2 research outputs found

    Bayesian nonparametric clusterings in relational and high-dimensional settings with applications in bioinformatics.

    Get PDF
    Recent advances in high throughput methodologies offer researchers the ability to understand complex systems via high dimensional and multi-relational data. One example is the realm of molecular biology where disparate data (such as gene sequence, gene expression, and interaction information) are available for various snapshots of biological systems. This type of high dimensional and multirelational data allows for unprecedented detailed analysis, but also presents challenges in accounting for all the variability. High dimensional data often has a multitude of underlying relationships, each represented by a separate clustering structure, where the number of structures is typically unknown a priori. To address the challenges faced by traditional clustering methods on high dimensional and multirelational data, we developed three feature selection and cross-clustering methods: 1) infinite relational model with feature selection (FIRM) which incorporates the rich information of multirelational data; 2) Bayesian Hierarchical Cross-Clustering (BHCC), a deterministic approximation to Cross Dirichlet Process mixture (CDPM) and to cross-clustering; and 3) randomized approximation (RBHCC), based on a truncated hierarchy. An extension of BHCC, Bayesian Congruence Measuring (BCM), is proposed to measure incongruence between genes and to identify sets of congruent loci with identical evolutionary histories. We adapt our BHCC algorithm to the inference of BCM, where the intended structure of each view (congruent loci) represents consistent evolutionary processes. We consider an application of FIRM on categorizing mRNA and microRNA. The model uses latent structures to encode the expression pattern and the gene ontology annotations. We also apply FIRM to recover the categories of ligands and proteins, and to predict unknown drug-target interactions, where latent categorization structure encodes drug-target interaction, chemical compound similarity, and amino acid sequence similarity. BHCC and RBHCC are shown to have improved predictive performance (both in terms of cluster membership and missing value prediction) compared to traditional clustering methods. Our results suggest that these novel approaches to integrating multi-relational information have a promising future in the biological sciences where incorporating data related to varying features is often regarded as a daunting task

    Analysing sequencing data in Hadoop: The road to interactivity via SQL

    Get PDF
    Analysis of high volumes of data has always been performed with distributed computing on computer clusters. But due to rapidly increasing data amounts in, for example, DNA sequencing, new approaches to data analysis are needed. Warehouse-scale computing environments with up to tens of thousands of networked nodes may be necessary to solve future Big Data problems related to sequencing data analysis. And to utilize such systems effectively, specialized software is needed. Hadoop is a collection of software built specifically for Big Data processing, with a core consisting of the Hadoop MapReduce scalable distributed computing platform and the Hadoop Distributed File System, HDFS. This work explains the principles underlying Hadoop MapReduce and HDFS as well as certain prominent higher-level interfaces to them: Pig, Hive, and HBase. An overview of the current state of Hadoop usage in bioinformatics is then provided alongside brief introductions to the Hadoop-BAM and SeqPig projects of the author and his colleagues. Data analysis tasks are often performed interactively, exploring the data sets at hand in order to familiarize oneself with them in preparation for well targeted long-running computations. Hadoop MapReduce is optimized for throughput instead of latency, making it a poor fit for interactive use. This Thesis presents two high-level alternatives designed especially with interactive data analysis in mind: Shark and Impala, both of which are Hive-compatible SQL-based systems. Aside from the computational framework used, the format in which the data sets are stored can greatly affect analytical performance. Thus new file formats are being developed to better cope with the needs of modern and future Big Data sets. This work analyses the current state of the art storage formats used in the worlds of bioinformatics and Hadoop. Finally, this Thesis presents the results of experiments performed by the author with the goal of understanding how well the landscape of available frameworks and storage formats can tackle interactive sequencing data analysis tasks
    corecore