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1 Introduction

The investigation of the properties of neutrinos has provided important discoveries in the

past, such as oscillations with large mixing angles and mass structures. Neutrinos also

play a special role in theories and models beyond the standard model of particle physics.

However, many properties of neutrinos still await experimental tests, like for example the

value of the masses and the nature and existence of right-handed neutrinos.

Apart from the continuous effort on the theoretical side, in particular motivated by

ideas from quantum gravity, recent years have seen a renewed interest in experimental

tests of Lorentz symmetry in order to probe the presence of new fundamental scales or

unconventional space-time structures. Stringent bounds can be put on deviations from

the standard Lorentz symmetry structure of space-time. The most stringent bounds come

from particles like photons, electrons and nucleons (see for example [1] for a list of bounds).

Probes in the neutrino sector can in no way be competitive with such strong bounds.

However there are at least a couple of good reasons to investigate these effects in the

neutrino sector. The first is that as Lorentz violations (LV) are not described by a well

established and unique fundamental theory it is not clear if their possible manifestations

arise in a similar way in all particle sectors. As an example Lorentz violation can be

present for particles without conserved internal quantum numbers as photons and Majorana

neutrinos and absent for particles with electric charge [2]. The second reason is that

neutrinos often play a special role in theoretical models. In fact right handed neutrinos

are the only particles in the standard model (SM) which are invariant under all the gauge

symmetries of the theory: their nature and even existence are therefore not clear yet.
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The most direct way to test LV in neutrinos is to measure their velocity , which

should be equal to the speed of light due to the extreme smallness of their masses. Such

measurement has been performed at Fermilab long ago. Considering neutrinos with an

average energy of 80 GeV, a measure of the relative velocity of neutrinos with respect to

muons gave [3]:

|βν − 1| < 4 × 10−5 ,

where βν = vν/c and we assume that muons travel at the speed of light. More recently, the

MINOS collaboration reported the measurement of the speed of neutrinos of energy around

3 GeV using the precise time of flight measurement in the far detector. They reported a

shift with respect to the expected time of flight of [4]

δt = −126 ± 32(stat) ± 64(sys) ns 68% C.L. ,

which corresponds to a neutrino velocity

βν − 1 = (5.1 ± 3.9) × 10−5 ,

summing linearly the statistical and systematic uncertainties. This measurement agrees at

less than 1.4σ with the speed of light, therefore it does not provide a strong evidence in

favour of Lorentz violating effects. However, if we take at face value the measurement, it

suggests that neutrinos may propagate at velocities superior to the speed of light. This

hint to super-luminal neutrino propagation motivated us in exploring the possible origin

of such an effect.

The very recent OPERA results seem to confirm this hint. The OPERA collaboration

reported that there is a deviation in the time of flight of neutrinos which is consistent with

the MINOS results, but in this case the precision of the measurement allows to establish

super-luminal propagation of neutrinos at 6σ level [5]:

δt = −60.7 ± 6.9(stat) ± 7.4(sys) ns 68% C.L.

with a velocity

βν − 1 = (2.48 ± 0.28(stat) ± 0.30(sys)) × 10−5 68% C.L.

This is a very intriguing result because it is extremely challenging to explain this

apparent Lorentz Violation in a consistent theoretical framework. One possibility discussed

in the literature is that neutrinos propagate in an extra dimensional space and therefore

they can travel through shortcuts compared to photons and other standard model particles,

which are bound to a lower dimensional brane world [6]. In such a scenario, therefore, the

super-luminal propagation is an effective result of the space-time structure and Lorentz

invariance is recovered once the full extra dimensional space-time structure is taken into

account [7]. This possibility has been used in the past to conciliate different neutrino

oscillation results [8].

Long baseline experiments are not the only way to test Lorentz Violation in neutrinos.

Neutrinos are also produced together with photons by astrophysical sources. In principle

crossing data from sources of neutrino and gamma rays can allow to check time coincidence
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or delay. Core collapse supernovae are formidable sources of neutrinos as almost the total

energy of the explosion is carried away by a burst of neutrinos. The handful of events

measured from the supernova SN1987a provides a powerful tool to bound scenarios of

modification of neutrino velocities due to the huge distance of the source of the neutrinos,

which is in the Large Magellanic Cloud at 51 kiloparsec from Earth. Any small effect would

therefore be largely amplified by the long time of flight. There are two main observations

that can be used to bound Lorentz violating effects and which have been widely considered

in the literature: the spread in the detection times of the neutrinos ∆t ∼ 10 sec, and the

offset between the arrival of neutrinos and photons ∆tνγ . The former is relatively solid,

and can provide the strongest bound on many modification of neutrino physics, like for

instance the presence of keV mass sterile neutrinos from extra dimensions [9]. The latter is

very model dependent and uncertain, as the precise delay between the arrival of neutrinos

and the arrival of the first light from the explosion is unknown. Moreover, the mechanisms

of neutrino and photon release from the supernova core are different and therefore there

may be an offset at the source. Nevertheless, the huge distance spanned by the neutrinos

and photons allows to pose competitive bounds, as we will see in the following.

In this work we will consider Lorentz violating effects entering as a modification of

the speed of ultra-relativistic neutrinos. We introduce a general parametrisation of the LV

term as a power law of the neutrino energy ∼ Eα, where α is a generic non integer number.

While integers are naturally generated by a local operator, non integer values for α can

be generated, for instance, by conformal neutrinos or neutrinos propagating in warped

extra dimensions. On more general grounds, a non integer power will allows us to be as

model independent as possible. A key observation is that the effect of an energy dependent

modification of the velocity for neutrinos will generate both a delay (or advance) in the

time of flight and a distortion of the bunch shape of the neutrinos, if the spectrum is not

monochromatic as it occurs in the case of MINOS and OPERA. The effect on the bunch

shape has not been considered before and it will lead to important consequences on the

compatibility of supernova bounds and the preferred MINOS region. To ease the tension,

we will also consider other functional dependencies of the energy identifying a step function

as the more promising possibility to accommodate both the surprising results from MINOS

and OPERA and the supernova bounds.

The paper is organised as follows: in section 2 we discuss the general form of the

Lorentz violating term and its possible origin in the context of conformal neutrinos in

warped extra dimensions; in section 3 we present the bounds from supernova data on such

a parametrisation; in section 4 we present the results of our simulation of the MINOS

data and compare the preferred region to the supernova bounds; finally in section 5 we

show some alternative energy dependencies compared to supernova bounds and MINOS

and OPERA data before concluding in section 6.

2 Models of Lorentz violation

Special relativity encodes Lorentz symmetries and in particular relates mass, energy and

momentum in the well known form of the dispersion relation E2 − ~p2 = m2 (in units where

c = 1, which we will follow in this section). From this dispersion relation one can estimate
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the effect of the neutrino mass on the velocity in the limit of large energy with respect to

the mass:

v =

√

~p2

E
=

√

1 − m2
ν

E2
≃ 1 − m2

ν

2E2
. (2.1)

The deviation from the speed of light is therefore negligible as suppressed by the very small

neutrino mass compared to the neutrino energies we will consider: for instance, for a neu-

trino mass of 1 eV and an energy of 10 MeV, the deviation is at the level of one part in 1014.

2.1 Parametrisation using the dispersion relations

Typically Lorentz violating effects are parametrised in the dispersion relation by allowing

an extra dependence on the energy E of the particle and a new mass scale M ≫ E at

which Lorentz violating new physics appear:

E2 − ~p2 ± Eα+2

Mα
= 0 (2.2)

where, typically, only the cases α = 1, 2 are considered [10, 11]. Such an approach is

quite popular in the literature and we shall follow it here, after slightly generalising the

usual formula. The cases of integer α correspond to LV operators added to the neutrino

Lagrangian and generated by some new physics at the scale M , in particular α = 1 (2)

corresponds to a dimension 5 (6) operator. In this paper, we generalise this formula to non

integer exponents α, thus allowing us to perform a more model independent analysis (such

an effect may in fact not derive from a Lagrangian description). Moreover, as discussed in

the following, there are models in extra dimensions where such a dependence on the energy

arises naturally.

Implicitly, assuming the existence of a dispersion relation close to those of wave me-

chanics corresponds to the assumption that LV effects are a small modification of the usual

picture in which particles are described by propagating waves. This assumption has the

important consequence that measurements of time shifts with respect to the prediction of

special relativity are linked to energy, therefore the measurement of a time shift in a bunch

of particles with a distribution in energy will also imply a modification of the bunch shape

during its evolution. This is for example relevant when discussing long baseline neutrino

experiments, like MINOS, OPERA and T2K. In such cases, a measurement of velocity can

be correlated to a measurement of the bunch shape, as we will discuss later in the case of

MINOS data.

In terms of an effect on the velocity of propagation one can parametrise

v =

√

1 − Eα

Mα
≃ 1 ± Eα

2Mα
. (2.3)

The results in the rest of the paper only depend on this form of the velocity, and they

are independent on the specific model that generates such an energy dependence in the

velocity. The dispersion relation in eq. (2.2), therefore, is to be considered as a specific

example. As a simple test, one can measure the time of flight of neutrinos from the source
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to the far detector in long baseline neutrino experiments: a search for a δt with respect to

the speed of light propagation can be performed. The MINOS collaboration has followed

this strategy. However, the fact that the velocity depends on the energy, suggests that a

more detailed study is in order when the energy spectrum is known with sufficient statistics

and precision. The origin of the effect is that neutrinos with different energy will experience

different time delay or advance; the effect, therefore, does not directly depend on the form

of the dispersion relation but on the velocity. In any energy dependent modification of the

velocity, a time shift is necessarily correlated to a shape distortion of the neutrino bunch.

2.2 A toy model for non integer α

As a motivation for the dispersion relation formula (2.2) for neutrinos, we introduce a simple

toy model that naturally generates non integer exponents. This behaviour is somewhat

unusual, in the sense that the addition of a Lorentz violating local operator to the standard

model Lagrangian would bring an integer number of energy factors — related to the number

of derivatives in the operator.

Neutrinos occupy a special seat in the standard model: the left-handed lepton doublets

can be paired to the Higgs doublet to form an operator invariant under the gauge sym-

metries of the standard model. This means that this operator can be coupled to a singlet

fermionic operator and generate a mass for the neutrino. The standard ways are to couple

it to a fermion field, the right-handed neutrino, via a small Yukawa coupling, or to couple

it to itself in a dimension 5 operator that generates a Majorana mass for the neutrino (thus

violating lepton number conservation). The latter can be obtained in the see-saw scenario

as a result of the integration of a heavy right-handed neutrino. However the nature of the

neutrino mass term is still unknown due to the lack of direct and indirect tests. Therefore,

it may well be that the right-handed neutrino is not a simple fermionic field.

One interesting possibility is that the right-handed neutrino is part of a conformally

invariant sector of the theory [12, 13]: in this paragraph we will summarise the results

in [12] and formulate the same physics in terms of one extra dimension à la AdS/CFT

(duality of a 4 dimensional strongly coupled conformal theory CFT to a weakly coupled 5

dimensional anti-de Sitter space [14]). This is a natural expectation in the case of a sector

that does not carry any of the quantum numbers of the standard model, in particular does

not transform under gauge transformations. Therefore, one of the bound states of the

conformal sector, say ψR, can play the role of the right handed neutrino. The main feature

of a conformal operator is that it can have a large anomalous dimension dψ = 3/2 + γ,

where 3/2 is the canonical dimension of a fermionic field and γ > 0. For 0 < γ < 1, the

dynamics of the operator ψR can be described in terms of Unparticles [15]: the propagator

can be written as

∆ψ(p) = −iBγ
σ̄µpµ

(−p2 − iǫ)1−γ
, (2.4)

where Bγ = (4π)−2γΓ(1−γ)
Γ(1+γ) is a normalisation factor which ensures that for γ → 0 we obtain

a standard fermionic propagator. One can also rewrite the operator ψR in terms of a
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Figure 1. Plot of the anomalous dimension as a function of the cut-off scale Λ for different values

of neutrino masses and Yukawa couplings: solid lines correspond to mν = 1 eV while dashed lines

to mν =
√

δm2

solar
= 0.05 eV. The red lines correspond to yν = 1, while the others to yν equal

to the tau (magenta), muon (green) or electron (blue) Yukawa. The black horizontal line is the

experimental bound λ < 0.86 [12].

canonically normalised field νR

ψR = B1/2
γ µγνR , (2.5)

where µ is a renormalisation scale and the power γ takes into account the anomalous

dimension of the operator. The effective Lagrangian can now contain a Yukawa term

between the Standard Model lepton doublet (which is an elementary field) and the CFT

operator ψR:

L =
1

Λγ
yνL̄HψR + h.c. = B1/2

γ

(µ

Λ

)γ
yνL̄HνR + h.c. (2.6)

Note that the Yukawa operator is irrelevant for γ > 0. After the Higgs field develops a

vacuum expectation value, this term will generate a mass term for the neutrinos

mν = B1/2
γ

(mν

Λ

)γ yνv√
2

⇒ mν = B
1

2(1−γ)
γ

(

yνv√
2Λ

)
γ

1−γ yνv√
2
. (2.7)

In the latter equations, we have fixed the renormalisation scale µ at the neutrino mass.

This formula offers an alternative to the see-saw mechanism with a Dirac mass for the neu-

trino [12]. In figure 1 we show the correlation between the anomalous dimension γ and the

cut-off scale Λ for different values of the neutrino mass and Yukawa coupling. From the plot

we see that values of 0.2 < γ < 0.8 are enough for cut-off energies up to the Planck mass.
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The idea of conformal neutrinos can be elegantly reformulated in extra dimensions. In

fact, a warped space [16] with conformal metric

ds2 =
R2

z2

(

dxµdx
µ − dz2

)

, (2.8)

describes a conformally invariant space: the rescaling of the co-ordinate z compensates

for the scaling of the co-ordinates of the 4 dimensional Minkowski space xµ. A physical

interpretation of the co-ordinate z is to describe the red-shift of energy scales in the 4-

dimensional world. In order to build a viable model, we need to add a boundary for

the space at small z = ǫ. Physically, the energy scale ΛUV = 1
ǫ corresponds to an ultra

violet cut-off of the theory. Fields can either live in the bulk of the extra dimension

and depend on z, or they can be localised on the boundary at z = ǫ. The AdS/CFT

correspondence [14] offers us a way to physically interpret those fields: the fields living on

the boundary correspond to elementary fields in the effective conformal theory, while fields

living in the bulk correspond to operators of the CFT. Moreover, the gauge symmetries of

the bulk are the same as the global symmetries of the conformal sector.

In order to reproduce the conformal neutrino scenario, we localise all the standard

model fields, including gauge fields, on the UV boundary of the space z = ǫ. The only

field that is allowed to propagate in the bulk of the extra dimension is the right handed

neutrino νR, because it is a singlet under the gauge symmetries. While the Lagrangian of

the standard model fields is the usual 4D Lagrangian, for the right-handed neutrino one

needs to write down a 5D Lagrangian which depends on the extra co-ordinate z. After

imposing the equations of motion on the bulk field, one can integrate the Lagrangian in

z and obtain an effective 4D Lagrangian. The neutrino sector of the model will then be

described by the following Lagrangian:

Lν = −iν̄Lσ̄µ∂µνL +
yνv√

2
(νLνR + h.c.) − iΣ(p)νRσ

µ∂µν̄R , (2.9)

where [17]

Σ(p) = −
(

R

ǫ

)2 cosαJc+1/2(pǫ) + sinαJ−c−1/2(pǫ)

cosαJc−1/2(pǫ) − sinαJ−c+1/2(pǫ)

1

pǫ
, (2.10)

and p =
√
pµpµ. The angle α depends on the boundary conditions on the field for large

z. As we are interested in the physics at energies well below the cut-off of the theory,

ΛUV = 1
ǫ , we can expand Σ for pǫ≪ 1: for c > −1/2 we obtain

Σ(p) ∼ − R4

ǫ3+2c

4cΓ(1/2 + c)

Γ(1/2 − c)
tanαp1−2c = Nc

( p

Λ

)1−2c
. (2.11)

From the effective Lagrangian in eq. (2.9), we can calculate the propagator for the neutrino

∆ν ∼
1

Σ(p)p2 −
(

yνv√
2

)2 . (2.12)
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The physical pole of this propagator defines the mass of the neutrino (p2 → m2
ν):

Nc
m3−2c
ν

Λ1−2c
=

(

yνv√
2

)2

⇒ mν = N
1

3−2c
c Λ

1−2c
3−2c

(

yνv√
2

)
2

3−2c

; (2.13)

therefore, comparing this formula with eq. (2.7), we identify γ = c− 1/2 and N−1
c = B2

γ .

In the extra dimensional model, Lorentz violation in the neutrino sector can be im-

plemented in a very elegant way: in fact we can assume that the violation takes place

by means of an operator in the bulk, while the physics on the UV boundary is Lorentz

invariant. This would naturally explain why the other standard model particles do not

feel the violation directly. In the physical interpretation, it means that only the conformal

sector violates Lorentz symmetry and neutrinos feel it because they have the most relevant

coupling to the conformal operator.1 We will not discuss here the details of the Lorentz

violating operator. One simple way to model it is to assume that one of the sub-leading

terms in the pǫ expansion of Σ only depends on the energy (and not on the invariant p2):

ΣLV (p) ∼ Nc

( p

Λ

)−2γ
+ δLV

(

E

M̃

)β

+ . . . (2.14)

where β > −2γ for the expansion to be consistent. In this case the propagator of the

neutrinos will be modified and the Lorentz violating dispersion relation can be written as

p2 +
2δLV

(1 − γ)Nc

m2+2γ
ν

Λ2γM̃β
Eβ = m2

ν . (2.15)

The coefficient of the Lorentz violating term is suppressed by powers of the neutrino mass,

however this is not a generic feature of these kinds of models but it depends on the particular

choice of operator we made. Here, we will take this as a hint of the possible existence of non

integer exponents, and we will not pursue any further the construction of a specific model.

3 SN1987a

In February 1987, a core collapse supernova, dubbed SN1987a, exploded in the Large

Magellanic Cloud, about 51 kiloparsec far from Earth. It is the closest supernova explosion

recorded in recent times. A few hours before the light from the supernova, a burst of

neutrinos reached Earth and a handful of events have been measured by three neutrino

detection experiments: Kamiokande II, IMB, and Baksan. The neutrino burst lasted for

about 10 seconds. Even though the data are not very precise nor statistically rich, they are

a powerful tool to pose bounds on various neutrino models, like for instance the presence

of light sterile neutrinos or Lorentz violation in neutrino propagation.

The list of detection times, energies and corresponding errors on energies are given

in table 1 for the data set of the three experiments. The uncertainties in the time mea-

surements are in general much less than the statistical and energy uncertainties, and we

1Another relevant coupling involves a scalar operator coupled to the Higgs mass term [18, 19]: this may

induce large LV effects in the Higgs sector.
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ti Ei σi
Event (s) (MeV) (MeV)

Baksan

1 ≡ 0.0 12.0 2.4

2 0.435 17.9 3.6

3 1.710 23.5 4.7

4 7.687 17.6 3.5

5 9.099 20.3 4.1

IMB

1 ≡ 0.0 38 7

2 0.412 37 7

3 0.650 28 6

4 1.141 39 7

5 1.562 36 9

6 2.684 36 6

7 5.010 19 5

8 5.582 22 5

ti Ei σi
Event (s) (MeV) (MeV)

Kamiokande II

1 ≡ 0.0 20 2.9

2 0.107 13.5 3.2

3 0.303 7.5 2.0

4 0.324 9.2 2.7

5 0.507 12.8 2.9

6 (omitted) 0.686 6.3 1.7

7 1.541 35.4 8.0

8 1.728 21.0 4.2

9 1.915 19.8 3.2

10 9.219 8.6 2.7

11 10.433 13.0 2.6

12 12.439 8.9 1.9

13 (omitted) 17.641 6.5 1.6

14 (omitted) 20.257 5.4 1.4

15 (omitted) 21.355 4.6 1.3

16 (omitted) 23.814 6.5 1.6

Table 1. Data from SN1987a used for obtaining the limits on Lorentz violation. We have omitted

5 data points from Kamiokande II identified as a background events in previous investigations.

therefore neglect them. Unfortunately, the relative arrival times in each experiment with

respect to the others are not known, thus times are given setting t ≡ 0 for the first event

of every experiment, and the analysis must be performed independently for every data set.

Moreover, we cannot fix the sign of the overall time shift of neutrino bunches with respect

to the Lorentz conserving hypothesis since the relative arrival time of the neutrinos with

respect to light is known only with poor accuracy [20, 21]. We can therefore give the limits

for either the super-luminal or the sub-luminal case but cannot distinguish the two. We

can nevertheless compute the time shift in absolute value. Some of the data points for KII

experiment are not included in the present analysis as identified as background events. On

this point we have followed the results of [22]: we have excluded events which fall below the

energy threshold 7.5 MeV, which is known to be a large source of background. Since LV

effects are energy dependent it is worth noticing that the energy measured at the detector

is not the energy of the incoming neutrino, but that of the charged lepton resulting from

the largely dominant absorption process [22]:

ν̄e + p→ e+ + n . (3.1)

The angular distribution of the emitted positron is to a good approximation isotropic

and the energy of the incoming neutrino is given by the relation Eν = El + Q, where

Q = 1.29 MeV is the neutron-proton mass deficit. Gravity too influences the trip of the

neutrinos from the supernova to the detector [20], and small fluctuations in the gravitational
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field of the Galaxy can produce shifts in the arrival time of neutrinos. However, to perform

this analysis we are assuming that gravitationally induced fluctuations in the time of flight

of neutrinos are negligible.

Due to the assumption that Lorentz Violation is energy dependent, the time disper-

sion of the neutrinos observed in the detector may be in general different from the time

dispersion at the supernova source. The time interval during which neutrinos are produced

in a supernova is, however, model dependent, and various scenarios have been studied

in literature [22].

In our analysis we will consider information coming from detected events and do not

make any assumption on the production mechanism except for the functional structure

of the energy spectrum at source [23] which is well established and anyway necessary to

perform the calculation:

F ∼ Eαz e−(1+αz)E/E0 (3.2)

where E0 and αz are, respectively, the average energy of neutrinos and a pinching pa-

rameter. The values of these parameters depend on details of the analysis and different

techniques have been employed to determine them [22–24]: we will give numerical results

assuming E0 = 11 MeV and αz = 3, but we have checked that the dependence of results

on these parameters is negligible in practice.

Limits on LV parameters can be obtained simulating the evolution of a bunch of

neutrinos from the supernova to the detector and measuring the probability that the time

dispersion at detector predicted by LV parameters is consistent with the actually observed

one within a given confidence interval. In order to be as model independent as possible and

to keep the initial time dispersion of neutrinos at source as a free parameter, we evolved

back the neutrinos observed in the three experiments including LV effects. This calculation

allows to estimate the production time for every parameter choice of the LV term, which

become an input for the next step. Afterwards, we simulated a neutrino burst of calculated

duration and evolve it forward to the detectors, comparing the spread in arrival times with

the measured one. To take into account statistical errors and uncertainties in energy

measurements, the simulation has been divided into the following steps:

1. we simulated 104 neutrino sets at detector; for each set, the number of neutrinos and

the detection times are the same as those measured, while the energies are randomly

picked following a Gaussian distribution around the central value measured in the

experiment with σ given in table 1. With this procedure, we have 104 sets of neutrinos

that correspond to the detected events.

2. every set has been evolved backward to the supernova source with fixed values of the

LV parameters α and M . From each set, we can therefore calculate a time spread at

the source.

3. we then simulated 104 neutrino sets at the supernova source. Each set has the

following properties, taking into account two possibilities for the analysis:

- the number of neutrinos can be either the same as the observed ones (referred

to as Fixed Number analysis in the following) or varying according to a Poisson
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Figure 2. Simulation steps (fixed number case) for KII data with LV parameters α = 3, E0 =

11MeV and M = 4 × 109 GeV.

distribution centred at 10 (Varying Number analysis): in the latter case, the

results are dependent on the choice of the expected number, however we have

checked that varying this parameter in the interval {8,12} the results always

remain within the same order of magnitude;

- the duration of the neutrino burst is generated randomly following the distribu-

tion of initial time dispersions obtained in the previous step;

- the energies of neutrinos are distributed following the typical supernova spec-

trum (3.2).

4. we finally evolved forward the simulated sets and obtained a distribution of time

dispersions at the detector characterised by its average µ and (in general asymmetric)

standard deviations σL and σR.

Various distributions of a simulation with KII data have been summarised in figure 2. To

obtain a bound on LV, for each choice of parameters we compare the observed time spread

∆t = 10 sec with the simulated distribution: the values of parameters are excluded if ∆t

falls outside of the interval {µ− 2σL, µ+ 2σR}.

– 11 –



J
H
E
P
1
1
(
2
0
1
1
)
1
3
7

α
∆tSN (sec) ∆tνγ (sec) Mmin (GeV)

FN VN FN VN FN VN

Baksan

0.5 18.4+6.2
−5.6 11.7+3.3

−3.0 43.3+6.6
−7.0 22.2+3.1

−3.1 5 × 1019 2 × 1020

1 18.0+6.5
−5.6 13.6+4.5

−4.0 22.1+5.0
−4.9 14.4+3.1

−3.0 2 × 109 3 × 109

1.5 21.0+8.6
−6.9 14.5+5.4

−4.5 19.2+5.4
−4.9 11.4+2.9

−2.7 5 × 105 7 × 105

2 22.3+10.7
−7.6 15.8+6.7

−5.2 16.9+5.1
−4.6 10.3+3.1

−2.8 8 × 103 1 × 104

IMB

0.5 14.0+2.5
−2.1 15.1+2.7

−2.4 20.7+2.0
−2.2 22.2+2.3

−2.4 5 × 1020 4 × 1020

1 16.8+3.0
−2.8 16.9+3.0

−2.7 16.5+1.9
−2.0 16.3+2.0

−2.0 6 × 109 6 × 109

1.5 11.6+1.9
−1.6 11.6+1.9

−1.6 10.1+0.9
−1.0 10.0+1.0

−1.0 2 × 106 2 × 106

2 16.8+3.7
−2.9 16.7+3.8

−3.0 13.1+1.6
−1.7 12.9+1.6

−1.6 2 × 104 2 × 104

KII

0.5 30.4+4.5
−4.4 37.0+6.2

−5.9 40.6+3.4
−3.7 51.4+5.2

−5.3 1.6 × 1020 9 × 1019

1 28.7+5.3
−4.7 34.8+7.1

−6.4 26.8+2.6
−2.6 32.7+4.2

−3.7 4 × 109 3 × 109

1.5 27.3+6.4
−5.1 33.8+9.0

−7.2 21.7+2.3
−2.0 26.5+4.0

−3.1 1 × 106 8 × 105

2 19.6+4.4
−3.1 19.7+4.5

−3.1 15.6+1.1
−0.8 15.8+1.4

−0.9 2 × 104 2 × 104

Table 2. Average time dispersion of neutrino bunches at supernova (∆tSN ), average time shift

between neutrinos and photons at detector (∆tνγ) and lower bounds on the Lorentz Violating mass

scale (Mmin) for different exponent values (α), in the Fixed Number (FN) and Variable Number

(VN) hypothesis and for each experimental data set.

The results obtained for different scenarios and for each experiment are shown in

table 2. It is possible to see that our bounds for the mass scales are consistent with similar

results obtained in other analyses [10, 11] and, noticeably, we obtain time scales for neutrino

production in the supernova (∼10 sec) which are consistent with models previously studied

in the literature [22].

So far we have only used the information about the time spread ∆t between neutrinos,

which is sensitive to the energy dependence of the LV term. The bound on the mass scale

M increases for small exponents α, as shown in table 2, however this is due to the fact

that the suppression from the energy dependence is milder. For very small exponents,

close to an energy independent modification of the velocity, we would expect this bound

to disappear (as we will discuss later). Another piece of information that can be used

to pose bounds is the delay between the neutrinos and the photons. This information is

not very precise for two reasons: it is not very well known when the first light from the

explosion reached Earth, and the emission times at source may well be uncorrelated due

to the different emission mechanisms for neutrinos and photons. Nevertheless, one can

conservatively impose a bound of several hours on the delay ∆tνγ : following [21] we use 10

hours. As shown by the values of ∆tνγ in table 2, that we obtained with our simulation,

we can see that this bound is not competitive with the bound from neutrino spread.
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4 Long baseline experiments

Long baseline experiments, designed to study neutrino oscillations, have a unique capability

to study the propagation of neutrinos if a precise time of flight measurement is possible.

At present, GPS based methods allow for sensitivities down to a few nanoseconds. The

long distance between source and far detector allows for a good sensitivity to LV effects.

Currently we can rely on the results by MINOS and OPERA collaborations. The MINOS

collaboration has published an analysis of the time of flight of neutrinos from Fermilab

to the detector in the Soudan mine. The result shows a deviation from what expected if

neutrinos travelled at the speed of light, in particular neutrinos seem to arrive earlier that

expected with a time shift of [4]:

δt = −126 ± 32(stat.) ± 64(sys.) ns 68% C.L. (4.1)

which is consistent with the speed of light for the neutrinos at less than 1.4σ, but indicates

a faster than light central value. The distance between the source of neutrinos and the far

detector is 734298.6±0.7 m, which corresponds to a nominal time of flight τ = 2449356±2

ns, while the mean neutrino energy is ∼ 3GeV.

OPERA, which is based in the Gran Sasso laboratory and utilises neutrinos from

the CNGS beam at CERN, enjoys a similar distance between source and far detector,

however neutrinos have a larger energy of about 20 ÷ 30 GeV and a more precise time of

flight measurement is possible with precision down to a nanosecond. The results of the two

experiments can therefore complement each other very effectively. However, due to the fact

that the OPERA results were announced only very recently, we will present an analysis

of MINOS data, keeping in mind that the same analysis can (and will) be performed once

the data collected at OPERA will be available.

In the case of MINOS, there is more in the published data than just a time shift as

the energy profiles are also available. Therefore, we can use this information as a further

constraint as the energy dependent LV dispersion gives in general both a shift in the arrival

time and a distortion in the bunch structure. Moreover the two effects are correlated and

not independent. In order to perform our analysis, we extracted from the MINOS neutrino

velocity measurement paper [4] the time distributions of neutrino events in the near and

in the far detector. In the MINOS paper the time distribution of neutrinos observed in the

far detector is shown superimposed to the expectation curves after having fitted the time

of flight. The result of the fit is claimed to correspond to a shift of the plotted data points

of +126 ns with respect to the measured data time distribution. We took into account this

shift in order to obtain the original data time distribution.

We computed our own expectation curves at the far detector for the 5 and 6 batch spills

by using as input the published near detector time distributions and applying, as explained

in the paper, a smearing of 150 ns describing the total relative far detector — near detector

time uncertainty. The expectation curves that we obtained, once superimposed to the far

detector data points, reproduce very well figure 2 of the MINOS paper [4], as shown in

figure 3. In order to cross-check what we computed for the expectation curves and the

data points at the far detector, we tried to reproduce the maximum likelihood analysis as
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Figure 3. Our expectation curves for the far detector MINOS data using as input the published

near detector time distributions. We reproduce very well figure2 of the MINOS paper [4] for the

far detector data points with a smearing of 150 ns.

it is described in the MINOS paper. Since the far detector data points we extracted from

the MINOS paper were binned in time and more precise information on the event times

was not available, in the likelihood calculation we randomly distributed the events in a

uniform way inside each bin by preserving its normalisation. By maximising the likelihood

function, computed on the basis of our expectation curves, we found a shift compatible

with -126 ns, with a corresponding a statistical uncertainty of 32 ns. This result, similar to

the published one, gave us confidence of being able to reproduce the MINOS data analysis.

This was a mandatory condition in order to correctly further develop the analysis in the

framework of LV models, which implies re-computing the expectation curves as a function

of the α and M parameters.

This analysis, although based on a similar principle, is more complex in terms of

computing procedures than a maximum likelihood determination of a simple time shift.

Given a pair of parameters (α, M) the expectation curves can be obtained by taking into

account the time distribution in the near detector, the smearing of 150 ns and the energy

spectrum of events interacting in the far detector. The energy spectrum takes into account

the neutrino oscillation disappearance effect on the charged current component. Given a

bin in the near detector event time distribution, this is extrapolated to the far detector by

performing a Monte Carlo simulation of a large sample of events, generated according to
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Figure 4. Time distribution at the far detector is obtained by summing all the extrapolated

contributions of the single bins in the near detector time distribution. The time distributions

predicted at the far detector in absence of Lorentz violating effects (black curves) are superimposed

to the curves (blue) foreseen by the LV model. Left panels for α = 0.7 and M = 2.31 × 106 GeV

(up-left 5 spills, down-left 6 spills), right panels for α = 2.1 and M = 429.9GeV (up-right 5 spills,

down-right 6 spills).

the spectrum of interacting neutrinos. For each event belonging to a given time bin in the

near detector, the time at the far detector is computed by correcting for the LV shift as

a function of (α, M) and the neutrino energy and by including the Gaussian smearing of

150ns accounting for the time measurement uncertainties. In order to be compatible with

the MINOS result in the application of our model we considered only negative time shifts.

The time distribution at the far detector is obtained by summing all the extrapolated

contributions of the single bins in the near detector time distribution. Examples are shown

in figure 4. We generated several sets of prediction curves in the (α, M) plane. In particular,

given a value of alpha, we performed a fine sampling as a function of M for values in

the region expected to be interesting with respect to the effect measured by MINOS.

We avoided values of M implying very large time shifts, by far not compatible with the

MINOS measurement, or values well beyond the point where time shifts are unobservable.

We computed the likelihood function for each point in the (α, M) plane and parametrised

its evolution as a function of M with a set of smooth curves. We performed an overall

maximisation of the likelihood function in the (α, M) plane and computed the contours of

the allowed regions corresponding to different confidence levels. In our simulation, we did

not take into account the systematic uncertainty of 64 ns affecting the measurement of the

neutrino time of flight. The main systematic uncertainty come from a limited knowledge

of the length of cables in the electronics, therefore the main effect is to add an unknown

shift to all the time measurements; however the measurement of the bunch shape should

be marginally affected. We have added and subtracted the 64ns from the results of our

simulation, therefore enlarging the allowed range inM for each given α, as shown in figure 5.
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Figure 5. Bounds coming from SN1987a combined with our fit of the MINOS data in the (α, M)

plane, which show tension between the MINOS neutrino velocity measurement and the SN1987a

bound.

The region which fits better the MINOS data corresponds to small values of α. This is

due to the fact that for such α values the distribution of time shifts is narrower and more

similar to a global energy-independent time shift. For large values of α, time shifts become

more energy-dependent and the predicted time distribution at the far detector is not just

a displaced replica of the near detector time distribution but its shape is changed as well.

The distribution is distorted and affected by long time anticipation tails which are related

to the tails in the neutrino energy spectrum.

According to our analysis, and as shown in figure 5, there is tension between the MINOS

neutrino velocity measurement and the SN1987a bound. The MINOS measurement could

become compatible with the SN1987a bound at high values of α, which maximises the

energy dependence of the time shift and large values would explain why such time shift is

not observed with the SN1987a neutrinos which have energies by 3 orders of magnitude

smaller than the MINOS neutrinos. However α maximises as well the effect of the energy

spread in the neutrino spectrum. MINOS data are more compatible with a simple shift

than with a energy dependent shift, and this points to the opposite direction, corresponding

to low values of α.

Considering MINOS data alone, the tension could be explained by a statistical fluctua-

tion. In fact, the tension is completely removed at less than 2σ. The results from OPERA,

however, point to the same direction and with much better precision, therefore we are lead

to push further our analysis and try to understand the origin of the discrepancy between

supernova and long baseline data.

One difference between Supernova and MINOS or OPERA data is the flavour of the

neutrinos: supernova detectors only measured electron neutrinos, while the flavour in MI-
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NOS is muonic. One may think of a flavour dependent LV effect which affects only the

propagation of muon neutrinos. However, an effect of the size of the one measured by

MINOS would completely destroy the neutrino oscillations: in fact, a different speed be-

tween components of different flavours in a neutrino propagating from the Sun to Earth

would destroy the coherence between the two components much faster than the oscillation,

thus inhibiting the oscillations [25, 26]. In the following section we will take a different

approach, that is to explore LV terms with different functions of energy.

5 Alternative forms of Lorentz violation

The main result of our analysis is a tension between the bounds obtained from SN and

MINOS data with a Lorentz violating power law term in the velocity for neutrinos. The

tension is mainly due to the energy dependence of the effect: for large values of the exponent

α the supernova bound is loose due to the large suppression given by the small neutrino

energies, however such region is disfavoured by MINOS due to the non observation of a

distortion in the neutrino bunch at the far detector. This tension can only be worsened

by OPERA data, due to their better precision. One way to alleviate the tension is to

modify the energy dependence of the LV term: in fact, supernova neutrinos have energies

around 10 MeV, while MINOS uses neutrinos of ∼ 3 GeV and higher for OPERA. Therefore,

supernova bounds and the results from long baseline experiments might be compatible if the

energy dependence function in the LV term were sharper between the two energy regions.

In the following, we shall consider a generic LV parametrisation of the neutrino velocity, so

that any energy dependent deviation from the usual Lorentz conserving velocity law can

be written as:

v = 1 + ∆LV (E) , (5.1)

where the sign is chosen to fit an advance, in accordance with MINOS data. We considered

three parametrisation:

- a power law dependence

∆LV = δ × (E/MP l)
α ; (5.2)

note that this is an alternative parametrisation with respect to what we used in the

previous section, the main difference being that the mass scale is kept fixed and

equal to the Planck mass while a variable dimensionless coefficient δ is introduced.

The only reason for this is to be more sensitive to the region of low α (mild energy

dependence), which we will focus on here.

- an exponential dependence

∆LV = δ ×
(

1 − e−E/µ
)

, (5.3)

where the term becomes energy independent at large energies.
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- a step function in terms of an hyperbolic tangent

∆LV = δ ×
(

1 + tanh

(

E −m′

µ

))

; (5.4)

in this case we can have a velocity close to 1 at low energies and an energy independent

deviation at large energies.

In this section we limit ourselves to an estimate of the bounds, by use of simple

considerations, and we will not rely on a detailed simulation. The bounds we impose are:

• the Fermilab bound [3] on the velocity of high energy (∼80 GeV) neutrinos obtained

comparing the velocities of muons and neutrinos:

|vν − 1| = |∆LV (80 GeV)| < 4 × 10−5 .

• the MINOS observed time delay δt at 1σ and bound at 3σ: we have considered the

time of flight of a neutrino with energy E = 3GeV (roughly at the peak of the

spectrum) and imposed that δt must lie within −126 ± (32 + 64) ns. The statistical

and systematic errors quoted in ref. [4] have been summed linearly because the effect

of the systematic error is an overall shift of the data; we have thus chosen the most

conservative hypothesis, assuming that the shift induced by the systematic error is

maximal and contributes in the same direction as the statistical error. We have

also considered the bound at 3σ, which is consistent with the Lorentz conserving

hypothesis, and excludes an advance of more than 414 ns.

• the offset between neutrinos and photons from SN1987a: as a conservative maximum

interval we used 10 hours as estimated in [21]. We considered a neutrino with energy

E = 40 MeV, since this value is nearly at the higher end of the spectrum and, assum-

ing that the LV effect increases with energy, neutrinos with high energy would reach

the detector before softer neutrinos. Moreover, a neutrino with an energy of 39 MeV

has been measured at IMB.

• the spread in the arrival times of supernova neutrinos bounded below 10 seconds:

we considered the propagation of two neutrinos at the opposite sides of the energy

spectrum, namely 7 and 40 MeV.

The results of our analysis are shown in figure 6: in blue the bounds from supernova

SN1987a from the offset between neutrinos and photons (dashed line) and the time spread

in neutrinos (solid line); in solid black the bound from high energy neutrinos; in green the

region preferred by MINOS at 1σ (the dashed black lines represent the bound at 3σ); while

the red dashed region is preferred by OPERA (at 3σ).

In the case of the power law (5.2), we checked that the rough estimate gives similar

results as the detailed simulation presented in the previous section. For very small α, the

LV term becomes almost energy independent: the bound from the time spread in neutrino

arrival times is loosened as expected because the velocities of neutrinos of different energy

– 18 –



J
H
E
P
1
1
(
2
0
1
1
)
1
3
7

Allowed

-10 -8 -6 -4 -2 0
-6

-5

-4

-3

-2

-1

0

Log ∆

Lo
g
Α

(a) Power Law dependence. The allowed region

is on the left of the blue and black lines.

Allowed

-12 -10 -8 -6 -4 -2 0

-5

0

5

10

Log ∆

Lo
g
Μ
�G

eV

(b) Exponential Dependence. The allowed re-

gions are on the left of the blue and black lines.

Allowed

m’=1 GeV

-10 -8 -6 -4 -2 0
0.0

0.2

0.4

0.6

0.8

1.0

Log ∆

Μ
@G

eV
D

(c) Hyperbolic tangent dependence with m
′ =

1GeV. The allowed regions are on the left of the

blue and black lines.

Allowed

m’=4 GeV

-8 -6 -4 -2 0
0.0

0.2

0.4

0.6

0.8

1.0

Log ∆

Μ
@G

eV
D

(d) Hyperbolic tangent dependence with m
′ =

4GeV. The allowed regions are on the left of the

blue and black lines.

Figure 6. Bounds for different parametrisation of the dispersion relation: 10 second spread between

supernova neutrinos of different energy (solid blue), 10 hour offset between supernova neutrinos and

photons (dashed blue), high energy neutrino velocity at Fermilab (solid black), bound from MINOS

data at 3σ (dashed black). The green region is the preferred region from MINOS data at 1σ, while

the dashed red region is the preferred region from OPERA at 3σ.

become very similar. However, the bound from the offset with photons kicks in and shows

still a tension: in fact, using the MINOS central value for the velocity, we would expect the

neutrinos to reach Earth almost 9 years before the photons. The same conclusion applies

to the 3σ OPERA preferred region, which overlaps to the 1σ MINOS one in this case.
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Figure 7. Bounds for the threshold m′ and the spread µ of the step function after fitting the

coefficient δ with MINOS and OPERA preferred regions.

A similar behaviour also appears for the exponential dependence (5.3): for small µ

the bound from the time spread is removed, however the offset with photons still shows a

strong tension with the MINOS and OPERA preferred regions.

The situation is much improved in the case of a step function (5.4): in fact, the energy

ranges of supernova and MINOS neutrinos are far enough that a transition between a

luminal propagation at low energies and a super-luminal propagation at MINOS or OPERA

energies can be accommodated. Figure 6c shows that for a transition at energies of 1GeV

with a spread of less than 100 MeV, both MINOS and OPERA results are fully compatible

with high energy and supernova observations. Figure 6d, on the other hand, shows that

increasing the transition energy at above the average energy of MINOS neutrinos, only

OPERA results can be made compatible with supernova and high energy neutrino bounds.

This is still acceptable due to the low significance of the MINOS result. If we fit the value

of the parameter δ to reproduce either MINOS or OPERA results, we can obtain a more

detailed information about the two mass scales in this scenario, namely the position of

the transition m′ and the spread µ. As the central value of MINOS is excluded by the

bound from high energy neutrinos, we fit a value at 1σ from the central value, namely

δt = −126 + 96 ns: the allowed region is shown in figure 7a. An analogous plot can be

obtained fitting δ with the central value of OPERA, shown in figure 7b. These results show

that the step function parametrisation has the potential to fit both MINOS and OPERA

results without contradicting the bounds from the supernova SN1987a. However, in order

to establish the validity of this scenario, a detailed simulation of the three neutrino data sets

is necessary to take into account the non trivial energy spectra of the supernova neutrinos

and MINOS/OPERA beams. We plan to perform such an analysis once the detailed data

from OPERA will be publicly available.
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5.1 Comment on bounds from Čerenkov-like emission

In ref. [27], which appeared after our paper, it has been pointed out that super-luminal

neutrinos, with a constant velocity matching the OPERA result, should lose energy in the

form of electron pairs for energies above 140 MeV. An explicit calculation of the energy

loss along the distance between CERN and the OPERA detector shows that all neutrinos

with energy above 12.5 GeV should lose most of their energy before reaching Gran Sasso,

therefore depleting the beam of all the high energy neutrinos that give rise to the events

detected by OPERA. If this argument held, the detection of neutrinos by OPERA would

contradict their super-luminality.2 However, the argument relies on a specific form of

Lorentz violation due to the presence of a preferred frame [30], and the calculation is based

on a modified form of the dispersion relation and not directly on the value of the velocity.

Therefore, the calculation of the energy loss can be performed only in a specific model

where the origin of the Lorentz violation is specified and the link between LV and the

velocity of neutrinos is expressed. In this sense, the argument is not general and cannot

be used to rule out a super-luminal interpretation of the OPERA measurement.

As an example where the Čerenkov emission argument may not apply, we can quote

the case of shortcuts via extra dimensions [7], which is similar to the toy model described

in this paper. In this case, based on a curved extra dimensional space-time where the

other standard model particles are localised on a 4 dimensional Minkowski sub-manifold,

neutrinos are assumed to propagate in the bulk of the extra dimension and, due to the

curvature, they bounce back and forth on the standard model brane. In the massless limit,

their motion proceeds at the speed of light along the geodesics, therefore in the extra

dimensional space-time there is no super-luminal propagation and the laws of relativity are

not violated. However, the effect of the curvature can be such that the distance covered

by the neutrino in the bulk is smaller than its projection on the standard model brane.

Any experiment made of ordinary matter will measure the longer distance along the brane

and therefore detect an apparent super-luminality. Čerenkov emission does not take place

because the true velocity of the neutrino is always lower that the speed of light. On the other

hand, in a realistic model, neutrinos may lose energy when crossing the brane: however

this problem is related not to the velocity but to the effective interactions of the extra

dimensional neutrinos and therefore it can only be addressed once a full model is specified.

Even though the Čerenkov-like energy loss is not a generic feature of super-luminal

neutrinos and it can be calculated only once a specific model or class of models is specified,

in the rest of this section we will follow the argument of ref. [27] and estimate the effect

of the energy dependence of the velocity on the Čerenkov emission. If we assume that the

power law velocity in eq. (2.3) can be derived from a modified dispersion relation with a

preferred frame, the dispersion relation should have the form

E2 − ~p2 − 1

α+ 1

Eα+2

Mα
= 0 ; (5.5)

2Bounds on neutrino production at CERN based on similar arguments have been pointed out in [28, 29].
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with v = ∂E/∂p. Therefore, neutrinos have an effective energy-dependent mass

δm2(E) =
1

α+ 1

Eα+2

Mα
. (5.6)

Assuming that the Čerenkov emission does take place, from the expression of the effective

mass we can estimate the energy loss rate (eq. 3 in ref. [27]):

dE

dx
= − 25

448

G2
F

192π3
(δm2)3 . (5.7)

Integrating over the baseline of OPERA L, and using the relation δOPERA = 5 × 10−5 =
(

〈E〉
M

)α
, where the average energy of detected neutrinos is 〈E〉 ∼ 30 GeV, the energy ET

above which the neutrinos lose their energy is given by the relation:

E5+3α
T =

(1 + α)3

5 + 3α

〈E〉3
25
448

G2
F

192π3 δ
3
OPERAL

. (5.8)

For α = 0, we recover the result in ref. [27]; by numerical study of the formula, we found

that ET & 30 GeV for α & 5. Thus, while large values of α would resolve the inconsistency

of OPERA in the case of preferred frame Lorentz violation, this case is excluded both by the

Fermilab bound and by the absence of bunch distortion, as pointed out in this paper. As

a concluding remark, we repeated the calculation in the case of an hyperbolic tangent step

function: the result for the threshold energy is very close to 12.5 GeV in the interesting

parameter region, due to the fact that the velocity is almost energy-independent in the

vicinity of the OPERA energies. Thus, in the class of models where Čerenkov emission

takes place, an energy dependence in the velocity does not allow to evade the bounds from

the energy loss of OPERA neutrinos.

6 Conclusions

We presented a combined analysis of possible LV effects using the available data from

SN1987a and the MINOS and OPERA neutrino velocity test. The MINOS collaboration

reported a hint of super-luminal propagation for muonic neutrinos of a few GeV energy,

even though the result is not statistically significant being compatible with the speed of light

at 1.4σ (summing linearly the systematic and statistic errors). The OPERA collaboration

reported instead a more precise result which corresponds to a 6σ effect for super-luminal

propagation for muonic neutrinos, thus confirming the MINOS results. We studied the

possible bounds on a general LV term in the velocity that depends on non integer powers

of the energy, which are naturally generated in the context of conformal neutrinos. We

considered the distortion in shape of the bunch of neutrinos from MINOS at the far detector

together with the time of flight measurement: in fact, the two effects are correlated to each

other via the energy dependence of the LV term in the velocity. We found a tension

between the MINOS preferred region and the supernova bounds, coming from the fact

that the parameter region with large energy dependence, which would be favoured by

supernova data, is disfavoured by MINOS due to the absence of a shape distortion in the
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data. This effect has not been taken into account in previous studies. The significance

of the MINOS result alone does not allow to draw any solid conclusion, however the very

recent results from OPERA will certainly help clarify the situation in the future. In

particular, the OPERA collaboration reported that they do not observe a marked energy

dependence of the effect, thus supporting our conclusions. We also tested other forms

of energy dependence, and found that the most favourable one is close to a step function

(hyperbolic tangent). This form allows to have velocity very close to the speed of light at low

energy, thus evading bounds from supernova neutrinos, and an almost energy independent

deviation at large energies, which accommodates the preferred region by OPERA and the

absence of bunch distortion in MINOS. These results point to new and partially unexpected

behaviour which indicates a super-luminal time shift for GeV energy neutrinos with no or

small bunch shape distortion due to the energy spread. Neutrinos might therefore not only

serve as a probe for physics beyond the Standard Model and cosmology, but also for the

understanding of the foundations of space-time.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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