148,762 research outputs found

    Unraveling How Candida albicans Forms Sexual Biofilms.

    Get PDF
    Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These "conventional" biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized "sexual" biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans

    Sessile Legionella pneumophila is able to grow on surfaces and generate structured monospecies biofilms

    Get PDF
    Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm−2) or 5.34 ± 0.33 log (gu cm−2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to 300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation

    Growth limiting conditions and denitrification govern extent and frequency of volume detachment of biofilms

    Get PDF
    This study aims at evaluating the mechanisms of biofilm detachment with regard of the physical properties of the biofilm. Biofilms were developed in Couette–Taylor reactor under controlled hydrodynamic conditions and under different environmental growth conditions. Five different conditions were tested and lead to the formation of two aerobic heterotrophic biofilms (aeHB1 and aeHB2), a mixed autotrophic and heterotrophic biofilm (MAHB) and two anoxic heterotrophic biofilms (anHB1 and anHB2). Biofilm detachment was evaluated by monitoring the size of the detached particles (using light-scattering) as well as the biofilm physical properties (using CCD camera and image analysis). Results indicate that volume erosion of large biofilm particles with size ranging from 50 to 500 lm dominated the biomass loss for all biofilms. Surface erosion of small particles with size lower than 20 lm dominates biofilm detachment in number. The extent of the volume detachment events was governed by the size of the biofilm surface heterogeneities (i.e., the absolute biofilm roughness) but never impacted more than 80% of the mean biofilm thickness due to the highly cohesive basal layer. Anoxic biofilms were smoother and thinner than aerobic biofilms and thus associated with the detachment of smaller particles. Our results contradict the simplifying assumption of surface detachment that is considered in many biofilm models and suggest that discrete volume events should be considered

    Linking biofilm spatial structure to real-time microscopic oxygen decay imaging

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Biofouling on 2018, available online at: http://www.tandfonline.com/10.1080/08927014.2017.1423474Two non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 µm) and middle sized (~101 µm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.Peer ReviewedPostprint (author's final draft

    Marine aerobic biofilm as biocathode catalyst

    Get PDF
    Stainless steel electrodes were immersed in open seawater and polarized for some days at − 200 mV vs. Ag/AgCl. The current increase indicated the formation of biofilms that catalysed the electrochemical reduction of oxygen. These wild, electrochemically active (EA) biofilms were scraped, resuspended in seawater and used as the inoculum in closed 0.5 L electrochemical reactors. This procedure allowed marine biofilms that are able to catalyse oxygen reduction to be formed in small, closed small vessels for the first time. Potential polarisation during biofilm formation was required to obtain EA biofilms and the roughness of the surface favoured high current values. The low availability of nutrients was shown to be a main limitation. Using an open reactor continuously fed with filtered seawater multiplied the current density by a factor of around 20, up to 60 µA/cm2, which was higher than the current density provided in open seawater by the initial wild biofilm. These high values were attributed to continuous feeding with the nutrients contained in seawater and to suppression of the indigenous microbial species that compete with EA strains in natural open environments. Pure isolates were extracted from the wild biofilms and checked for EA properties. Of more than thirty different species tested, only Winogradskyella poriferorum and Acinetobacter johsonii gave current densities of respectively 7% and 3% of the current obtained with the wild biofilm used as inoculum. Current densities obtained with pure cultures were lower than those obtained with wild biofilms. It is suspected that synergetic effects occur in whole biofilms or/and that wild strains may be more efficient than the cultured isolates

    Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection.

    Get PDF
    AimDental biofilms are complex communities composed largely of harmless bacteria. Certain pathogenic species including Streptococcus mutans (S. mutans) can become predominant when host factors such as dietary sucrose intake imbalance the biofilm ecology. Current approaches to control S. mutans infection are not pathogen-specific and eliminate the entire oral community along with any protective benefits provided. Here, we tested the hypothesis that removal of S. mutans from the oral community through targeted antimicrobial therapy achieves protection against subsequent S. mutans colonization.MethodologyControlled amounts of S. mutans were mixed with S. mutans-free saliva, grown into biofilms and visualized by antibody staining and cfu quantization. Two specifically-targeted antimicrobial peptides (STAMPs) against S. mutans were tested for their ability to reduce S. mutans biofilm incorporation upon treatment of the inocula. The resulting biofilms were also evaluated for their ability to resist subsequent exogenous S. mutans colonization.ResultsS. mutans colonization was considerably reduced ( +/- 0.4 fold reduction, P=0.01) when the surface was preoccupied with saliva-derived biofilms. Furthermore, treatment with S. mutans-specific STAMPs yielded S. mutans-deficient biofilms with significant protection against further S. mutans colonization (5 minutes treatment: 38 +/- 13 fold reduction P=0.01; 16 hours treatment: 96 +/- 28 fold reduction P=0.07).ConclusionS. mutans infection is reduced by the presence of existing biofilms. Thus maintaining a healthy or "normal" biofilm through targeted antimicrobial therapy (such as the STAMPs) could represent an effective strategy for the treatment and prevention of S. mutans colonization in the oral cavity and caries progression

    Chronic Wounds: The Persistent Infection Problem

    Get PDF
    Chronic wounds heal poorly and can have a huge impact on a sufferer’s life. They are caused by a number of factors, one of which is the presence of persistent infections. Many standard treatments are unsuccessful at destroying these infections as the bacteria form a biofilm. Biofilms encase the bacteria, preventing immune cells from destroying them. There are multiple bacterial species within a biofilm, sometimes with antibiotics resistance, and which species are present changes over time. The changing, multi-species nature of biofilms can make finding an effective antibiotic treatment difficult. Also, bacteria in biofilms genetically differ from planktonic bacteria, and are often less susceptible to antibiotics. Additionally, biofilms are thought to reduce the access of antibiotics to the bacteria within. These reasons are discussed in further detail in this review, along with some of the reasons why bacteria can prevent wound closure

    Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.

    Get PDF
    The version on PEARL: Corrected proofs are Articles in Press that contain the authors' corrections. Final citation details, e.g., volume/issue number, publication year and page numbers, still need to be added and the text might change before final publication. Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, journal (year), DOIThe impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels
    corecore