446 research outputs found

    Laser Micromachining: An Enabling Technology for Functional Surfaces and Materials

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    3D Tracking via Body Radio Reflections

    Get PDF
    This paper introduces WiTrack, a system that tracks the 3D motion of a user from the radio signals reflected off her body. It works even if the person is occluded from the WiTrack device or in a different room. WiTrack does not require the user to carry any wireless device, yet its accuracy exceeds current RF localization systems, which require the user to hold a transceiver. Empirical measurements with a WiTrack prototype show that, on average, it localizes the center of a human body to within 10 to 13 cm in the x and y dimensions, and 21 cm in the z dimension. It also provides coarse tracking of body parts, identifying the direction of a pointing hand with a median of 11.2 degrees. WiTrack bridges a gap between RF-based localization systems which locate a user through walls and occlusions, and human-computer interaction systems like WiTrack, which can track a user without instrumenting her body, but require the user to stay within the direct line of sight of the device

    The Quest for the Most Spherical Bubble

    Get PDF
    We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.Comment: 18 pages, 14 figures, 1 tabl

    Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    Get PDF
    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars. We discuss a model for connecting bar response in air to response in liquid argon and compare this to data taken in liquid argon. The good agreement between the prediction of the model and the measured response in liquid argon demonstrates that characterization in air is sufficient for quality control of bar production. This model can be used in simulations of light guides for future experiments.Comment: 25 pages, 20 figure

    Optics and Quantum Electronics

    Get PDF
    Contains reports on eleven research projects.National Science Foundation (Grant EET 87-00474)Joint Services Electronics Program (Contract DAALO03-86-K-O002)Charles Stark Draper Laboratory, Inc. (Grant DL-H-2854018)National Science Foundation (Grant DMR 84-18718)National Science Foundation (Grant EET 87-03404)National Science Foundation (ECS 85-52701)US Air Force - Office of Scientific Research (Contract AFOSR-85-0213)National Institutes of Health (Contract 5-RO1-GM35459)US Navy - Office of Naval Research (Contract N00014-86-K-0117

    Generadores de pulso del orden de nanosegundos para control de calidad y diagnosis de las cámaras de telescopios Cherenkov

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Aplicada III (Electricidad y Electrónica), leída el 30-11-2015Depto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEunpu

    Estimating motion, size and material properties of moving non-line-of-sight objects in cluttered environments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 111-117).The thesis presents a framework for Non-Line-of-Sight Computer Vision techniques using wave fronts. Using short-pulse illumination and a high speed time-of-flight camera, we propose algorithms that use multi path light transport analysis to explore the environments beyond line of sight. What is moving around the corner interests everyone including a driver taking a turn, a surgeon performing laparoscopy and a soldier entering enemy base. State of the art techniques that do range imaging are limited by (i) inability to handle multiple diffused bounces [LIDAR] (ii) Wavelength dependent resolution limits [RADAR] and (iii) inability to map real life objects [Diffused Optical Tomography]. This work presents a framework for (a) Imaging the changing Space-time-impulse-responses of moving objects to pulsed illumination (b) Tracking motion along with absolute positions of these hidden objects and (c) recognizing their default properties like material and size and reflectance. We capture gated space-time impulse responses of the scene and their time differentials allow us to gauge absolute positions of moving objects with knowledge of only relative times of arrival (as absolute times are hard to synchronize at femto second intervals). Since we record responses at very short time intervals we collect multiple readings from different points of illumination and thus capturing multi-perspective responses allowing us to estimate reflectance properties. Using this, we categorize and give parametric models of the materials around corner. We hope this work inspires further exploration of NLOS computer vision techniques.by Rohit Pandharkar.S.M

    Antineutrino Detection and Neutron Directionality Studies with the miniTimeCube the World's Smallest Neutrino Detector.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Superluminal neutrinos in long baseline experiments and SN1987a

    Get PDF
    Precise tests of Lorentz invariance in neutrinos can be performed using long baseline experiments such as MINOS and OPERA or neutrinos from astrophysical sources. The MINOS collaboration reported a measurement of the muonic neutrino velocities that hints to super-luminal propagation, very recently confirmed at 6 sigma by OPERA. We consider a general parametrisation which goes beyond the usual linear or quadratic violation considered in quantum-gravitational models. We also propose a toy model showing why Lorentz violation can be specific to the neutrino sector and give rise to a generic energy behaviour E^alpha, where alpha is not necessarily an integer number. Supernova bounds and the preferred MINOS and OPERA regions show a tension, due to the absence of shape distortion in the neutrino bunch in the far detector of MINOS. The energy independence of the effect has also been pointed out by the OPERA results.Comment: 22 pages, 7 figures; comment on Cherenkov emission added, version matching JHEP published pape
    corecore