578,067 research outputs found

    Biosynthesis of α-Tocopherol and Plastoquinone-9 in spinach chloroplasts

    Get PDF
    Prenylation and methylation reaction in al biosynthesis is localized in the envelope membranes of the chloroplasts, while PQ-9 biosynthesis takes place in the envelope membranes and also in the thylakoid membranes. The sequence in a-T biosynthesis in spinach is (see also Figure 1): Homogentisate + Phytyl-PP —> Me-6-PQH?—> 2,3-Me2PQH?—>γ J ->a T ; for the PQ-9 biosynthesis it is: Homogentisate + Solanesyf-PP4-> Me-6-SQH2—> PQH2

    Aspergillus westerdijkiae polyketide synthase gene “aoks1” is involved in the biosynthesis of ochratoxin A

    Get PDF
    OchratoxinA (OTA) is a potential nephrotoxic, teratogenic, immunogenic, hepatotoxic and carcinogenic mycotoxin, produced by Aspergillus westerdijkiae NRRL 3174. Herein we describe the characterization of a putative OTA-polyketide synthasegene “aoks1”, cloned by using gene walking approach. The predicted amino acid sequence of the 2 kb clone display 34–60% similarities to different polyketide synthasegenes including lovastatine biosynthesis gene “lovb” in A. terreus, compactin biosynthesis gene “mlcA” in Penicillium citrinum and OTA biosynthesis gene “otapksPN” in P. nordicum. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aoks1 expression was found to be associated with OTA biosynthesis. Further a mutant, in which the aoks1gene was inactivated by Escherichia coli hygromycin B phosphotransferase gene, lost the capacity to produce OTA, but still producing mellein. To our knowledge this report describes for the first time characterization of a gene involved in OTA biosynthesis, with the information about mellein which was proposed in the literature to be an intermediate OTA. This study also suggests that aoks1 may be the second polyketide synthase gene required for OTA biosynthesis in A. westerdijkiae NRRL 3174

    Maritime pine PpMYB8 directly co-regulates secondary cell wall architecture and the associated Phe-biosynthesis pathway

    Get PDF
    Plants rely on the biosynthesis of L-Phenylalanine as building block for the synthesis of proteins but also as precursor for a tremendous range of plant-derived compounds essential for its grown, development and defense. Polymerization of secondary cell wall in trees involves the massive biosynthesis, among others, of the Phe-derived compound lignin. Thus, these plants require an accurate metabolic coordination between Phe and lignin biosynthesis to ensure its normal development. We have here identified that the pine arogenate dehydratase, whose enzyme activity limits the biosynthesis of Phe in plants, is transcriptionally regulated through direct interaction with PpMyb8. We have also shown that this transcription factor is directly involve in secondary cell wall biogenesis and cell death processes. Together these results indicate that a single transcription factor coordinates lignin accumulation and the proper biosynthesis of its essential precursor L-Phe.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A truncated lipoglycan from mycobacteria with altered immunological properties

    Get PDF
    Maintenance of cell-wall integrity in Mycobacterium tuberculosis is essential and is the target of several antitubercular drugs. For example, ethambutol targets arabinogalactan and lipoarabinomannan (LAM) biosynthesis through the inhibition of several arabinofuranosyltransferases. Apart from their role in cell-wall integrity, mycobacterial LAMs also exhibit important immunomodulatory activities. Here we report the isolation and detailed structural characterization of a unique LAM molecule derived from Mycobacterium smegmatis deficient in the arabinofuranosyltransferase AftC (AftC-LAM). This mutant LAM expresses a severely truncated arabinan domain completely devoid of 3,5-Araf–branching residues, revealing an intrinsic involvement of AftC in the biosynthesis of LAM. Furthermore, we found that ethambutol efficiently inhibits biosynthesis of the AftC-LAM arabinan core, unambiguously demonstrating the involvement of the arabinofuranosyltransferase EmbC in early stages of LAM-arabinan biosynthesis. Finally, we demonstrate that AftC-LAM exhibits an enhanced proinflammatory activity, which is due to its ability to activate Toll-like receptor 2 (TLR2). Overall, our efforts further describe the mechanism of action of an important antitubercular drug, ethambutol, and demonstrate a role for specific arabinofuranosyltransferases in LAM biosynthesis. In addition, the availability of sufficient amounts of chemically defined wild-type and isogenic truncated LAMs paves the way for further investigations of the structure–function relationship of TLR2 activation by mycobacterial lipoglycans

    Further characterization of Dothistromin genes in the fungal forest pathogen Dothistroma septosporum : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Science in Molecular Genetics at Massey University, Palmerston North, New Zealand

    Get PDF
    Dothistroma septosporum is a forest pathogen that causes a disease called Dothistroma needle blight. The symptoms are thought to be due to the accumulation of dothistromin toxin produced by D. septosporum. Dothistromin is characterized as a difuranoanthraquinone and shows remarkable similarity to the aflatoxin (AF) and sterigmatocystin (ST) precursor versicolorin B. The similar structure to AF/ST suggests that dothistromin biosynthesis shares biosynthetic steps with the AF/ST pathway. The AF gene cluster in Aspergillus parasiticus and ST gene cluster in A. nidulans have been well characterized. Nine putative dothistromin biosynthetic genes have been identified. One of them, dotA was previously characterized by gene disruption and shown to have a similar function to homologous genes in AF/ST biosynthesis. Two additional putative dothistromin biosynthetic genes, pksA and epoA, were characterized by gene disruption in this study. The inability of the pksA mutants to produce dothistromin indicated that the pksA is a key gene in dothistromin biosynthesis. The feeding of intermediates confirmed that pksA gene product is required for a very early step of dothistromin biosynthesis. The pksA mutants also showed reduced sporulation compared to wildtype, suggesting a relationship between dothistromin production and sporulation. The epoA gene replacements were also obtained successfully by homologous recombination. Both Southern blot and northern hybridization confirmed that the epoA gene was disrupted. However, the epoA mutants did not show any difference to the wild type in three analyses (growth rate, sporulation rate, dothistromin biosynthesis). However it was not possible to rule out a role for EpoA at a very late stage of dothistromin biosynthesis. RACE analysis of the nine identified dothistromin genes characterized the transcription start and stop sites of the genes. Analyzing the putative regulatory protein binding motifs in the untranscribed region of the genes provided clues about the regulation of dothistromin biosynthesis and suggested there might be an aflR-like gene that governs dothistromin biosynthesis. Both the pksA gene disruption and the RACE results suggested that the dothistromin biosynthetic pathway is homologous to that of AF/ST biosynthesis. Further work on the dothistromin gene cluster will help us to understand the evolution of fungal toxin gene clusters

    ttl mutants are impaired in cellulose biosynthesis under osmotic stress

    Get PDF
    As sessile organisms, plants require mechanisms to sense and respond to the challenging environment, that encompass both biotic and abiotic factors that results in differential development. In these conditions is essential to balance growth and stress responses. As cell walls shape plant growth, this differential growth response cause alterations to the plant cell wall and cellulose is a major component. Therefore, understanding the mechanisms that regulate cellulose biosynthesis is essential to develop strategies to improve plant production. Previous studies have shown that the GSK3 kinase BIN2 modulate cellulose biosynthesis through phosphorylating cellulose synthases and that the expression of cellulose synthases are regulated by Brassinosteroids. Our previous work reveals that the tetratricopeptide-repeat thioreoxin-like (TTL) TTL1, TTL3, and TTL4 genes, in addition to their reported role in abiotic stress tolerance, are positive regulators of BR signaling. We observe association of TTL3 with most core components in traducing BR signalling, such as LRR-RLK BRI1, BIN2 and the transcription factor BES1 that positively regulate cellulose biosynthesis. We show that ttl mutants are affected in cellulose biosynthesis, particularly in osmotic stress conditions. Furthermore, TTL3 associates with LRR-RLKs that have been shown to be important for cellulose biosynthesis such as FEI1 in the FEI1/FEI2/SOS5 pathway. We aim to investigate the mechanisms by which TTL proteins regulate cellulose biosynthesis using a combination of genetics, biochemical, and molecular and cell biology approaches. This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256); (3) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.This work was supported by grants from: (1) Ministerio de Ciencia e Innovación BIO2014-55380-R, BIO2014-56153-REDT; (2) Ministerio de Economía, Industria y Competitividad (BES-2015-071256); (3) Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The ubiK protein is an accessory factor necessary for bacterial Ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ

    Get PDF
    Ubiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in Escherichia coli, and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, yqiC, which is required for efficient UQ biosynthesis, and which we have renamed ubiK. Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified. We found that both proteins are likely to contribute to global UQ biosynthesis rather than to a specific biosynthetic step, because both ubiK and ubiJ mutants accumulated octaprenylphenol, an early intermediate of the UQ biosynthetic pathway. Interestingly, we found that both proteins are dispensable for UQ biosynthesis under anaerobiosis, even though they were expressed in the absence of oxygen. We also provide evidence that the UbiK-UbiJ complex interacts with palmitoleic acid, a major lipid in E. coli. Last, in Salmonella enterica, ubiK was required for proliferation in macrophages and virulence in mice. We conclude that although the role of the UbiK-UbiJ complex remains unknown, our results support the hypothesis that UbiK is an accessory factor of Ubi enzymes and facilitates UQ biosynthesis by acting as an assembly factor, a targeting factor, or both.Agence Nationale de la Recherche ANR-15-CE11-0001-02Centre National de la Recherche Scientifique PICS07279French State Program "Investissements d'Avenir" ANR-11-LABX-001

    Diversity and biosynthetic potential of culturable microbes associated with toxic marine animals

    Get PDF
    Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus
    corecore