methods presented in Chapter 4 provide a way to

learn information sufficient to recognise targets within the constraints imposed by the

event graph.

In Chapter 4 we explored the appearance modelling parameters relevant to a system

designer through extensive experimentation using real-world data, using a testing

scheme that simulated arbitrary object interactions from labelled data. This experi-

mentation demonstrated important properties of the identity recognition problem and

motivated the use of event graph reasoning approaches that compute joint identity

likelihoods.

6.1.4 Robust identity tracking

Chapter 5 identified two frameworks that use appearance models to solve the iden-

tities of nodes in an event graph, HGraph and BNet. We adapted these methods

to work with the track graphs obtained from lidar data, and proposed an extension

to the BNet method that increases the range of graphs that it is able to solve.

An analysis of tracking performance, both in terms of metric accuracy and identity

maintenance was presented and the ability of the BNet framework to measure its

own reduction in identity uncertainty was explored. These experiments demonstrated

that the combination of event graphs and appearance reasoning achieves increases

in identity tracking performance. Finally, the results of a large scale experiment,

performed in an unconstrained urban environment, were discussed.

6.2 Future Directions

Perception in dynamic urban environments remains a difficult problem. Whilst the

methods discussed in this thesis go some way to addressing identity ambiguity due to

phenomena such as occlusions and interactions, the complex nature of urban scenes

means that robust identity tracking remains a challenge.

6.2. FUTURE DIRECTIONS 187

The methods developed in this thesis lead to some immediate areas of future research

and development:

• The event graphs described in Chapter 3 are recorded online during tracking.

Whilst group nodes provide for multiple hypotheses over object identities, they

do not allow the tracking system to go back and adjust the merge/split events on

the basis of future evidence. For offline applications it would be advantageous

to consider the complete sequence of observations when constructing the graph.

For example, a newly appearing track could be predicted backwards in time to

see if it should in fact be linked to a group splitting event. This would likely

solve the problem shown in Figure 5.33 and improve event graph consistency.

• For deployment in a real-world tracking system, the tracking framework de-

scribed in this thesis should be combined with the current state of the art

vehicle tracking systems. Knowledge of road layout including traffic direction

and lanes provides strong priors for vehicle tracking and determination of ob-

ject type can also improve segmentation performance. The parts of a scene

not tracked by vehicle-specific models could then be processed using our more

generic identity-tracking framework.

• Chapter 4 considered appearance models built from either lidar or camera data.

Reliability could likely be increased by combining the two modalities in a joint

feature space. Multi-modal classification and recognition is a large area of

research and these techniques could likely be applied directly.

• An alternative way of using appearance information from multiple sensors is

via a cascade classifier. Given we are already tracking objects with lidar data,

simple geometric features are cheap to compute, and Chapter 4 showed that

these features are often powerful enough to determine object identity. As the

system has the ability to monitor its own uncertainty (the BNet approach),

then identity decisions that remain ambiguous after the application of lidar-

based appearance models can be deferred to camera-based models, which in

this work were shown to be more accurate. This approach may be preferable to

188 CHAPTER 6. CONCLUSION

the multi-modal models mentioned in the previous bullet point, as the camera

features may incur a significant computational cost.

• In this thesis, positional tracking and event graph construction were performed

completely independently of appearance reasoning. This had the advantage of

allowing us to develop and validate the systems separately, and also evaluate

the contribution of each part of the system to overall tracking performance.

However feedback from identity reasoning back into tracking could increase the

capability of the system. In particular, the ability to determine the number of

objects in each node of the graph (as provided by BNet) could allow better

re-clustering strategies. Also, identity recognition would aid in determining if

an newly-observed object is in fact a new target, or a previously observed target

emerging from an occlusion.

• The availability of identity uncertainty from the BNet method enables the

development of “active perception” approaches, in which feedback from percep-

tion becomes part of the control loop. The integration of tracking and control

would allow sensor platforms to plan trajectories which maximise information

gain and reduce identity uncertainty.

Bibliography

[1] CLassification of Events Activities and Relationships (CLEAR) Evaluation
and Workshop. http://www.clear-evaluation.org/. 2007.

[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and
people-detection-by-tracking. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1 –8, june 2008.

[3] K. Arras, B. Lau, S. Grzonka, M. Luber, O. Mozos, D. Meyer-Delius, and
W. Burgard. Range-based people detection and tracking for socially enabled
service robots. In E. Prassler, M. Zllner, R. Bischoff, W. Burgard, R. Haschke,
M. Hgele, G. Lawitzky, B. Nebel, P. Plger, and U. Reiser, editors, Towards
Service Robots for Everyday Environments, volume 76 of Springer Tracts in
Advanced Robotics, pages 235–280. Springer Berlin Heidelberg, 2012.

[4] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz,
D. Hong, A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier,
A. Dalton, J. Farmer, J. Hurdus, S. Kimmel, P. King, A. Taylor, D. V.
Covern, and M. Webster. Odin: Team victortango’s entry in the darpa urban
challenge. Journal of Field Robotics, 25(8):467–492, 2008.

[5] Y. Bar-Shalom. Tracking methods in a multitarget environment. Automatic
Control, IEEE Transactions on, 23(4):618 – 626, August 1978.

[6] Y. Bar-Shalom, X. Li, and T. Kirubarajan. Estimation with applications to
tracking and navigation. Wiley-Interscience, 2001.

[7] H. Becker. Identification and characterization of events in social media. PhD
thesis, Columbia University, 2011.

[8] C. B. Bell. Mutual information and maximal correlation as measures of
dependence. The Annals of Mathematical Statistics, 33(2):587–595, 06 1962.

[9] H. Ben Shitrit, J. Berclaz, F. Fleuret, and P. Fua. Tracking multiple people
under global appearance constraints. In Proc. of the International Conference
on Computer Vision (ICCV), pages 137–144. IEEE, 2011.

189

http://www.clear-evaluation.org
http://www.clear-evaluation.org
http://www.clear-evaluation.org/
http://dx.doi.org/10.1109/CVPR.2008.4587583
http://dx.doi.org/10.1109/CVPR.2008.4587583
http://dx.doi.org/10.1007/978-3-642-25116-0_18
http://dx.doi.org/10.1007/978-3-642-25116-0_18
http://dx.doi.org/10.1002/rob.20248
http://dx.doi.org/10.1002/rob.20248
http://dx.doi.org/10.1109/TAC.1978.1101790
http://dx.doi.org/10.1214/aoms/1177704583
http://dx.doi.org/10.1214/aoms/1177704583

190 BIBLIOGRAPHY

[10] K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking
performance: The CLEAR MOT Metrics. EURASIP Journal on Image and
Video Processing, 2008, 2008.

[11] P. Besl and N. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14:239–256, 1992.

[12] A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey. A database
for person re-identification in multi-camera surveillance networks. In Digital
Image Computing Techniques and Applications (DICTA), 2012 International
Conference on, pages 1–8, 2012.

[13] S. Birchfield and S. Rangarajan. Spatiograms versus histograms for
region-based tracking. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 1158 –
1163 vol. 2, june 2005.

[14] Bosch Automotive Technology. LRR3: 3rd generation long-range radar
sensor, 2009.

[15] M. Bosse, R. Zlot, and P. Flick. Zebedee: Design of a spring-mounted 3-D
range sensor with application to mobile mapping. Robotics, IEEE
Transactions on, 28(5):1104 –1119, oct. 2012.

[16] A. Bruce and G. Gordon. Better motion prediction for people-tracking. In
ICRA 2004, 2004.

[17] R. Cavallaro, M. Hybinette, M. White, and T. Balch. Augmenting live
broadcast sports with 3d tracking information. MultiMedia, IEEE, 18(4):
38–47, 2011.

[18] S.-H. Cha. Comprehensive survey on distance/similarity measures between
probability density functions. International Journal of Mathematical Models
and Methods in Applied Sciences, 1(4):300–307, 2007.

[19] C. Chang and S. Chatterjee. Quantization error analysis in stereo vision. In
Signals, Systems and Computers, 1992. 1992 Conference Record of The
Twenty-Sixth Asilomar Conference on, pages 1037–1041 vol.2, 1992.

[20] Y. Chen and G. Medioni. Object modeling by registration of multiple range
images. In Robotics and Automation, 1991. Proceedings., 1991 IEEE
International Conference on, pages 2724 –2729 vol.3, April 1991.

[21] D. Clark and S. Godsill. Group target tracking with the gaussian mixture
probability hypothesis density filter. In Intelligent Sensors, Sensor Networks
and Information, 2007. ISSNIP 2007. 3rd International Conference on, pages
149 –154, December 2007.

http://dx.doi.org/10.1155/2008/246309
http://dx.doi.org/10.1155/2008/246309
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/34.121791
http://dx.doi.org/10.1109/DICTA.2012.6411689
http://dx.doi.org/10.1109/DICTA.2012.6411689
http://dx.doi.org/10.1109/CVPR.2005.330
http://dx.doi.org/10.1109/CVPR.2005.330
http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://dx.doi.org/10.1109/TRO.2012.2200990
http://dx.doi.org/10.1109/TRO.2012.2200990
http://dx.doi.org/10.1109/MMUL.2011.61
http://dx.doi.org/10.1109/MMUL.2011.61
http://dx.doi.org/10.1109/ACSSC.1992.269140
http://dx.doi.org/10.1109/ROBOT.1991.132043
http://dx.doi.org/10.1109/ROBOT.1991.132043
http://dx.doi.org/10.1109/ISSNIP.2007.4496835
http://dx.doi.org/10.1109/ISSNIP.2007.4496835

BIBLIOGRAPHY 191

[22] J. Coales, H. Calpine, and D. Watson. Naval fire-control radar. Electrical
Engineers - Part IIIA: Radiolocation, Journal of the Institution of, 93(2):
349–379, 1946.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In C. Schmid, S. Soatto, and C. Tomasi, editors, International Conference on
Computer Vision & Pattern Recognition, volume 2, pages 886–893, INRIA
Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334, June 2005.

[24] M. Darms, P. Rybski, and C. Urmson. Classification and tracking of dynamic
objects with multiple sensors for autonomous driving in urban environments.
In Intelligent Vehicles Symposium, 2008 IEEE, pages 1197 –1202, 4-6 2008.

[25] M. Darms, P. Rybski, C. Baker, and C. Urmson. Obstacle detection and
tracking for the urban challenge. Intelligent Transportation Systems, IEEE
Transactions on, 10(3):475 –485, sept. 2009.

[26] B. Davies. A review of robotics in surgery. Proceedings of the Institution of
Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1):
129–140, 2000.

[27] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, Heidelberg, second edition, 2000.

[28] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton,
and A. Frenkel. On the Segmentation of 3D LIDAR Point Clouds. In Proc. of
the IEEE International Conference on Robotics & Automation (ICRA), 2011.

[29] B. Douillard, J. Underwood, N. Melkumyan, S. Singh, S. Vasudevan, and
C. Brunner. Environment modeling methods for autonomous operations in
semi-urban environments. ACFR Internal, 2009.

[30] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of
points in the plane. Information Theory, IEEE Transactions on, 29(4):
551–559, 1983.

[31] A. Ess, B. Leibe, K. Schindler, and L. Van Gool. A mobile vision system for
robust multi-person tracking. In NIPS Robotics Workshop, 2008.

[32] Federal Aviation Administration. Automatic dependent surveillance-broadcast
(ads-b). 2011.

[33] T. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of multiple
targets using joint probabilistic data association. Oceanic Engineering, IEEE
Journal of, 8(3):173 – 184, jul 1983.

http://dx.doi.org/10.1049/ji-3a-1.1946.0122
http://lear.inrialpes.fr/pubs/2005/DT05
http://dx.doi.org/10.1109/IVS.2008.4621259
http://dx.doi.org/10.1109/IVS.2008.4621259
http://dx.doi.org/10.1109/TITS.2009.2018319
http://dx.doi.org/10.1109/TITS.2009.2018319
http://dx.doi.org/10.1243/0954411001535309
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1109/TIT.1983.1056714
http://www.faa.gov/nextgen/implementation/programs/adsb/
http://www.faa.gov/nextgen/implementation/programs/adsb/
http://dx.doi.org/10.1109/JOE.1983.1145560
http://dx.doi.org/10.1109/JOE.1983.1145560

192 BIBLIOGRAPHY

[34] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119 – 139, 1997.

[35] K. Goto, K. Kidono, Y. Kimura, and T. Naito. Pedestrian detection and
direction estimation by cascade detector with multi-classifiers utilizing feature
interaction descriptor. In Intelligent Vehicles Symposium (IV), 2011 IEEE,
pages 224–229, 2011.

[36] M. S. Grewal, L. R. Weill, and A. P. Andrews. Global positioning systems,
inertial navigation, and integration. John Wiley & Sons, 2001.

[37] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree. Blensor: Blender sensor
simulation toolbox. In Advances in Visual Computing, volume 6939 of Lecture
Notes in Computer Science, pages 199–208. Springer Berlin Heidelberg, 2011.

[38] L. Guibas. The identity management problem; a short survey. In Information
Fusion, 2008 11th International Conference on, pages 1 –7, July 2008.

[39] E. Guizzo. How google’s self-driving car works. 2011. Retrieved 07-Nov-2013.

[40] D. Helbing, I. Farkas, P. Molnàr, and T. Vicsek. Simulation of pedestrian
crowds in normal and evacuation situations. In M. Schreckenberg and S. D.
Sharma, editors, Pedestrian and Evacuation Dynamics, pages 21–58, Berlin,
2002. Springer.

[41] E. Hellinger. Neue Begründung der Theorie quadratischer Formen von
unendlichvielen Veränderlichen. J. Reine Angew. Math., 136:210–271, 1909.

[42] M. Himmelsbach, T. Luettel, and H.-J. Wuensche. Real-time object
classification in 3d point clouds using point feature histograms. In IROS’09:
Proceedings of the 2009 IEEE/RSJ international conference on Intelligent
robots and systems, pages 994–1000, Piscataway, NJ, USA, 2009. IEEE Press.

[43] M. Himmelsbach, A. Müller, T. Lüttel, and H.-J. Wünsche. Lidar-based 3d
object perception. In Proceedings of 1st International Workshop on Cognition
for Technical Systems, München, October 2008.

[44] Hitachi. http://www.hitachi-hta.com/products/advanced-
materials/electronic-devices/nippon-signal-mems-3d-laser-sensor.

[45] S. Hoogendoorn and P. Bovy. Gas-kinetic modeling and simulation of
pedestrian flows. Transportation Research Record: Journal of the
Transportation Research Board, 1710(-1):28–36, January 2000.

[46] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
International Journal of Approximate Reasoning, 15:225–263, 1996.

http://dx.doi.org/http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1109/IVS.2011.5940432
http://dx.doi.org/10.1109/IVS.2011.5940432
http://dx.doi.org/10.1109/IVS.2011.5940432
http://dx.doi.org/10.1007/978-3-642-24031-7_20
http://dx.doi.org/10.1007/978-3-642-24031-7_20
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://www.hitachi-hta.com/products/advanced-materials/electronic-devices/nippon-signal-mems-3d-laser-sensor
http://www.hitachi-hta.com/products/advanced-materials/electronic-devices/nippon-signal-mems-3d-laser-sensor
http://dx.doi.org/10.3141/1710-04
http://dx.doi.org/10.3141/1710-04

BIBLIOGRAPHY 193

[47] A. E. Johnson. Spin-Images: A representation for 3-D surface matching. PhD
thesis, Carnegie Mellon University, 1997.

[48] R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart. Generative object detection
and tracking in 3d range data. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 3075–3081, 2012.

[49] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 34(7):1409–1422,
2012.

[50] B. Kalyan, K. Lee, S. Wijesoma, D. Moratuwage, and N. Patrikalakis. A
random finite set based detection and tracking using 3d lidar in dynamic
environments. In Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on, pages 2288 –2292, 2010.

[51] B. Kluge, C. Kohler, and E. Prassler. Fast and robust tracking of multiple
moving objects with a laser range finder. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages
1683 – 1688 vol.2, 2001.

[52] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems 25, pages 1106–1114, 2012.

[53] H. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[54] C.-H. Kuo and R. Nevatia. How does person identity recognition help
multi-person tracking? In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1217–1224, 2011.

[55] B. Lau, K. Arras, and W. Burgard. Multi-model hypothesis group tracking
and group size estimation. International Journal of Social Robotics, 2(1):
19–30, March 2010.

[56] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher,
E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson,
S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A. Epstein, K. Maheloni,
K. Moyer, T. Jones, R. Buckley, M. Antone, R. Galejs, S. Krishnamurthy, and
J. Williams. A perception-driven autonomous urban vehicle. Journal of Field
Robotics, 25(10):727 – 774, October 2008.

[57] J. Levinson and S. Thrun. Robust vehicle localization in urban environments
using probabilistic maps. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 4372 –4378, may 2010.

http://dx.doi.org/10.1109/ICRA.2012.6224585
http://dx.doi.org/10.1109/ICRA.2012.6224585
http://dx.doi.org/10.1109/TPAMI.2011.239
http://dx.doi.org/10.1109/ICSMC.2010.5641985
http://dx.doi.org/10.1109/ICSMC.2010.5641985
http://dx.doi.org/10.1109/ICSMC.2010.5641985
http://dx.doi.org/10.1109/ROBOT.2001.932853
http://dx.doi.org/10.1109/ROBOT.2001.932853
http://dx.doi.org/10.1109/CVPR.2011.5995384
http://dx.doi.org/10.1109/CVPR.2011.5995384
http://dx.doi.org/10.1007/s12369-009-0036-0
http://dx.doi.org/10.1007/s12369-009-0036-0
http://dx.doi.org/10.1109/ROBOT.2010.5509700
http://dx.doi.org/10.1109/ROBOT.2010.5509700

194 BIBLIOGRAPHY

[58] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle
localization in urban environments. In Proceedings of Robotics: Science and
Systems, Atlanta, GA, USA, June 2007.

[59] J. Levinson and S. Thrun. Unsupervised calibration for multi-beam lasers. In
Proc. of the International Symposium on Experimental Robotics (ISER), 2010.

[60] J. Levinson and S. Thrun. Automatic online calibration of cameras and lasers.
In Proc. of Robotics: Science and Systems, 2013.

[61] L. Lin, Y. Bar-Shalom, and T. Kirubarajan. Track labeling and phd filter for
multitarget tracking. Aerospace and Electronic Systems, IEEE Transactions
on, 42(3):778 –795, july 2006.

[62] M. Lindstrom and J.-O. Eklundh. Detecting and tracking moving objects
from a mobile platform using a laser range scanner. In Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on,
volume 3, pages 1364 –1369 vol.3, 2001.

[63] M. Luber and K. O. Arras. Multi-hypothesis social grouping and tracking for
mobile robots. In Proc. of Robotics: Science and Systems, 2013.

[64] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras. People tracking with
human motion predictions from social forces. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 464 –469, 3-7 2010.

[65] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, page 14. California, USA, 1967.

[66] R. Mahler. Multitarget bayes filtering via first-order multitarget moments.
Aerospace and Electronic Systems, IEEE Transactions on, 39(4):1152 – 1178,
2003.

[67] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger,
D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp,
D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen,
I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and
S. Thrun. Junior: The Stanford entry in the urban challenge. Journal of Field
Robotics, 2008.

[68] F. Moosmann and C. Stiller. Velodyne slam. In Intelligent Vehicles
Symposium (IV), 2011 IEEE, pages 393 –398, june 2011. **.

[69] F. Moosmann, O. Pink, and C. Stiller. Segmentation of 3D lidar data in
non-flat urban environments using a local convexity criterion. pages 215 –220,
2009.

http://dx.doi.org/10.1109/TAES.2006.248213
http://dx.doi.org/10.1109/TAES.2006.248213
http://dx.doi.org/10.1109/IROS.2001.977171
http://dx.doi.org/10.1109/IROS.2001.977171
http://dx.doi.org/10.1109/ROBOT.2010.5509779
http://dx.doi.org/10.1109/ROBOT.2010.5509779
http://dx.doi.org/10.1109/TAES.2003.1261119
http://dx.doi.org/10.1109/IVS.2011.5940396
http://dx.doi.org/10.1109/IVS.2009.5164280
http://dx.doi.org/10.1109/IVS.2009.5164280

BIBLIOGRAPHY 195

[70] F. Moosmann and T. Fraichard. Motion estimation from range images in
dynamic outdoor scenes. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 142 –147, 3-7 2010.

[71] P. Morton, B. Douillard, and J. Underwood. An evaluation of dynamic object
tracking with 3D LIDAR. In Proc. of the Australasian Conference on Robotics
& Automation (ACRA), 2011.

[72] P. Morton, B. Douillard, and J. Underwood. Multi-sensor identity tracking
with event graphs. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 4742–4748, 2013.

[73] M. Mucientes and W. Burgard. Multiple hypothesis tracking of clusters of
people. In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 692 – 697, 2006.

[74] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):pp. 32–38,
1957.

[75] K. Murphy et al. The bayes net toolbox for matlab. Computing science and
statistics, 33(2):1024–1034, 2001.

[76] L. E. Navarro-Serment, C. Mertz, N. Vandapel, and M. Hebert. Ladar-based
pedestrian detection and tracking. In Proc. 1st. Workshop on Human
Detection from Mobile Robot Platforms, IEEE ICRA 2008. IEEE, May 2008.

[77] P. Nillius, J. Sullivan, and S. Carlsson. Multi-target tracking - linking
identities using bayesian network inference. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages
2187 – 2194, 2006.

[78] G. Pandey, J. McBride, S. Savarese, and R. Eustice. Extrinsic calibration of a
3d laser scanner and an omnidirectional camera. In IAV2010, 2010.

[79] K. Panta, D. Clark, and B.-N. Vo. Data association and track management
for the gaussian mixture probability hypothesis density filter. Aerospace and
Electronic Systems, IEEE Transactions on, 45(3):1003 –1016, july 2009.

[80] A. Petrovskaya and S. Thrun. Model based vehicle detection and tracking for
autonomous urban driving. Autonomous Robots, 26:123–139, 2009.

[81] Point Grey Research, Inc. http://www.ptgrey.com/products/ladybug3/.

[82] A. Quadros, J. Underwood, and B. Douillard. An occlusion-aware feature for
range images. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 4428–4435, 2012.

http://dx.doi.org/10.1109/ROBOT.2010.5509381
http://dx.doi.org/10.1109/ROBOT.2010.5509381
http://dx.doi.org/10.1109/ICRA.2013.6631252
http://dx.doi.org/10.1109/ICRA.2013.6631252
http://dx.doi.org/10.1109/IROS.2006.282614
http://dx.doi.org/10.1109/IROS.2006.282614
http://www.jstor.org/stable/2098689
http://www.ri.cmu.edu/publication_view.html?pub_id=6019
http://www.ri.cmu.edu/publication_view.html?pub_id=6019
http://dx.doi.org/10.1109/CVPR.2006.198
http://dx.doi.org/10.1109/CVPR.2006.198
http://dx.doi.org/10.1109/TAES.2009.5259179
http://dx.doi.org/10.1109/TAES.2009.5259179
http://dx.doi.org/10.1007/s10514-009-9115-1
http://dx.doi.org/10.1007/s10514-009-9115-1
http://www.ptgrey.com/products/ladybug3/
http://dx.doi.org/10.1109/ICRA.2012.6225239
http://dx.doi.org/10.1109/ICRA.2012.6225239

196 BIBLIOGRAPHY

[83] D. Reid. An algorithm for tracking multiple targets. Automatic Control,
IEEE Transactions on, 24(6):843 – 854, dec 1979.

[84] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 410–420,
2007.

[85] S. Schneider, M. Himmelsbach, T. Luettel, and H.-J. Wuensche. Fusing vision
and lidar - synchronization, correction and occlusion reasoning. In Intelligent
Vehicles Symposium (IV), 2010 IEEE, pages 388 –393, 2010.

[86] F. Schöler, J. Behley, V. Steinhage, D. Schulz, and A. B. Cremers. Person
tracking in three-dimensional laser range data with explicit occlusion
adaption. 2011.

[87] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple moving
targets with a mobile robot using particle filters and statistical data
association. In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 2, pages 1665 – 1670 vol.2, 2001.

[88] D. Schulz, W. Burgard, D. Fox, and A. Cremers. People tracking with mobile
robots using sample-based joint probabilistic data association filters. The
International Journal of Robotics Research, 22(2):99, 2003.

[89] M. Schutz, N. Appenrodt, J. Dickmann, and K. Dietmayer. Simultaneous
tracking and shape estimation with laser scanners. In Information Fusion
(FUSION), 2013 16th International Conference on, pages 885–891, 2013.

[90] R. Sea. An efficient suboptimal decision procedure for associating sensor data
with stored tracks in real-time surveillance systems. In Decision and Control,
1971 IEEE Conference on, volume 10, pages 33–37, 1971.

[91] J. Shackleton, B. VanVoorst, and J. Hesch. Tracking people with a 360-degree
lidar. In Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh
IEEE International Conference on, pages 420 – 426, 2010.

[92] J. Shi and C. Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer
Society Conference on, pages 593 –600, jun 1994.

[93] L. Spinello, K. O. Arras, R. Triebel, and R. Siegwart. A layered approach to
people detection in 3d range data. In Proc. of The AAAI Conference on
Artificial Intelligence: Physically Grounded AI Track (AAAI), 2010.

http://www.aclweb.org/anthology/D/D07/D07-1043
http://www.aclweb.org/anthology/D/D07/D07-1043
http://dx.doi.org/10.1109/IVS.2010.5548079
http://dx.doi.org/10.1109/IVS.2010.5548079
http://www.iai.uni-bonn.de/~schoele/pubs/icra2011_3dtracking_florianschoeler/icra2011_3dtracking_florianschoeler.pdf
http://www.iai.uni-bonn.de/~schoele/pubs/icra2011_3dtracking_florianschoeler/icra2011_3dtracking_florianschoeler.pdf
http://www.iai.uni-bonn.de/~schoele/pubs/icra2011_3dtracking_florianschoeler/icra2011_3dtracking_florianschoeler.pdf
http://dx.doi.org/10.1109/ROBOT.2001.932850
http://dx.doi.org/10.1109/ROBOT.2001.932850
http://dx.doi.org/10.1109/ROBOT.2001.932850
http://dx.doi.org/10.1109/CDC.1971.270945
http://dx.doi.org/10.1109/CDC.1971.270945
http://dx.doi.org/10.1109/AVSS.2010.52
http://dx.doi.org/10.1109/AVSS.2010.52
http://dx.doi.org/10.1109/CVPR.1994.323794

BIBLIOGRAPHY 197

[94] L. Spinello, M. Luber, and K. O. Arras. Tracking people in 3d using a
bottom-up top-down people detector. In Proc. of The International
Conference in Robotics and Automation (ICRA), 2011.

[95] C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for
real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society Conference on., volume 2. IEEE, 1999.

[96] C. Studholme, D. Hill, and D. Hawkes. An overlap invariant entropy measure
of 3d medical image alignment. Pattern Recognition, 32(1):71 – 86, 1999.

[97] J. Sullivan and S. Carlsson. Tracking and labelling of interacting multiple
targets. Computer Vision–ECCV 2006, pages 619–632, 2006.

[98] SymPy Development Team. Sympy: Python library for symbolic mathematics,
2013.

[99] J. Tanaka, D. Weiskopf, and P. Williams. The role of color in high-level
vision. Trends in cognitive sciences, 5(5):211–215, 2001.

[100] A. Technologies. Ptz auto-tracking module.

[101] A. Teichman and S. Thrun. Tracking-based semi-supervised learning. The
International Journal of Robotics Research, 31(7):804–818, 2012.

[102] The Blender Foundation. Blender. http://www.blender.org/.

[103] D. J. Therriault, R. H. Yaxley, and R. A. Zwaan. The role of color
diagnosticity in object recognition and representation. Cognitive Processing,
10(4):335–342, 2009.

[104] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,
D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and
W. Whittaker. Autonomous exploration and mapping of abandoned mines.
Robotics Automation Magazine, IEEE, 11(4):79–91, 2004.

[105] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
report, International Journal of Computer Vision, 1991.

[106] A. Torabi and G.-A. Bilodeau. A multiple hypothesis tracking method with
fragmentation handling. In Canadian Conference on Computer and Robot
Vision, pages 8–15, May 2009.

[107] A. Torabi, G. Massé, and G.-A. Bilodeau. An iterative integrated framework
for thermal visible image registration, sensor fusion, and people tracking for
video surveillance applications. Computer Vision and Image Understanding,
116(2):210 – 221, 2012.

http://dx.doi.org/http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://dx.doi.org/http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://www.sympy.org
http://www.aventuracctv.com/PTZ-Auto-Tracking-Module/
http://dx.doi.org/10.1177/0278364912442751
http://www.blender.org/
http://dx.doi.org/10.1007/s10339-009-0260-4
http://dx.doi.org/10.1007/s10339-009-0260-4
http://dx.doi.org/10.1109/MRA.2004.1371614
http://dx.doi.org/10.1109/CRV.2009.28
http://dx.doi.org/10.1109/CRV.2009.28
http://dx.doi.org/10.1016/j.cviu.2011.10.006
http://dx.doi.org/10.1016/j.cviu.2011.10.006
http://dx.doi.org/10.1016/j.cviu.2011.10.006

198 BIBLIOGRAPHY

[108] J. Underwood, A. Hill, T. Peynot, and S. Scheding. Error modeling and
calibration of exteroceptive sensors for accurate mapping applications.
Journal of Field Robotics, 27(1):2–20, 2010.

[109] J. Underwood, D. Gillsjo, T. Bailey, and V. Vlaskine. Explicit 3d change
detection using ray-tracing in spherical coordinates. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages
4735–4741, 2013.

[110] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev,
M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. . Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and
D. Ferguson. Autonomous driving in urban environments: Boss and the urban
challenge. Journal of Field Robotics, 25(8):425–466, 2008.

[111] Velodyne Lidar. http://www.velodynelidar.com/lidar/hdlabout/origins.aspx.

[112] Velodyne Lidar. HDL-64E S2 Users Manual, 2008.

[113] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on,
volume 1, pages I–511–I–518 vol.1, 2001.

[114] C. F. Wakim, S. Capperon, and J. Oksman. A markovian model of pedestrian
behavior. In 2004 IEEE lnternational Conference on Systems, Man and
Cybernetics, 2004.

[115] D. Wang, I. Posner, and P. Newman. What could move? finding cars,
pedestrians and bicyclists in 3d laser data. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 4038–4044, 2012.

[116] P. Withagen, K. Schutte, and F. Groen. Likelihood-based object detection
and object tracking using color histograms and EM. In Image Processing,
2002 IEEE International Conference on, volume 1, pages 589–592, 2002.

[117] B. Yang and R. Nevatia. An online learned crf model for multi-target
tracking. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 2034–2041. IEEE, 2012.

[118] B. Yang and R. Nevatia. Multi-target tracking by online learning of non-linear
motion patterns and robust appearance models. In Computer Vision and

http://dx.doi.org/10.1109/ICRA.2013.6631251
http://dx.doi.org/10.1109/ICRA.2013.6631251
http://dx.doi.org/10.1002/rob.20255
http://dx.doi.org/10.1002/rob.20255
http://www.velodynelidar.com/lidar/hdlabout/origins.aspx
http://www.velodynelidar.com/lidar/products/manual/hdl-64e%20s2%20manual_rev%20a_lowres.pdf
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/ICRA.2012.6224734
http://dx.doi.org/10.1109/ICRA.2012.6224734
http://dx.doi.org/10.1109/ICIP.2002.1038092
http://dx.doi.org/10.1109/ICIP.2002.1038092

BIBLIOGRAPHY 199

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1918–1925.
IEEE, 2012.

[119] A. R. Zamir, A. Dehghan, and M. Shah. Gmcp-tracker: Global multi-object
tracking using generalized minimum clique graphs. In Proceedings of the
European Conference on Computer Vision (ECCV), 2012.

[120] M. Zervos, H. B. Shitrit, F. Fleuret, and P. Fua. Facial descriptors for
identity-preserving multiple people tracking. Technical report, Swiss Federal
Institute of Technology, Lausanne (EPFL), 2013.

	Copyright_Statement
	morton_pm_thesis(1).pdf
	Declaration
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Tracking approaches
	2.1.1 Tracking by detection
	2.1.1.1 Detection via classification
	2.1.1.2 Detection via background subtraction
	2.1.1.3 Prediction
	2.1.1.4 Data Association
	2.1.1.5 Track Management

	2.1.2 Tracking by registration
	2.1.3 Hybrid and alternative approaches

	2.2 Target Identity
	2.3 Sensors for tracking in urban environments
	2.3.1 Radar
	2.3.2 2D Lidar
	2.3.3 3D Lidar
	2.3.4 Camera

	2.4 Evaluating tracking performance
	2.4.1 Evaluation criteria
	2.4.2 The CLEAR MOT metrics
	2.4.3 GMOTA
	2.4.4 V-measure
	2.4.5 Comparison of performance measures

	2.5 Summary

	3 Tracking interacting objects with 3D lidar
	3.1 3D lidar and pre-processing
	3.1.1 Velodyne lidar
	3.1.2 Coordinate Transforms
	3.1.3 Ground Detection and Segmentation
	3.1.4 Change Detection
	3.1.5 The pre-processing pipeline

	3.2 3D lidar tracking approaches
	3.2.1 Methods
	3.2.1.1 Centroids
	3.2.1.2 Split
	3.2.1.3 Split-cost

	3.2.2 Dataset
	3.2.3 Ground Truth
	3.2.4 Results and discussion

	3.3 Group Tracking
	3.3.1 Event Graph
	3.3.1.1 Track extraction
	3.3.1.2 Graph Construction
	3.3.1.3 ``Ambiguity''

	3.3.2 Results and discussion

	3.4 Summary

	4 Appearance modelling for tracking
	4.1 Identity and Appearance
	4.2 Feature Extraction
	4.2.1 Appearance from lidar data
	4.2.2 Appearance from camera data
	4.2.3 Combining camera and lidar data
	4.2.3.1 Camera to lidar calibration
	4.2.3.2 Image sampling

	4.3 Appearance models
	4.3.1 Using appearance models to determine identity
	4.3.2 Similarity measures

	4.4 Evaluation of appearance models
	4.4.1 Methodology
	4.4.2 Dataset
	4.4.3 Results and Discussion
	4.4.3.1 Lidar
	4.4.3.2 Camera
	4.4.3.3 Thermal IR

	4.5 Summary

	5 Robust identity tracking
	5.1 Solving the event graph
	5.1.1 Hypothesis Graph (HGraph)
	5.1.2 Bayesian Network (BNet)
	5.1.2.1 `Switch' states
	5.1.2.2 Bayesian network representation
	5.1.2.3 Node likelihoods
	5.1.2.4 Number of Targets
	5.1.2.5 Computational Complexity
	5.1.2.6 Marginalisation and information gain

	5.1.3 Experiments
	5.1.4 Results and Discussion
	5.1.4.1 Simulated data
	5.1.4.2 Camera-based appearance models
	5.1.4.3 Lidar-based appearance models
	5.1.4.4 Thermal IR

	5.2 Large scale experiments
	5.2.1 Experiments
	5.2.2 Evaluation of specific scenarios
	5.2.2.1 Opera House - Three Pedestrians
	5.2.2.2 CBD - Intersection

	5.2.3 Overall results
	5.2.3.1 Opera House
	5.2.3.2 CBD

	5.2.4 Discussion

	5.3 Summary

	6 Conclusion
	6.1 Summary of contributions
	6.1.1 Tracking performance evaluation
	6.1.2 Tracking interacting objects with 3D lidar
	6.1.3 Appearance modelling
	6.1.4 Robust identity tracking

	6.2 Future Directions

	Bibliography

