
Aalto University
School of Science
Degree Programme of Computer Science and Engineering

Matti Niemenmaa

Analysing sequencing data in Hadoop:
The road to interactivity via SQL

Master’s Thesis
Espoo, 16th November 2013

Supervisor: Assoc. Prof. Keijo Heljanko
Advisor: Assoc. Prof. Keijo Heljanko

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80710837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Matti Niemenmaa
Title:
Analysing sequencing data in Hadoop: The road to interactivity via SQL
Date: 16th November 2013 Pages: xv + 143
Major: Theoretical Computer Science Code: T-79
Supervisor: Assoc. Prof. Keijo Heljanko
Advisor: Assoc. Prof. Keijo Heljanko
Analysis of high volumes of data has always been performed with distributed comput-
ing on computer clusters. But due to rapidly increasing data amounts in, for example,
DNA sequencing, new approaches to data analysis are needed. Warehouse-scale
computing environments with up to tens of thousands of networked nodes may be
necessary to solve future Big Data problems related to sequencing data analysis. And
to utilize such systems effectively, specialized software is needed.

Hadoop is a collection of software built specifically for Big Data processing, with a core
consisting of the Hadoop MapReduce scalable distributed computing platform and the
Hadoop Distributed File System, HDFS. This work explains the principles underlying
Hadoop MapReduce and HDFS as well as certain prominent higher-level interfaces
to them: Pig, Hive, and HBase. An overview of the current state of Hadoop usage in
bioinformatics is then provided alongside brief introductions to the Hadoop-BAM and
SeqPig projects of the author and his colleagues.

Data analysis tasks are often performed interactively, exploring the data sets at hand
in order to familiarize oneself with them in preparation for well targeted long-running
computations. Hadoop MapReduce is optimized for throughput instead of latency,
making it a poor fit for interactive use. This Thesis presents two high-level alternatives
designed especially with interactive data analysis in mind: Shark and Impala, both of
which are Hive-compatible SQL-based systems.

Aside from the computational framework used, the format in which the data sets
are stored can greatly affect analytical performance. Thus new file formats are being
developed to better cope with the needs of modern and future Big Data sets. This
work analyses the current state of the art storage formats used in the worlds of
bioinformatics and Hadoop.

Finally, this Thesis presents the results of experiments performed by the author with
the goal of understanding how well the landscape of available frameworks and storage
formats can tackle interactive sequencing data analysis tasks.
Keywords: Hive, Shark, Impala, Hadoop, MapReduce, HDFS, SQL, sequencing

data, Big Data, interactive analysis
Language: English

iii

Acknowledgements

To my supervisor and my colleagues at work, for the valuable feedback
on the content of this Thesis and for teaching me some things I needed to
know.

To my friends at Aalto, for the stimulating lunchtime discussions.

To my family and girlfriend, for your support and patience.

Espoo, 16th November 2013

Matti Niemenmaa

v

Contents

Contents vii

List of abbreviations ix

List of Tables xiii

List of Figures xiv

List of Listings xv

1 Introduction 1

2 MapReduce 7
2.1 Execution model . 9
2.2 Distributed file system . 13

3 Apache Hadoop 15
3.1 Apache Pig . 17
3.2 Apache Hive . 19
3.3 Apache HBase . 22

4 Hadoop in bioinformatics 27
4.1 Hadoop-BAM . 28
4.2 SeqPig . 30

5 Interactivity 33
5.1 Apache Spark . 34
5.2 Shark . 37

vii

C

5.3 Cloudera Impala . 39

6 Storage formats 41
6.1 Row-oriented binary storage formats 44

Compression schemes . 45
BAM and BCF . 46
Considerations for bioinformatical file format design . . . 49

6.2 RCFile . 50
6.3 ORC . 51
6.4 Trevni . 52
6.5 Parquet . 53

7 Experimental procedure 55
7.1 Accessing sequencing data 55
7.2 Intended procedure . 60
7.3 Issues encountered . 61
7.4 Final procedure . 63
7.5 Setup . 69

8 Experimental results 73
8.1 Data set size . 73
8.2 Query performance . 75

Overviews by framework 75
Overviews by storage format 78
A closer look at speedups 84
Detailed comparisons . 87

9 Conclusions 99

A Experimental configuration 103
A.1 Hadoop . 103
A.2 Hive . 105
A.3 Shark . 105
A.4 Impala . 106

B HiveQL statements used 109
B.1 Table creation and settings 109
B.2 Queries on the full data set 111
B.3 Exploratory queries on the reduced data set 113

Bibliography 117

viii

List of abbreviations

Throughout this work, a byte represents an eight-bit quantity.

API application programming interface
BAM Binary Alignment/Map [Li+09; SAM13]
bp base pair
BCF Binary Call Format [Dan+11]
BED Browser Extensible Data [Qui+10]
BGZF Blocked GNU Zip Format (according to e.g. Cánovas and

Moffat [Cán+13] and Cock [Coc11])
BGI 华大基因, a Chinese genomics research institute; formerly

Beijing Genomics Institute
CDH Cloudera’s Distribution Including Apache Hadoop [CDH]
CIGAR Compact Idiosyncratic Gapped Alignment Report [Ens13]
CPU central processing unit
CRC cyclic redundancy check [Pet+61]
DAG directed acyclic graph
DDR3 double data rate [DDR08], type three
DEFLATE a compressed data format, or the canonical compression

algorithm outputting data in that format [Deu96a]
DistCp distributed copy, a file copying tool using Hadoop Map-

reduce [DCp]
DNA deoxyribonucleic acid
DOI Digital Object Identifier [DOI]
ETL Extract, Transform, and Load
GATK the Genome Analysis Toolkit [McK+10]
GB gigabytes (109 bytes)
Gbps gigabits per second (109 bits per second)
GFS the Google File System [Ghe+03]

ix

L  

GHz gigahertz (109 Hertz)
GiB gibibytes (230 bytes)
GNU GNU’s Not Unix! [GNU]
HDFS the Hadoop Distributed File System
HiveQL the Hive query language (in this work, also used to refer to

the dialects understood by Shark and Impala)
HTS high-throughput sequencing
I/O input/output
JBOD just a bunch of disks
JVM Java Virtual Machine
kB kilobytes (103 bytes)
KiB kibibytes (210 bytes)
LLVM a collection of compiler-related software projects [LLV];

formerly Low-Level Virtual Machine [Lat+04]
LZMA Lempel-Ziv-Markov chain algorithm [Pav13]
LZO Lempel-Ziv-Oberhumer [Obe]
MB megabytes (106 bytes)
MHz megahertz (106 Hertz)
MiB mebibytes (220 bytes)
Mibp mebi-base pairs (220 base pairs)
MPI Message Passing Interface [MPI93]
MTBF mean time between failures
N/A not applicable
NFS Network File System [Sto+10]
NGS next-generation sequencing
ORC Optimized Row Columnar [ORC13; ORM]
PB petabytes (1015 bytes)
PiB pebibytes (250 bytes)
PNG Portable Network Graphics [Duc03]
QC quality control
QDR quad data rate
RAM random access memory
RCFile Record Columnar File [He+11]
RDD Resilient Distributed Dataset [Zah+12]
RPM revolutions per minute
SAM Sequence Alignment/Map [Li+09; SAM13]
SDRAM synchronous dynamic random access memory [SDR94]
SerDe serializer/deserializer
SQL Structured Query Language [ISO92]
SSTable Sorted String Table [McK+09]
stddev standard deviation

x

TB terabytes (1012 bytes)
TiB tebibytes (240 bytes)
URL Uniform Resource Locator [Ber+05]
UTF Unicode Transformation Format [UTF]
VCF Variant Call Format [Dan+11]
XML Extensible Markup Language [Bra+08]
YARN Yet Another Resource Negotiator [Wat12]

xi

List of Tables

6.1 BCF record format. 48

7.1 BAM record format. 57
7.2 Hive schema used for BAM data. 59
7.3 Data set size initially and after each modification. 68
7.4 The experiment plan. 70
7.5 Unfinished 31-worker experiments. 72

8.1 The data set size in different formats. 74
8.2 gzip vs. Snappy runtimes with Hive and RCFile. 90
8.3 BAM vs. gzip-compressed RCFile runtimes with Hive. 91
8.4 Hive runtimes with gzip-compressed RCFile vs. DEFLATE-

compressed ORC. 92
8.5 RCFile vs. ORC runtimes with Hive and Snappy compression. 93
8.6 Impala vs. Shark runtimes on a gzip-compressed RCFile bam

table. 94
8.7 Runtimes of Impala with Snappy-compressed Parquet vs. Shark

with gzip-compressed RCFile. 96

A.1 Hadoop settings given in core-site.xml. 104
A.2 HDFS settings given in hdfs-site.xml. 104
A.3 Hadoop MapReduce settings given in mapred-site.xml. . . 105
A.4 Relevant environment variables for Hadoop. 105
A.5 Hive configuration variables. 106
A.6 Shark environment variables. 106
A.7 Parameters given in SPARK_JAVA_OPTS. 106
A.8 Impala environment variables, all concerning only logging. . . 107

xiii

List of Figures

1.1 Historical trends in storage prices vs. DNA sequencing costs. . 3

2.1 Distributed MapReduce execution. 10

3.1 HBase state and operations. 25

4.1 Speedup observed in BAM sorting with Hadoop-BAM. 30
4.2 Speedup of SeqPig vs. FastQC. 31

8.1 Query times on a linear scale, by framework. 76
8.2 Query times on a log scale, by framework. 77
8.3 Impala’s bam query times on a linear scale, by table format. . . 79
8.4 Hive’s bam query times on a linear scale, by table format. . . . 80
8.5 Hive’s bam query times on a log scale, by table format. 81
8.6 Hive’s results query times on a linear scale, by table format. 82
8.7 Hive’s results query times on a log scale, by table format. . 83
8.8 Hive’s post-BED join query times on a linear scale, by table

format. 85
8.9 Shark’s bam query times on a linear scale, by table format. . . 86
8.10 Shark’s bam query times on a log scale, by table format. 87
8.11 Shark’s post-BED join query times on a linear scale. 88
8.12 Impala’s post-BED join query times on a linear scale. 89

xiv

List of Listings

7.1 HiveQL initializing RCFile with gzip for Hive. 64
7.2 HiveQL used on the bam table in Hive. 65
7.3 HiveQL used on the results table in Hive. 67
B.1 HiveQL code describing the table schema. 109
B.2 HiveQL used to create bam in BAM. 110
B.3 HiveQL used to create bam in RCFile. 110
B.4 HiveQL used to create bam in ORC. 110
B.5 HiveQL used to create bam in Parquet. 110
B.6 HiveQL used to create the BED table. 110
B.7 RCFile compression settings used with both compressors. . 110
B.8 The RCFile gzip compression setting. 111
B.9 The RCFile Snappy compression setting. 111
B.10 HiveQL initializing post-BED join benchmarking in Shark. 111
B.11 HiveQL initializing single-node post-BED join benchmark-

ing in Impala. 111
B.12 The parallelism setting for Hive and Shark. 111
B.13 Initial counting statements on the full data set. 111
B.14 Statements computing the two histograms. 112
B.15 Code specifying the columns in the bam table. 112
B.16 The join with the BED table. 112
B.17 HiveQL copying the separately computed BED join data. . 113
B.18 HiveQL counting the size of the result of the BED join. . . 113
B.19 HiveQL computing the quality join and its size. 113
B.20 Simple filters and interspersed counts on results. 114
B.21 HiveQL calculating the mean and standard deviation. . . . 114

xv

C 1
Introduction

[A] wealth of information creates a poverty
of attention, and a need to allocate that atten-
tion efficiently among the overabundance of
information sources that might consume it.

‘Designing Organizations for an
Information-Rich World’

H A. S [Sim71]

Data volumes nowadays are increasing to the point that many individual
data sets are too large to be analysed, or even stored, on a single computer.
Such data sets are known as Big Data, and can arise in several contexts.
Examples include Internet searches, financial analytics, and various fields
of science. Notably many Big Data problems can be found in the field of
bioinformatics. A number of them are due to recent advances in sequencing:
the task of determining the base composition of e.g. DNA, possibly going
as far as finding the entire genome of an organism.

In the case of DNA, the number of base pairs or bp, the building blocks of
genomic information, that can be sequenced per unit cost has been growing
at an exponential rate for over two decades, doubling approximately every
19 months [Ste10]. This alone would have caused Big Data issues sooner or
later. However, the growth rate suddenly increased around the year 2005,
due to the emergence of techniques known as high-throughput sequencing
or HTS (a.k.a. next-generation sequencing or NGS). HTS has resulted in
the process speeding up to the point that the cost has now been halving
approximately every five months [Ste10]. As an example of current speeds,
Pireddu, Leo, and Zanetti [Pir+11a] claim that their ‘medium-sized’ DNA
sequencing laboratory can create 4–5 TB of data every week. At the high

1

1. I

end, BGI, ‘one of the largest producers of genomic data in the world’,
generates 6 TB of data daily [Mar13]. For comparison, the largest hard disk
drives available as of November 2013 are 6 TB in size [HGS13].

Exponential growth due to technological advances is not unusual in the
computing world. Consider the following three ‘laws’:

• Moore’s law: the number of components in integrated circuits with
minimum cost per component doubles every year [Moo65]. Later
amended to a doubling every two years without the minimum cost as-
pect [Moo75], and commonly quoted as 18 months [Int05]. Together
with Dennard scaling [Den+07], Moore’s law has meant that pro-
cessing power has doubled at essentially the same rate.1

• Butters’ law (of photonics): the cost of transmitting one bit over an
optical network halves every nine months [Rey98].

• Kryder’s law, which was never given as a prediction, merely an obser-
vation: areal storage density of hard disk drives had been increasing
at a greater rate than the rate of processor improvement according
to Moore’s law [Wal05].

Note, however, that none of the above growth rates, corresponding re-
spectively to increases in processing power, network speed, and storage
capacity, are even close to as fast as the pace at which sequencing is cur-
rently improving. See Figure 1.1 for a clarifying plot comparing trends in
storage and sequencing costs from 1990 to 2009. (For comparing the actual
values instead of only the overall trends, one must know the size of a base
pair, which depends on the storage format: for example, a single base is
stored in 4 bits in BAM files and 8 bits in SAM files [SAM13], excluding
compression.) Note that the source of the plot describes Kryder’s law as a
doubling every 14 months, significantly more optimistic than more recent
studies showing that the period is about 25 months [Kry+09]. Nevertheless,
storing sequencing data on a hard disk is, or will soon be, actually more
expensive than generating the data [Ste10], making its storage an increas-
ingly difficult task. Discarding all but the most informative parts may be
the only long-term option.

Small enough data sets may fit completely in main memory, enabling
computation that may be faster (per unit of size) than on larger sets by

1But the end of Dennard scaling made improving single-core CPUs much more
difficult than it was previously, leading manufacturers to turn to multi-core designs
instead [Esm+11; Sut09]. Furthermore, there are signs that multi-core scaling will also not
last long [Bos13; Esm+11; Har+11].

2

1990 1992 1994 1996 1998 2000 2003 2004 2006 2008 2010 2012
0

1

10

100

1,000

10,000

100,000

1,000,000

0.1

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

Year

D
is

k
st

or
ag

e
(M

by
te

s/
$)

D
N

A
 sequencing (bp/$)

Hard disk storage (MB/$)
Doubling time 14 months

Pre-NGS (bp/$)
Doubling time 19 months

-

NGS (bp/$)
Doubling time 5 months

Figure 1.1: Historical trends in storage prices vs. DNA sequencing costs.
Reproduced from Stein [Ste10].

several orders of magnitude. Technological progress may result in this
applying to current Big Data sets in as few as ten years: if current trends are
followed, by that time the price of RAM (random access memory) will equal
the current price of disk storage [Pla+11]. Thereafter many data sets that
are currently considered Big Data may be able to be held fully in memory,
with disk serving only as backup, in systems such as RAMCloud [Ous+11].
The speed at which e.g. sequencing data grows prevents such systems from
being complete solutions to the problem of efficiently processing Big Data,
but they can be very effective for data sets that are not overly large.

Storage feasibility is only part of the picture: like any kind of raw data,
sequencing data also needs to be analysed in order for it to be of any use.
Clearly, if there is too much data for even its storage to be possible, its
analysis is equally infeasible. This magnitude of data classifies sequence
data analysis as a Big Data problem.

For a problem to qualify as a Big Data problem, attempting to solve it
with a single computer should result in one or both of the following:

• The computer has too slow a processor or too little memory to be
able to perform the needed computations in a reasonable amount
of time. Waiting for better hardware will not help, because the data
growth outpaces Moore’s law.

3

1. I

• The computer does not have enough disk space to store the data sets
on which computations are to be performed. Waiting for larger disk
drives will not help, because the data growth outpaces Kryder’s law.

Therefore, in order to solve Big Data problems, lone computers are insuffi-
cient. Distributed computing is required, i.e. having multiple networked
computers, or nodes, working together in computer clusters. Ideally, the
clusters used have been specialized for the task at hand, thus making them
effectively warehouse-scale computers [Bar+13].

Traditionally, distributed software has been created by developing com-
munication protocols specific to the application, using primitives provided
by e.g. MPI (the Message Passing Interface) [MPI93], the PVM frame-
work [Sun90] or, in the data communications domain, the Erlang pro-
gramming language [Arm97]. At this level, implementing the necessary
functionality correctly is difficult, especially if the software is to be run not
only in small clusters but on warehouse-scale computers, with hundreds to
tens of thousands of network nodes. Realizing high performance in such
an environment is especially complicated. In addition, fault tolerance be-
comes a necessity, because the probability of hardware failure is too high
to ignore [Dea09].

To ensure that warehouse-scale distributed software can work at high
performance and not worry about hardware failure, a framework specifi-
cally designed for that use case is necessary. One such framework was
developed by Google [Goo]: MapReduce [Dea+04] coupled with GFS (the
Google File System) [Ghe+03]. Together, they provide fault tolerance both
for computations and data: most hardware failures neither interrupt run-
ning processes nor cause data loss.

The implementations of the MapReduce system and GFS were not made
publicly accessible, leading to the creation of Apache Hadoop [Had], an
open source implementation of the same ideas. Hadoop has since expanded
to become a collection of software related to scalable distributed computing.

Unfortunately, there exist problems for which MapReduce’s computa-
tional model is far from ideal. In particular, MapReduce is specifically op-
timized for throughput over latency, which makes it a poor fit for interactive
use. Interactive analysis tasks arise e.g. when users are not well enough ac-
quainted with the data sets concerned to effectively perform long-running
computations on them, having to instead explore them with repeated que-
ries, either narrowing down areas of interest or requesting more informa-
tion according to newly realized needs [Hee+12]. MapReduce’s typical
ten-second job startup time [Pav+09; Xin+12] guarantees that most users
will shift their focus before a computation completes [Car+91], slowing

4

down this exploratory process. Interactive tasks are increasingly prevalent
in sequencing data analysis [Che+12], making frameworks designed with
latency in mind desirable. Low latency is a more difficult goal to reach
than high throughput [Dea+13; Pat04], but nevertheless such systems do
exist. Two notable ones, whose performance is evaluated in this work, are
Shark [Xin+12], which is based onApache Spark [Zah+12], and Cloudera Im-
pala [Imp], which is based on the design of Google’s Dremel [Mel+10]. Both
frameworks allow access to structured data stored in HDFS (the Hadoop
Distributed File System) using a language based on SQL (Structured Query
Language) [Cha+74; Gro+09; ISO92], contributing to the trend [Mur+13] of
handling interactive Big Data computations with ‘SQL-on-Hadoop’.

This Thesis proceeds as follows. In Chapter 2 the background of Map-
Reduce as well as its specifics, especially pertaining to Hadoop, are gone
over in detail. Next, Chapter 3 covers the Hadoop project and some notable
high-level frameworks based on it: Apache Pig [Ols+08], the SQL-based
Apache Hive [Thu+10a], and Apache HBase [HBa]. Chapter 4 surveys
the current state of Hadoop in bioinformatics and presents two sets of
tools developed by the author and his colleagues that enable using Ha-
doop to manipulate and analyse sequencing data. Chapter 5 delves into the
interactivity-oriented Shark and Impala frameworks. Chapter 6 discusses
the importance of storage formats and studies the current state of the art
formats in the worlds of sequencing and SQL-on-Hadoop. With the neces-
sities covered, Chapter 7 presents a set of benchmarks used to compare
the effectiveness of the exhibited SQL-based frameworks—Hive, Shark, and
Impala—in interactive sequencing data analysis. The results obtained by
running the benchmarks are examined in Chapter 8. Finally, Chapter 9
states some final thoughts based on the results of the experiments and the
current state of scalable interactive sequencing data processing.

5

C 2
MapReduce

A computer’s attention span is as long as its
power cord.

unknown

Applying warehouse-scale computing to Big Data problems is not as simple
as setting up the hardware. Programming for a warehouse-scale computer
is a far more complex task than programming for a small cluster, which
in itself is more challenging than programming for e.g. a typical desktop
system. This is especially the case when performance is a concern, since
effectively utilizing all available resources involves co-ordinating several
hardware and software layers. Examples of things to keep in mind are the
complex memory hierarchy, heterogeneous hardware, failure-prone com-
ponents, and network topology [Bar+13]: all in addition to the complexity
of implementing the core of the application itself. As such it is no surprise
that programming frameworks that ease the burden on the developer of
warehouse-scale applications have been created. MapReduce [Dea+04] is
one such framework, including automatic handling for data distribution
and fault tolerance.

In order for a warehouse-scale computing framework to be practical, it
must be able to tolerate hardware failure. Even with unrealistically reliable
servers with a mean time between failures (MTBF) of 30 years, if there are
10 000 servers in a cluster, it will experience on average one failure every
day [Bar+13]. This makes fault tolerance in software not only useful, but
a practical necessity. In addition, it allows for a better price/performance
tradeoff by using relatively unreliable, cheaper hardware [Bar+03]. Map-
Reduce has been designed with this in mind: it provides efficiently fault

7

2. MR

tolerant computations and is intended to be used together with file systems
that provide fault tolerant data storage.

At its simplest level, MapReduce is a programming model for transform-
ing data: the programmer need only specify two functions—the Map and
Reduce functions—and the input data, and based on this information the
corresponding output can be computed in a functional manner. Because
of this, the model also allows for a simple strategy for fault tolerance: as
executing a function with a given input will always result in the same out-
put, e.g. all computations on a failed computer can trivially be re-executed
on another computer, as long as the input data is still available. The Map-
Reduce model allows for easy parallelization and is relatively simple to
program for, making it an attractive choice for distributed computing.

However, the term ‘MapReduce’ in a distributed computing context is
generally understood as meaning more than just the abstract programming
model: it includes the associated implementation that handles scheduling
the computation efficiently and dealing with machine failures during exe-
cution.

The original MapReduce implementation [Dea+04] was developed in-
ternally at Google and has not been released to the public. The current de
facto open source implementation of MapReduce is Apache Hadoop [Had],
which will be discussed in Chapter 3. Hadoop’s existence makes Map-
Reduce an attractive choice as a distributed computation model because
Hadoop is well established, having seen use in a variety of fields with good
results. (See Chapter 3 for detailed information.)

MapReduce is not perfect, though: its programming model can be
considered too rigid for various tasks. For example, PACT [Ale+11] has
been explicitly designed as an extension of MapReduce with the ability
to express more complex operations. Another example, Spark [Zah+12],
instead emphasizes data re-use: MapReduce does not intrinsically allow
re-using intermediate results. If such re-use is desired, it must be done
by manually saving and loading the corresponding data, which can incur
needless I/O and serialization overheads. And of course, as previously
mentioned (and elaborated on in Chapter 5), MapReduce is a very poor fit
for interactive work. In spite of these limitations, however, the MapReduce
model continues to see use across a wide variety of applications.

In the following Sections the MapReduce execution model is discussed
in detail before delving into the file systems that MapReduce is typically
paired with. The information on MapReduce is based completely on Dean
and Ghemawat [Dea+04] and White [Whi09].

8

2.1. Execution model

2.1 Execution model
Conceptually, the execution model of MapReduce consists only of applying
the Reduce function to the grouped results of the Map function. However,
practical distributed MapReduce frameworks complicate the process: they
specify more steps and implement them in certain ways to ensure that
good performance and fault tolerance are achieved. Below, the simpler,
conceptual model is first briefly explained, and then the principles that
underlie the warehouse-scale implementations are considered.

The type signatures of the two user-specified functions form a concise
description of the conceptual MapReduce execution model. See the fol-
lowing, where k is short for ‘key’ and v for ‘value’, the subscripts serve to
differentiate the types, and the superscripts m ≥ 0, n > 0, and p ≥ 0 denote
differing list lengths:

Map ∶ (k1, v1) → (k2, v2)
m

Reduce ∶ (k2, vn2) → vp3

As can be deduced from the type signatures, a MapReduce computation
takes a sequence of key-value pairs as input, on which it performs the
following tasks:

1. The Map function is applied to each key-value pair in the input,
outputting any number of new key-value pairs for each one.

2. Each key in the output from the previous step is paired with all the
values that were associated with that key.

3. The Reduce function is applied to each pair in the result of the pairing
in the previous step. The resulting list of data forms the final output.

To clarify the process, consider the following simple example, where
the task consists of taking as input a set of documents and outputting, for
each word encountered, the set of documents it was found in. Here the
input type could be e.g. (k1, v1) = (document-name, contents) for each
document. The Map function would go through the contents, outputting
pairs of type (k2, v2) = (word, document-name). Thus the Reduce func-
tion receives as input pairs of the form (word, document-namen), which
is precisely what was desired in the problem statement. The final output vp3
would depend on the exact format in which the output is desired, but could
be e.g. a string (just one string, i.e. p = 1) of the form "word","document-
1-name","document-2-name",… for each word.

9

2. MR

While the above description is sufficient for implementing a basic Map-
Reduce framework, fully distributed systems for warehouse-scale com-
puters, such as Google’s MapReduce implementation and Hadoop Map-
Reduce, are more complex and perform the steps in a very specific way.
See Figure 2.1 for a graphical overview of how MapReduce computations
are executed on such systems.

(k1, v1)
∗ (k2, v2)

∗ (k2, v∗2)
∗

(k2, v∗2)
∗ v∗3

(k1, v1)
∗ (k2, v2)

∗ (k2, v∗2)
∗

Input:
(k1, v1)

∗ (k2, v∗2)
∗ v∗3

(k1, v1)
∗ (k2, v2)

∗ (k2, v∗2)
∗

(k2, v∗2)
∗ v∗3

(k1, v1)
∗ (k2, v2)

∗ (k2, v∗2)
∗

Split
Shuffle

Map Combine

Reduce

Map tasks

Reduce tasks

Figure 2.1: Distributed MapReduce execution with four map tasks and
three reduce tasks. ki and vj denote key type i and value type
j respectively. The asterisk superscripts denote unknown list
lengths.

Distributed MapReduce is structured as a master-slave system. The
master node (known in Hadoop as the jobtracker and predefined as a specific
node for the whole cluster) allocates workers for different parts of the
computation and co-ordinates communication between them. The slaves
(known in Hadoop as tasktrackers) are the nodes that actually read the
input data, run the Map and Reduce functions, and write the output data.
Each slave node provides a number of map and reduce slots for running the
two different functions. For a computation or job, typically the user selects
the number of reduce tasks to be performed while the MapReduce system
automatically determines the number of map tasks. The full execution
process is as follows:

1. Split This step is performed solely on the master. The input files are
conceptually split into chunks: a set of splits, i.e. tuples that identify

10

2.1. Execution model

sequential parts in the input files, is created. These splits are typically
tens of megabytes in size, often corresponding to the block size of
the file system in use (see Section 2.2). Based on this the master
creates a map task for each split and assigns as many of them as it
can to separate map slots, which are started up and begin running.
(The remaining tasks are started as the job progresses: when a task
completes it frees its slot for use by another task.)

2. Map Each map task involves reading the corresponding input split,
forming key-value pairs of the data therein, and handing them to the
Map function for processing. These intermediate key-value pairs are
written to local disk, sorted by key, and partitioned : differentiated
based on which reduce task they belong to. The default partitioning
simply assigns each key k to the reducer h(k) mod R where h is a
hash function [Knu73] and R is the number of reduce tasks.

3. Combine This is an optional step that essentially runs the Reduce func-
tion on the partitioned output of the Map function directly as part of
the map task. While a custom Combine function can be given, typic-
ally Reduce is used as-is. This use requires that it be commutative and
associative. Note that since combining can reduce the map task’s out-
put size, it is performed before writing the partitions to local disk, as
long as the task has enough available memory for in-memory sorting
and partitioning. This way, fewer I/O operations are performed.

4. Shuffle The map tasks communicate the locations of their partitioned
outputs to the master node. It then notifies the corresponding reduce
tasks (starting them up in reduce slots as required) that new data is
available. The reduce tasks read the data from the local disks of the
nodes where the data was written—note that this may be the same
node on which the reduce task itself is running, in which case no
network communication is required. When a reduce task has received
all of its input data, it sorts it so that it is grouped by key.

5. Reduce Each reduce task iterates over its sorted sequence of key-value
pairs, passing each unique key and corresponding sequence of values
to the Reduce function. The output from it is written directly to the
output file of the reduce task, which is one of the final output files
generated by the MapReduce computation.

The end result is a set of output files, one from each reduce task. They
are not automatically combined to a single file because that is not always

11

2. MR

necessary: they could be used as-is as inputs for another MapReduce job,
for example. It is also possible to run a map-only job in which only the Map
function is used, with the map tasks’ output forming the output for the
entire computation.

Fault tolerance in this kind of a fully distributed MapReduce system is
fairly simple to implement. The master node periodically pings the slaves,
assuming them to have failed if it does not receive a response in time.
In-progress tasks on failed nodes are rescheduled and eventually restarted.
Completed map tasks are also rescheduled, but completed reduce tasks are
not. This is because the input and output files are assumed to be on a shared
storage system, separate from the local disks that are used for storing the
intermediate output from map tasks. Thus, if a node with a completed map
task whose output has not yet been sent to a reduce task fails, the map
task needs to be restarted, but if a node with a completed reduce task fails,
nothing needs to be done. This way worker failure is fully accounted for,
which is important for long-running jobs at warehouse scale. In contrast,
master failure is deemed unlikely since it requires a specific node to fail,
and is not handled at all, making the master a single point of failure.

Sometimes worker nodes may have unexpectedly poor performance due
to e.g. faulty hardware. This results in stragglers: members of the last few
map or reduce tasks which take a particularly long time to complete, holding
up the whole computation. A key optimization in MapReduce systems,
that of speculative or backup execution, was designed to mitigate this
problem. After all tasks have been started, if some tasks have been running
for a relatively long time and seem to be progressing (performing I/O of
key-value pairs) relatively slowly, the master attempts to reschedule those
same tasks on different nodes. When a task is successfully completed, any
other executing duplicates of that task are stopped. Speculative execution
does not significantly affect the resources used by a job but can speed it up
greatly.

Since tasks can runmultiple times aswell as be restarted at any point, the
Map and Reduce (and Combine, if used and distinct from Reduce) functions
should be free of side effects: pure functions of their input values. Only
then is it guaranteed that all the output of a fully distributed MapReduce
system is equivalent to a single sequential execution of the program. In
the face of nondeterministic user-supplied functions, the output of each
reduce task may correspond to a different sequential execution. Whether
this inconsistency is a problem in practice depends on the application.

12

2.2. Distributed file system

2.2 Distributed file system
MapReduce is traditionally paired with a specific distributed file system,
designed for large files and streaming access patterns. For Google’s Map-
Reduce that file system is GFS (the Google File System) and for Hadoop it
is HDFS (the Hadoop Distributed File System). Both share similar design
principles and implementation strategies, which will be covered in the
remainder of this Section. Information on GFS in this Section is based
on Ghemawat, Gobioff, and Leung [Ghe+03] and information on HDFS is
based on White [Whi09], except where otherwise indicated.

GFS and HDFS are both, like MapReduce, master-slave systems. The
master node (known in Hadoop as the namenode) keeps track of the state of
the slaves as well as file metadata, and the slave nodes (known in Hadoop
as the datanodes) are responsible for all data storage and communication.
Replication is used to provide fault tolerance: each block is stored on
multiple slaves—three by default. For simplicity reasons [McK+09] the
master node is a single point of failure, though HDFS’s secondary namenode
can limit data loss in case of catastrophic master node failure.

When using MapReduce, the slave nodes should be used to run Map-
Reduce workers as well, allowing MapReduce to take advantage of data
locality for map tasks. This is done by scheduling map tasks on nodes where
the data for that task’s split is stored, or, failing that, on nodes that are
nearby in terms of the network topology. Replication is advantageous here
as well as for fault tolerance, since it improves the odds of being able to
schedule a task on a node that has the corresponding split’s data available
locally. Note that it is possible to run a MapReduce job on GFS and HDFS
without any of the input data being sent across the network.

A major design principle of both GFS and HDFS is to support large
files efficiently. ‘Large’ in this context means at least 100 megabytes, but
typically several gigabytes, and up to terabytes. In contrast, small files are
assumed to be rare, and so are not optimized for at all. This is very much
the opposite of what file systems are traditionally optimized for [Gia99],
which is one of the main reasons that GFS and HDFS are typically paired
with MapReduce; they are both intended for Big Data sets consisting of
large files.

Another important design principle of GFS and HDFS is the emphasis
on write-once, read-many operation and streaming reads: written files are
assumed to be modified rarely if at all, and workloads are expected to in-
clude reading entire files or at least significant portions of them. Random
reads and writes are not optimized for—in fact, HDFS does not support ran-
dom writes at all. This lack of arbitrary modifications makes implementing

13

2. MR

replication much simpler, and the philosophy of large reads makes band-
width far more important than latency. Once again, this ties in with the
way MapReduce works, but it is also a more generally helpful restriction
for scalable storage architectures: for example, the lowest layer of the Win-
dows Azure Storage [Cal+11; WAz] system has the same limitation.

A notable result of these design decisions is that the block size of both
GFS and HDFS is unusually large: 64 MiB. (HDFS does allow changing this,
but reducing it to usual file system block sizes would be self-defeating.) This
reduces overhead related to metadata management, mainly by drastically
reducing the amount of metadata: compared to a more traditional 4 KiB
block size and assuming a large enough file, 16 384 times less blocks have
to be kept track of. Thus metadata can be kept fully in the memory of the
master, making metadata operations fast and enabling easy rebalancing
(replica distribution) and garbage collection. Keeping metadata in memory
has a drawback, however: it makes the capabilities of the master limit the
number of files that can be stored [McK+09]. Another benefit of large
block sizes is that if the time to read a full block is much greater than
the physical seek time of the disk drives used, reading a file consisting
of multiple arbitrarily distributed blocks operates at a speed close to the
drives’ sequential read rate.

14

C 3
Apache Hadoop

First, solve the problem. Then, write the code.

unknown

Apache Hadoop [Had; Whi09] was originally conceived as a nameless part
of the Nutch [Nut] Web search engine, implementing open source versions
of MapReduce [Dea+04] and GFS (the Google File System) [Ghe+03] for its
own purposes, in the Java programming language [Gos+13]. Yahoo! [Ya!]
soon began contributing to the project, at which point these components
were separated, forming the Hadoop project, named after the creator Doug
Cutting’s child’s toy elephant. At around the same time, Hadoop began to
be hosted by the Apache Software Foundation [Apa], giving it the full name
‘Apache Hadoop’. Since then, Hadoop has grown to become a collection of
related projects, two of which are the original MapReduce and file system
components: Hadoop MapReduce and HDFS (the Hadoop Distributed File
System).

For most of Hadoop’s history, the MapReduce component has been the
only computational framework supported in Hadoop. Tasks running on
other systems, e.g. MPI [MPI93], have not been able to be scheduled on
Hadoop clusters. This has meant that the machines in a cluster should be
configured to run only one class of tasks, such as Hadoop MapReduce jobs
or MPI processes. Otherwise, one node may have several computationally
intensive tasks running at once, possibly resulting in resource starvation
issues such as running low on memory or disk space, which may in turn
cause all tasks on the node to fail. On the other hand, the traditional solu-
tion of partitioning the cluster by framework can lead to poor resource utili-
zation, with some machines remaining completely idle while there is work

15

3. A H

to do, just because they have been configured for a different framework.
Apache Mesos [Hin+11; Mes] is a cluster manager with cross-framework
scheduling, solving this problem more effectively. The latest releases of
Hadoop (the 2.x series) include their own similar system, called YARN (Yet
Another Resource Negotiator [Wat12]) [Mur12; YRN; YRN13], also known
as NextGen MapReduce or MapReduce 2.0. In addition to cross-framework
scheduling, YARN also removes the concept of map and reduce slots from
MapReduce slave nodes, instead dynamically allocating map and reduce
tasks according to what is most needed at the time. YARN takes over some
of the cluster management responsibilities currently handled by Hadoop
MapReduce, allowing other computational frameworks to effectively co-
exist within Hadoop.

Several companies provide their own distributions of Hadoop, for which
they also naturally offer commercial support. The most notable such com-
panies are Cloudera [Clo], Hortonworks [Hor], and MapR [MaR]. They
are naturally all major contributors to Hadoop, but have their own exten-
sions as well. Hortonworks’s distribution is the only one with support for
running on Windows Server. Their contributions are also particularly note-
worthy for their Stinger Initiative [StI], which involves improving the per-
formance of the Hive project, which is presented in Section 3.2. Cloudera
Impala [Imp] is a distributed query engine meant for interactive use, as
opposed to MapReduce’s emphasis on throughput, and is further discussed
in Chapter 5. MapR’s distribution provides fault tolerance for the master
in both MapReduce and HDFS: the jobtracker is restarted on failure and
the namenode is fully distributed. MapR is also unique in that it does not
use HDFS; a complete rewrite in the C++ programming language [Str13],
whose interface is nevertheless compatible with HDFS, is used instead.

Usage of Hadoop within an organization is unlikely to encompass the
entire range of Hadoop-related projects. Some may not even use the Map-
Reduce component, due to the existence of other computational engines
and YARN. One thing, however, is common to almost all users of any part
of Hadoop: HDFS. The amount of data an organization has stored in HDFS
is an indication both of how much the organization uses Hadoop and of
what kinds of data volumes Hadoop has been used for. For demonstration
purposes, the following is a sample of HDFS usage:

• As of 2013, Facebook [Fac] stores more than 300 PB of data ‘in a few
large Hadoop/HDFS-based clusters’ [Pre; Tra13]. In 2010, they stored
15 PB of data with 60 TB being added daily, and with compression
reducing the space usage to 2.5 PB and 10 TB respectively [Thu+10b].
Clearly the rate at which data is added has increased since then, or

16

3.1. Apache Pig

they would not have reached the 300 PB mark yet.

• In 2010, Yahoo! had over 82 PB of data among over 25 000 servers
split into clusters of about 4000 [Ree10].

• In 2010, Twitter [Twi] had ‘(soon) PBs of data’, with 7 TB of new data
coming in every day [Wei10].

Chapter 2 already detailed MapReduce and HDFS. In the following Sec-
tions, three prominent open source projects related to Hadoop are instead
discussed. Each offers its own higher-level abstraction on top of Hadoop
MapReduce and HDFS. Apache Pig offers a high-level language for express-
ing MapReduce programs, Apache Hive provides a data management and
querying system using an SQL-like language implemented withMapReduce,
and Apache HBase allows scalable random access into a key-value store in
HDFS.

3.1 Apache Pig
Apache Pig [Ols+08; Pig], originally developed by Yahoo!, is a high-level
interface to MapReduce, providing a custom query language for bulk data
manipulation called Pig Latin. Pig Latin is compiled into a sequence of
MapReduce computations which are executed on Hadoop. Pig drastically
lowers the bar of using Hadoop MapReduce, giving users a richer pool of
primitives they can use to describe their computations and not requiring
them to implement it in Java, a far more low-level programming language
than Pig Latin. This can greatly simplify development and maintenance,
improving programmer productivity. Similarly, Pig can be used as a high-
level way of implementing what is known as an ETL (Extract, Transform,
and Load) pipeline [Sha+12].

Pig treats all data as relations. Relations are defined as bags (a.k.a.
multisets) of tuples. The fields in the tuples can be simple values like
integers or strings, but also complex like key-value mappings or even other
bags and tuples—arbitrary nesting is allowed. Tuples in a relation are not
constrained in any way: they can have different numbers of fields as well as
different field types in the same position. It is possible, however, to define a
schema which specifies a common type for the tuples in a relation. Without
a schema, Pig infers a ‘safe’ type for every field (such as double-width
floating point for all numbers), which can cause performance to suffer.

The data model is similar to that used by traditional relational data-
base systems [Cod70] but more flexible. The lack of a defined ordering is

17

3. A H

particularly useful for MapReduce processing, as it does not restrict the par-
titioning strategy (how map outputs are spread among the reducers) in any
way. In addition, allowing arbitrary nesting can simplify operations com-
pared to only having flat tables, especially if they are normalized [Dat06],
since all data can be kept in one relation instead of having to perform join
operations when needed.

Pig Latin has several commands for working with relations, and more
are being added as development proceeds. The following list is incomplete
but representative:

• LOAD and STORE interact with external storage, respectively reading
and writing relations.

• Standard embarrassingly parallel commands: FOREACH transforms
every tuple in a relation and FILTER selects tuples from a relation
based on a condition.

• Commands related to ordering and equality: ORDER BY performs
sorting, RANK adds fields describing sort order but preserves the
existing order, and DISTINCT removes duplicates.

• Grouping: GROUP a.k.a. COGROUP, which can be applied to more than
one relation at a time.

• Joins: CROSS and JOIN can be used to respectively form the Cartesian
product or any kind of inner or outer join [Gro+09; ISO92] of two or
more relations.

Most commands can utilize functions to specify their exact effects. For
example, FOREACH could be used as FOREACH r GENERATE f(x) where
r is a relation, f a function, and x a field contained in the tuples of r. The
result of the command is a relation containing 1-tuples whose values are
given by the function f on the field x of each tuple in r. There are many
built-in functions, including arithmetic operators as well as aggregating
functions such as COUNT, which computes the number of tuples in the given
relation.

Clearly, these operations by themselves are much more expressive than
the MapReduce model, but Pig Latin can also be extended by users. While
the command set cannot be changed without modifying Pig itself, new
functions can easily be added. Furthermore, the flexibility of the data model
means that all user-defined functions can be used in any function-using
command without restriction, unlike e.g. in Hive where SELECT clauses
only allow using scalar functions.

18

3.2. Apache Hive

Pig has been widely adopted. In June 2009 at Yahoo!, 60% of ad hoc
and 40% of production Hadoop MapReduce jobs came through Pig, and
further increases in Pig usage were expected [Gat+09]. A cross-industry
study performed in 2012 showed three out of seven analysed clusters hav-
ing significant Pig usage, one of which was observed to have had over 50%
of MapReduce jobs submitted via Pig [Che+12]. LinkedIn [LiI] uses Pig
both for user-facing data set generation and for analytics [Aur+12]. The
reported runtime increase when using Pig instead of hand-written Map-
Reduce has ranged from a factor of 1.3 [Sha+12] to 1.5, but it has improved
significantly over time and is likely to continue to do so [Gat+09]. This
level of performance loss seems to be acceptable in practice: consider that
Twitter was using ‘almost exclusively’ Pig for its analytics in 2011 [Lin+11].

3.2 Apache Hive
Apache Hive [Hiv; Thu+09; Thu+10a] is a data warehouse system built on
top of Hadoop: essentially, it is a high-level interface to both MapReduce
and the backend storage system, which is typically HDFS, but can also be
HBase (see Section 3.3). Hive enforces a structural view, very similar to
traditional relational database systems [Cod70], of the data sets it handles.
They are queried and manipulated using a language based on SQL (Struc-
tured Query Language) [Cha+74; Gro+09; ISO92] called HiveQL, which is
translated to MapReduce computations. Hive was originally developed by
Facebook; later, Google created a very similar warehousing solution called
Tenzing [Cha+11]—a rare example of outside ideas being incorporated so
directly at Google, instead of the other way around.

Hive’s data model is based on tables, akin to those used in relational
databases. Records of data are stored in rows, which are split among a set
of typed columns, which are in turn defined in a schema. A row may have
a null value in any column, but each row in a table always has the same
amount of columns. Possible column types include primitive types such as
integers and strings as well as complex types: arrays, key-value mappings,
and product and sum types called structs and unions.

All metadata about the tables managed by Hive is catalogued in the
metastore. The existence of the metastore, i.e. keeping track of persistent
metadata about data sets, is what makes Hive a data warehouse system as
opposed to purely computational systems such as Pig. The metastore re-
members all tables and all information about them; primarily their schemata.
Because it is randomly accessed, the metastore is not stored in HDFS. In-
stead, a traditional relational database is used.

19

3. A H

Various settings for performance tuning may be applied to tables in
Hive. Tables can be partitioned on certain columns, so that rows with the
same combination of the partitioned columns’ values are stored together.
Partitions may furthermore be bucketed, which is another layer of partition-
ing based on the hash of a single column. Table rows can also be stored in
sorted order. When using HDFS storage, tables map directly to directories,
partitions to subdirectories of their table’s directory, and buckets to files in
their partitions’ directories.

Notably, even though Hive manages storage of tables, it does not rely
on any particular file format. As long as the contents of each file can be
serialized for storage and deserialized (using a Java class called a SerDe)
for manipulation in HiveQL according to the table’s schema, the files com-
prising the data of one table can even be in completely different storage
formats.

Hive supports indexing on table columns, a classical strategy for speed-
ing up query operations in databases. The trade-off is that the index takes
up some additional storage space and modifications become slower as the
index needs to be updated. Considering that Hive’s main use case, data
warehousing, consists of managing very large and mostly immutable data
sets, the slowdown is irrelevant and the amount of space taken by the index
is likely to be negligible, whereas the query speedup is likely to be very
welcome. Hive currently provides two kinds of indices: one that identifies
HDFS blocks for the rows corresponding to a given key, and a bitmap in-
dex [Cha+98] that also identifies which rows in the blocks are populated
with that key.

HiveQL currently (as of version 0.12) has two kinds of data manipulation
statements: LOAD, which simply copies data files into the appropriate HDFS
directory of the table, and INSERT, which writes the results of a SELECT
clause into a table while performing appropriate format conversions. LOAD
is an optimization, relying on the user to make sure that the file is usable
in the table as-is, lest the table end up in an unusable state. INSERT is
more flexible, as it can insert into more than one table at once and compute
the partitioning dynamically. There are no other manipulation statements:
HiveQL currently has no way of updating or deleting rows. This makes
sense, given that rows are typically contained as-is in files in HDFS, which
does not support in-place modification of files.

Querying in HiveQL is done with the SELECT statement, like in SQL.
Various clauses to modify the statement’s behaviour are supported, as in
any modern SQL system. The following is a sample of what is available:

• WHERE selects only rows for which a given condition is true.

20

3.2. Apache Hive

• DISTINCT removes duplicates from the result.

• GROUP BY groups data by the given columns’ values.

• Sorting clauses: ORDER BY and SORT BY, the latter of which only
guarantees sorting the output of each reduce task, thereby forming
a partially ordered result. ORDER BY performs a global sort, but
one must use the new Hive 0.12, or a later version, to avoid a poor
implementation in which all data is sent to a single reduce task for
sorting [HIV10].

• Combining the results of many selections in one query with UNION
ALL.

• Joins: the various forms of JOIN can compute any form of inner
or outer join [Gro+09; ISO92] of two or more tables, as well as the
Cartesian product.

All in all the functionality available is very similar to that offered by Pig
Latin, though HiveQL is not quite as flexible due to Hive’s stricter data
model. Nevertheless, just like Pig Latin, HiveQL can also be extended
by users via user-defined functions. Hive users can define three kinds of
functions: ordinary ones, which simply transform one row into another
and are therefore always run within map tasks; table-generating functions,
which can transform one row into multiple rows; and aggregation functions,
which can combine multiple rows together and thus are run in reduce tasks,
or in map tasks as part of a Combine function.

Hive also has support for creating views based on SELECT queries.
Views are essentially named queries that are saved in the metastore, which
can themselves be queried just like tables can. Conceptually, when a view
is queried, the result of the view’s defining query is computed, and then
the original query is evaluated on that result. In practice, the two queries
may first be combined into a single one which is executed directly on the
tables used.

Hive has seen wide adoption. As the originator of Hive, Facebook has
naturally been a heavy user, with over 20 000 tables and several petabytes
of data in a Hive cluster in 2010 [Thu+10b]. As of 2013, their data ware-
house, which likely continues to be largely Hive-based, has grown to over
300 PB [Pre; Tra13]. LinkedIn uses primarily Hive and Pig for its internal
analytics [Aur+12]. A cross-industry study performed in 2012 showed four
out of seven analysed Hadoop clusters having significant Hive usage, three
of which had 50% of their MapReduce jobs, sampled over time periods ran-
ging from days to months, submitted via Hive [Che+12].

21

3. A H

As Hive is used especially for analytics, the fact that it makes use of the
purely throughput-optimized MapReduce as a computational backend has
been considered problematic. In an interactive setting the startup costs of a
Hadoop MapReduce job are not necessarily insignificant, as they can even
dominate the execution time of short computations [Pav+09]. Frameworks
that attempt to solve this problem are presented in Chapter 5.

3.3 Apache HBase
Apache HBase [HBa] is an open source distributed data storage system
based on the design of Google’s Bigtable [Cha+06], enabling random read-
write access to individual records in Big Data sets. This is a key advantage
over HDFS or MapReduce, which only provide streaming access. In addi-
tion, as bulk operations on HBase tables can be performed using Hadoop
MapReduce, no functionality is lost by relying on HBase instead of HDFS
for data storage—though performance is of course lower than when using
HDFS directly. HBase was originally conceived by Powerset as a founda-
tion for their natural language search engine [Geo11]; though the engine
never materialized (because Powerset was acquired by Microsoft before
the engine was completed), HBase continues to be developed under the
Apache Software Foundation.

HBase provides sorted three-dimensional lookup tables in a manner
similar to traditional relational database engines, but with a much simpler
data model, namely:

(row ∶ string, column ∶ string, version ∶ int64) → string

In other words, each data value, or cell, in a table is uniquely identified
by a row, column, and version, of which the rows, columns, and values are
simply arbitrary byte strings while versions are 64-bit integers—typically
timestamps. Data is sorted first by row, then by column, and finally by
version, with later versions coming first in the sort order. This simple
model allows scaling by just adding more nodes, without having to worry
about maintaining the complex invariants to which relational databases
adhere [HBR; Whi09].

HBase has a very simple interface to tables, consisting of only four
operations (excluding metadata-related functionality):

1. Get : reads a row, possibly limiting the result set further to specific
columns and/or versions.

22

3.3. Apache HBase

2. Put : writes a row, either adding a new one or replacing an existing
one.

3. Delete: removes a row.

4. Scan: iterates over a sequential range of rows, returning one at a time
to the user.

This limited set of functionality makes HBase’s essential nature as a key-
value store evident: HBase itself does not provide the more complicated
operations that are typically found in database systems, such as joins. As
previously mentioned, however, Hive can use HBase as a storage backend,
allowing that kind of functionality to be used on data stored in HBase.

As MapReduce handles scheduling computations on a distributed sys-
tem, so does HBase take care of distributing the data it stores among the
available nodes. Tables in HBase are automatically partitioned into se-
quences of rows called regions, which can be distributed among the HBase
servers, aptly called regionservers. This spreads out computational load on
the table as well as the data itself, enabling large tables to utilize the entire
cluster’s storage space.

HBase naturally also includes fault tolerance, which is mostly reliant on
a reliable storage system, typically provided by HDFS. As with MapReduce
and HDFS, it is based on a master-slave architecture where the master
only co-ordinates the slaves and monitors their health. The slaves in an
HBase cluster are the aforementioned regionservers. Unlike MapReduce
and HDFS, HBase provides fault tolerance for the master node: this is
facilitated by using Apache ZooKeeper [Zoo], a co-ordination service based
on the Zab algorithm [Jun+11] (similar but not identical to the classical
Paxos algorithm [Lam98]). ZooKeeper is used to make sure that only one
master is active at any given time, and also to store various metadata about
the cluster.

Fault tolerance on the regionservers requires some work due to the
method used to implement write operations. For performance, writes
(including additions, modifications, and deletions) are performed on in-
memory caches called MemStores (in Bigtable, memtables) and only flushed
periodically, to HDFS files called StoreFiles or HFiles (corresponding to the
Bigtable SSTables, short for Sorted String Tables [McK+09]). Data loss is
prevented by also logging writes to HDFS: when a regionserver fails, its log
is replayed by all replacement regionservers (i.e. all servers that are assigned
any region that was previously assigned to the failed server), bringing them
up to date. Note, however, that currently (as of version 0.96) HBase does
not ensure that log entries are flushed to physical disks before proceeding

23

3. A H

with the operation [HBA12; Hof13]: therefore, in the event of power loss
or a similar catastrophic failure, data loss can still occur.

Recall that HDFS does not allow modifying files. Thus, whenever a
regionserver decides to flush aMemStore to HDFS, it creates a new StoreFile
for the contents of the cache. Read operations must, in the worst case,
consult the MemStore as well as all StoreFiles. As data is kept in sorted
order, e.g. reads requesting only the latest version of a record might need
to consult only the MemStore, but in the worst case, a read operation
involves traversing the whole MemStore as well as all StoreFiles before
the appropriate values to return are found. To prevent having to consult
too many StoreFiles, they are periodically merged into a single StoreFile
in a process called major compaction. At this point, all deletions are also
fully handled: when a cell that is not currently in the MemStore is deleted,
the delete operation is merely noted in a marker called a tombstone and
eventually flushed, but the supposedly deleted cell still persists in the older
StoreFiles. The cell and the corresponding tombstone are actually removed
from storage only during a major compaction, when they are discarded
from the final, merged StoreFile. Minor compactions, in which only a subset
of the StoreFiles are merged and deletions are not processed, also occur
occasionally.

Figure 3.1 provides a graphical overview of how operations in HBase
affect the different kinds of state. In summary:

1. Write operations, including additions, modifications, and deletions,
are logged and then applied to the MemStore.

2. The MemStore is eventually flushed, creating a new StoreFile.

3. StoreFiles are eventually merged together into a single StoreFile
during a minor or major compaction.

4. Read operations access all StoreFiles and the MemStore.

Since StoreFiles are written only when flushing or compacting, the
amount of records written at a time is typically quite large. Therefore
compression can be utilized more effectively than in systems that simply
modify or append to existing files: each StoreFile can be compressed as a
whole at its creation time, resulting in a better compression ratio than could
otherwise be achieved. Additionally, as major compactions are usually run
when the HBase cluster is not under heavy load, it is possible to apply a
relatively resource-intensive but effective compression algorithm on a large
amount of data at once, improving compression ratios even further. (For
some information about compression, see Chapter 6.)

24

3.3. Apache HBase

HDFS
Memory

MemStore

New
StoreFile StoreFile StoreFileLog

Write

Flush

Read

Merge

New merged
StoreFile

Figure 3.1: HBase state and operations. ‘Read’ includes both single-row
reads and scans and ‘Write’ includes single-row additions or
modifications as well as deletions. The boundary between
HDFS and the MemStore is shown as a dotted line.

Having to read from several HDFS files for every read operation would
be prohibitively slow. Hence, to speed up reads, regionservers cache parts
of StoreFiles as well as individual lookup results, and allow using Bloom
filters [Blo70] to quickly exclude StoreFiles from being considered for a
query. Bigtable tests in Chang et al. [Cha+06] show that despite these
efforts, random access reads were approximately an order of magnitude
slower than similarly random writes, and sequential reads were either
significantly slower or faster than sequential writes. Results from the
Yahoo! Cloud Serving Benchmark [Coo+10] in 2010 demonstrated similar
behaviour in HBase: while it dominated the competition in write-heavy
workloads, HBase was comparatively slow in performing read operations.

Facebook has used HBase heavily with positive results: in 2011, Face-
book’s HBase clusters consisted of thousands of nodes implementing differ-
ent kinds of applications, including real-time messaging among millions of
users [Aiy+12; Bor+11]. Several other industrial users of HBase exist [HBP],

25

3. A H

but none have (or have published information about) notably large cluster
sizes or data volumes.

26

C 4
Hadoop in bioinformatics

In 26 years of software engineering, I have
never come [across] a problem domain that I
found stable enough to trust.

R C. M [Mar96]

The field of bioinformatics contains a large number of Big Data problems,
especially in sequencing data analysis. The tools offered in the Hadoop
project have been heavily used in implementing various solutions, although
other systems—mainly the Message Passing Interface, MPI [MPI93]—have
been the method of choice for some projects [Tay10].

A task that has seen a significant amount of attention is sequence align-
ment or mapping: similarity search between two or more sequences in
order to estimate either the function or genomic location of the query se-
quence. Alignment is an important part of almost any analysis process.
As such, it is not surprising that much effort has been spent in developing
efficient and scalable alignment methods.

CloudBurst [Sch09] and CloudAligner [Ngu+11] are examples of se-
quence aligners based on Hadoop MapReduce. CloudAligner is notable in
that it uses map-only jobs to achieve greater performance. The publica-
tion that presented the Hadoop-based CloudBLAST [Mat+08] compared
it against a similar MPI implementation, mpiBlast [Dar+03], finding that
CloudBLAST performed up to approximately 30% better and was simpler
to develop and maintain. Many MPI-based aligners [dAra+11; Mon+13;
Rez+06] have nevertheless been created.

Alignment tools often include other features, either as additional utilities
or because they are intended for some specific analysis for which alignment

27

4. H  

is only a part of the process. The following are all examples that use
Hadoop MapReduce for scalability. Seal [Pir+11a; Pir+11b] provides an
aligner which includes postprocessing, such as duplicate read removal.
Crossbow [Lan+09], Myrna [Lan+10], and SeqInCloud [Moh+13] implement
sequence alignment as part of their specific analysis pipelines.

Sequence alignment is, of course, not the only analysis task in bio-
informatics for which Hadoop has been utilized. The SeqWare Query
Engine [OCo+10] uses HBase to implement a database for storing sequence
data. MR-Tandem [Pra+12] carries out protein identification in sequence
data using MapReduce. CloudBrush [Cha+12] and Contrail [Sch+] use
MapReduce in performing a process called de novo assembly: assembly
of previously unknown genomes from sequence data. SAMQA [Rob+11]
detects metadata errors in sequence data files, using MapReduce for paral-
lelization.

Finally, some projects provide support facilities, making it easier for
their users to implement the complete analysis pipelines. The Genome
Analysis Toolkit (GATK) [McK+10] is one example. It is based on the
MapReduce model but does not use Hadoop, instead running on a custom
engine and having a separate wrapper for distributed computing called
GATK-Queue [GAQ]. The aforementioned Seal project, while focused on
alignment, presents its functionality as a set of tools that can be used for
other purposes as well. Cloudgene [Sch+12] is a platform providing a
graphical user interface for executing bioinformatics applications based
on Hadoop MapReduce, with support for several of the tools mentioned
here. BioPig [Nor+13] is a Pig-based framework containing various useful
functions, including wrappers for some other commonly used applications.

The author and his colleagues have developed two supporting tool
sets of their own, offering useful functionality that was not previously
available. Hadoop-BAM is a library providing file format support along
with some useful command-line tools, and SeqPig is a higher-level interface
in Pig including special functionality for sequence data analysis. They are
presented in the following two Sections.

4.1 Hadoop-BAM

Hadoop-BAM [HBM; Nie+12; Nie11] is a library written in the Java pro-
gramming language, providing support for using Hadoop MapReduce to
manipulate sequencing data in various common file formats. Currently, as
of version 6.0, the formats supported are all of the following:

28

4.1. Hadoop-BAM

• Sequence Alignment/Map or SAM as well as its binary representation,
Binary Alignment/Map or BAM [Li+09; SAM13]. Originally only
BAM was supported, giving Hadoop-BAM its name.

• Variant Call Format or VCF and its binary representation, Binary Call
Format or BCF [BCF; Dan+11].

• The format originally created for the FASTA set of tools [Pea+88],
which is nowadays known as the ‘FASTA format’ or simply FASTA.

• FASTQ [Coc+10], a simple extension to the FASTA format.

• QSEQ [CAS11], a file format that is output directly by some sequen-
cing instruments.

Hadoop-BAM has both input and output support for all the above formats
apart from FASTA, which can only be input. BAM and BCF are discussed
further in Section 6.1.

Command line tools for some tasks commonly performed on SAM and
BAM files are also included in Hadoop-BAM, with inspiration from the
SAMtools [Li+09] software package. One such tool can sort and merge
SAM and BAM files using Hadoop MapReduce, which is an important
preprocessing step e.g. for visualization [Pab+13] and can benefit greatly
from the parallelization of MapReduce. Testing it on a 50.7 GiB BAM file,
near-linear scaling has been observed when using a Hadoop cluster with
up to eight slave nodes: see Figure 4.1. The reduced speedup thereafter
can be attributed to the relatively small file size leading to quite little
data being allocated to each worker node. The machines used in this
experiment were the same as those used for the experiments described in
Chapter 7—their relatively low number of disk drives also explains why the
scaling was fairly limited overall, as sorting is a very I/O intensive operation.
Significant comparisons to other software were not performed, as none
implement sorting BAM files in HDFS. However, as a simple baseline, the
single-threaded sort command of SAMtools was tested; operating on local
disk on the same hardware, it was over twice as slow as the single-slave
Hadoop MapReduce job.

BAM input support in tools is a common desire among bioinformati-
cians, but this desire is often left unfulfilled due to the complexity of the
BAM format. Hadoop-BAM is thus often used mainly for its BAM-related
functionality. The Seal project donated FASTQ and QSEQ format support
to Hadoop-BAM, and later began using Hadoop-BAM for SAM and BAM
as well. SeqInCloud’s genome analysis pipeline incorporates Hadoop-BAM

29

4. H  

1

2

3

4

5

6

7

8

1 2 4 8 16 31

M
ea

n
sp

ee
du

p

Worker count

Figure 4.1: The speedup observed when sorting a 50.7 GiB BAM file with
Hadoop-BAM. Mean, minimum, and maximum speedups for
each worker count are indicated.

for BAM input. SAMQA relies on Hadoop-BAM for reading both SAM and
BAM. Cloudgene contains Hadoop-BAM’s sorting tool among its set of
supported applications. ADAM [Mas] has used Hadoop-BAM to convert
FASTA, SAM, and BAM files to the Parquet [Par] format, which has been
designed for efficient processing in Hadoop.

4.2 SeqPig
While Hadoop-BAM gives developers the opportunity to create custom
Hadoop MapReduce applications for sequencing data with control over
every aspect of processing, SeqPig [Sch+13a; Sch+13b; Seq] is a high-level
interface based on Pig. With SeqPig, as long as the application can be
adequately described in Pig Latin, development is simpler and does not
require familiarity with MapReduce or Java.

The latest version of SeqPig, 0.5, provides almost the same file format
functionality as current Hadoop-BAM, lacking only the recently implemen-
ted VCF and BCF: SAM and BAM, FASTA (read-only), FASTQ, and QSEQ

30

4.2. SeqPig

0

10

20

30

40

50

60

8 16 32 48 64

M
ea

n
sp

ee
du

p
vs

.F
as
tQ

C

Worker count

Mean read quality
Read length
Base qualities
GC contents
All at once

Figure 4.2: The mean speedup of SeqPig vs. FastQC in computing various
statistics over a 61.4 GiB FASTQ file. Note that the sets of
statistics computed by the SeqPig script and FastQC are similar
but not identical.

are supported. All data and metadata in these formats can be loaded for ma-
nipulation in Pig Latin. In addition, SeqPig includes user-defined functions
for several useful operations specific to sequencing data. Thanks to Pig, all
processing can take place scalably using Hadoop MapReduce. Figure 4.2
provides an example of such scalability, showing the speedup of computing
certain read quality statistics in SeqPig compared to the single-threaded
FastQC [And] tool. For details about this experiment, including the precise
functionalities compared as well as the software and hardware configura-
tions involved, the reader is referred to Schumacher et al. [Sch+13b].

The unrelated BioPig [Nor+13] project naturally shares the advantages
of Pig with SeqPig. The differences between the two lie in their provided
bioinformatics-specific functionality. In terms of file formats, BioPig sup-
ports only FASTA and FASTQ—although, unlike SeqPig, it has output sup-
port for FASTA. Otherwise, the sets of user-defined functions provided by
SeqPig and BioPig are intended for very different concerns in sequencing
data analysis. For this reason, one may wish to use SeqPig and BioPig to-
gether, and due to Pig’s simple data model, this is highly straightforward.

31

C 5
Interactivity

Software is getting slower more rapidly than
hardware becomes faster.

‘A Plea for Lean Software’
N W [Wir95]

The Hadoop-based analysis frameworks that have seen the most use thus
far, in bioinformatics as well as other fields, are Pig and Hive, both of
which are based on Hadoop MapReduce. Unfortunately, MapReduce is
optimized for throughput at the expense of latency, and is not suitable
for interactive tasks [Pav+09]. In order to overcome the performance
limitations inherent in MapReduce, other frameworks, specialized for ad
hoc exploratory and interactive analysis, have been developed. Many of
them are, like Hive, SQL-based query systems, possibly due to the influence
of Google’s Dremel [Mel+10]. As such, the remainder of this Thesis also
concentrates on the SQL-based systems in order to make comparisons more
meaningful.

The two best established freely available contenders at the moment are
Shark [Xin+12] and Cloudera Impala [Imp]. Apache Drill [Dri] is another
freely available effort, but is still in early stages of development. Both
Drill and Impala are largely based on Dremel’s design. Some proprietary
systems also exist, including Amazon Redshift [Red] and HAWQ [HAW13].
Facebook’s Presto [Nov13; Pre] was also included in that group, until it was
made open source mere weeks before the completion of this Thesis [Tra13].
Due to Drill’s lack of maturity, the inaccessibility of the proprietary systems,
and the recentness of Presto’s release, these others were not evaluated in
this work.

33

5. I

BlinkDB [Aga+12; Aga+13; BDB] is yet another SQL-based interactive
query system, but with a unique approach: it speeds up queries by run-
ning on only a subset of the full data sets involved, and computes an upper
bound on the error in the result. Users may perform either error-bounded
queries, using a relative error coupled with a confidence interval, or time-
bounded queries, where the most accurate answer that can be computed
in a given time limit is returned, along with an estimate of the error at a
certain confidence. BlinkDB executes its queries with either Hive or Shark.
Like Presto, BlinkDB was released when this Thesis was already nearing
completion, and therefore was also not evaluated in this work.

Apache Tez [Mur+13; TeH; Tez], a part of Hortonworks’s Stinger Initi-
ative [StI], is a computational framework designed with interactive query
tasks in mind. Versions of Hive and Pig that can use Tez instead of Map-
Reduce are in development, and are expected to demonstrate improved
performance compared to MapReduce. A Tez job consists of an arbitrarily
large directed acyclic graph of tasks, avoiding various intermediate commu-
nication requirements compared to an equivalent set of MapReduce jobs,
such as having to flush each job’s output to disk and having to wait for the
previous job to complete. As Tez is in early development stages, it is not
evaluated in this Thesis.

Shark and Impala are both data warehouse systems similar to Hive.
In fact, they are both compatible with Hive, in that they use the same
metastore system and thus operate on tables in exactly the same way as
Hive. Their query languages are also very similar to Hive’s HiveQL, with
the main differences being that Hive tends to support some operations that
Shark and Impala do not [ImU; ShC].

The rest of this Chapter concerns the inner workings of Shark and
Impala. While Impala implements its own computational engine, Shark is
based on a system called Spark, which is delved into before considering
Shark-specific matters.

5.1 Apache Spark
Apache Spark [Spa; Zah+12], developed at the UC Berkeley AMPLab (the
Algorithms, Machines, and People Lab of the University of California,
Berkeley), is a distributed computing framework similar to e.g. Hadoop
MapReduce, but based on a substantially different model. The main mo-
tivation of Spark was to improve the performance of two classes of tasks.
The first was interactivity, the main focus of this Chapter. The second was
iterative algorithms—and more generally, any task in which re-use of in-

34

5.1. Apache Spark

termediate results is key. MapReduce is not a good fit for such algorithms
due to its rigid single-pass system: each iteration of a loop, for example,
would have to be a separate MapReduce job, and the only way in which
later iterations can use the output of earlier iterations is by having the data
written to a shared storage system, such as HDFS. This is, of course, an
excessive use of resources compared to keeping data in the local memory
of each node and performing all processing therein. Iterative systems such
as HaLoop [Bu+10; HaL] and Pregel [Mal+10] (and its open source counter-
part, Apache Giraph [Gir]) solve this problem for certain kinds of compu-
tations, but Spark provides a general-purpose abstraction for distributed
in-memory computing.

The abstraction Spark is based on is the RDD (Resilient Distributed
Dataset) data structure. An RDD is a read-only set of partitions contain-
ing records, created by any number of transformations on an originating
data set. Note that the amount of transformations may be zero: this way
the data sets themselves are also RDDs, with the partitioning typically be-
ing a natural consequence of the storage system—e.g. treating each HDFS
block as one partition. In derived RDDs, the records in a partition are not
necessarily stored at any given time. Instead, their lineage, the sequence
of transformations needed to compute them, is always known, allowing
missing partitions to be computed on demand. This mimics the lazy eval-
uation [Fri+76; Hen+76] or call-by-need [Wad71] strategy found in some
programming languages.

Transformations in Spark are similar to the Map and Reduce functions
of MapReduce: side effect free higher-order functions which are applied in
parallel to the entirety of the data. Compared to the fine-grained interface
of most other in-memory frameworks such as traditional distributed shared
memory systems [Nit+91] or HBase [HBa], operations like these have an
advantage in that fault tolerance can be provided very cheaply by knowing
what computations were to be performed by failed nodes and re-executing
them as needed, akin to MapReduce. More expensive methods such as
logging each record update separately or replicating the output of each
intermediate stage are not needed. The fact that transformations in Spark
are side effect free also allows diminishing the effect of stragglers via
speculative execution, as in MapReduce. The following are examples of
transformations, demonstrating the variety of operations available:

• map and filter perform the usual function application and predicate-
based selection tasks.

• flatMap is akin to MapReduce’s Map in that the mapping function
can emit any number of outputs for one input record.

35

5. I

• Set operations: union and subtract.

• Joins of two RDDs of key-value pairs: cartesian computes the Car-
tesian product while join performs a hash join [DeW+84]. Left and
right outer joins [Gro+09; ISO92], are also available.

Each partition in an RDD has a (possibly empty) set of partitions it
depends on. Contingent on what information is available to Spark, this set
of dependencies may or may not be minimal. For example, if the parent
RDDs are partitioned by hashing, then each partition in the result of a
hash join (the join transformation) depends on only one partition in each
parent: the partitions with the set of hashes that are assigned to that output
partition. If the partitioning is not known, then each partition in a join’s
RDD must depend on all partitions in each parent RDD.

Spark can be told to persist RDDs: a hint that the RDD is likely to be
re-used and thus its partitions should be held in main memory—or, if there
is not enough room, on local disk storage, instead of being recomputed
when needed. Whether an RDD is persisted or not comes into play when
a new partition that does not fit in memory is computed. To make room
for the new partition, a partition from the least recently accessed RDD is
evicted from memory. If that RDD was persisted, the old partition will
be saved to disk, otherwise it will simply be deleted. As an exception to
this scheme, partitions from the same RDD as the new partition are not
evicted, because they are likely to be needed soon. Persistence only to disk
or replication among multiple nodes can also be requested. In addition,
serialization can be controlled: by default, partitions are stored deserialized,
as Java objects, and serialized only when they are moved to disk. The high
memory overhead of Java objects [Bac+02; Xin+12] means that in certain
cases it is possible to gain performance by deserializing only on demand.

To actually retrieve or store data from RDDs, actions are used in a
driver program or interactive shell. The following are examples of common
actions:

• collect returns the records in the RDD, storing them in a list in the
calling program.

• count returns the number of records in the RDD.

• reduce folds the RDD to a single value by applying a given commuta-
tive and associative function to the records.

Until an action is used, no work is performed on the cluster. This allows
optimizing the execution plan as a whole. Because of the fine-grained

36

5.2. Shark

dependency tracking, needed but missing partitions do not necessarily
require computing the preceding RDDs fully. Thus a large part of the
intermediate results can be re-used, as long as they are available due to
either persistence or simple co-incidence.

Spark is implemented in the Scala programming language [Ode+06],
which is concise enough to allow convenient interactive use of the Spark
API (application programming interface) while making it possible to use
APIs written in Java, such as that of HDFS, directly. Like most distributed
systems presented in this Thesis, Spark’s architecture consists of a single
master, which monitors the health of the cluster and schedules jobs, and
several slaves which carry out the computations themselves.

Altogether, due to the relatively high-level implementation language
that can also be used interactively (as an alternative, there are bindings to
the Python programming language [Pyt] as well) combined with the wide
array of available transformations and actions, the capabilities of Spark are
actually closer to Pig than to e.g. Hadoop MapReduce. Spark is significantly
more performant, however: while users of Pig have reported best-case
performance of approximately 0.74 times that of equivalent hand-written
Hadoop MapReduce code [Sha+12], testing Spark showed that performance
ranged from about twice that of Hadoop MapReduce up to an about 40-fold
speedup, depending on the application [Zah+12].

5.2 Shark
Shark [Sha; Xin+12] is a data warehouse system built on top of Spark,
with an additional focus on running queries fast enough for interactive
use. Just like Hive, Shark treats data sets as tables and allows querying and
manipulating them with HiveQL. While Hive translates HiveQL statements
to Hadoop MapReduce jobs, Shark executes them with Spark instead. Shark
can read and update Hive’s metastore, and thereby is capable of being a full
replacement for Hive. Some less commonly used Hive features are not yet
supported, however [ShC].

Like Spark, Shark was developed at the UC Berkeley AMPLab and is
written in the Scala programming language. Being written in Scala, it can
utilize the Hive API directly and so is compatible with user-defined func-
tions and file format functionality written for Hive, including user-defined
table-generating and aggregation functions. Such a level of compatibility
is naturally important for making Shark a drop-in replacement for Hive.
Notably, Shark can be used as an API in Spark-using programs, allowing
HiveQL queries to be translated into corresponding RDDs. Therefore it is

37

5. I

relatively simple to use Spark for operations that are cumbersome to express
in HiveQL, all the while performing I/O on tables in a Hive-compatible way
and having Spark optimize the entire computation as a whole.

In order to efficiently run HiveQL queries, Shark implements additional
features on top of the RDDmodel of Spark. Instead of using Spark’s standard
in-memory storage layout, in which individual records are simply stored as
lists, Shark uses a columnar or column-major storage layout: each column
of a table is stored in a single array. Thus e.g. the first record in the table
corresponds to the collection of the first elements of each such array. This
reduces Java object overhead compared to Spark’s deserialized in-memory
storage, and allows for further memory savings via compression: a com-
pression scheme appropriate for the column’s data type can be used in each
column, with negligible processing cost compared to not compressing at
all. (For more details about columnar storage, see Chapter 6.)

Aside from columnar in-memory storage, Shark’s main improvements
on top of Spark involve making decisions based on statistics observed in
the data. Whenever data is loaded into memory, per-column statistics are
gathered in order to make better decisions concerning the columns’ in-
memory compression schemes. For example, if a column contains only few
distinct values, simple lookup table encoding is used. Statistical guidance
is also applied at any point in the execution plan when output partitions
can be affected by multiple input partitions, i.e. the next RDD is defined
by an operation such as reduceByKey or join instead of one-to-one opera-
tions like map or filter. The workers outputting the input RDDs’ partitions
compute the distribution of the incoming data, and based on that the join
strategy and degree of parallelism can be affected. This is termed partial
DAG execution, referring to the execution plan as a directed acyclic graph
or DAG.

Fair warning: no released versions of Shark implement partial DAG
execution. An implementation can be found in a development branch based
on the fairly old 0.2 version of Shark [SPD]. Porting the code to a more
recent release is intended [SHA12], but as of Shark 0.8 this has not been
worked on.

The Shark developers, have together with users with whom they have
worked, reported speedup factors of up to 100 compared to Hive, with
several queries that took minutes to complete in Hive being completed in
less than a second on Shark [Xin+12]. Neither Shark nor Spark have seen
widespread adoption as of yet, though.

38

5.3. Cloudera Impala

5.3 Cloudera Impala
Like Shark, Cloudera Impala [ImD; ImG; Imp; Kor+12; Leb13] is a Hive-
compatible data warehouse system using Hive’s metastore and HiveQL.
Unlike Hive and Shark, which perform their computations on MapReduce
and Spark respectively, Impala uses its own computational backend based
on the design of Dremel [Mel+10]. Impala is in an early stage of develop-
ment: the first stable version was released as recently as May 2013. Dremel
and Impala were never intended to replace MapReduce, but rather to com-
plement it with interactive analysis capabilities. As such, Impala is meant
to be used alongside Hive, and the fact that it lacks many of Hive’s com-
monly used features [ImU] is not critical.

Impala is written mostly in the C++ programming language [Str13], a
notable departure from the languages intended for the JVM (Java Virtual
Machine) that are used by most Hadoop projects. This makes re-using Hive
features in the Impala code base significantly more difficult, which explains
why Impala’s feature set is so limited compared to that of Hive or Shark. The
situation is even worse when performance is desired, due to the overhead of
using JVM code from native code [Daw+09]. Likely as a result of this,
Impala currently (as of version 1.1.1) includes no form of user-defined
function or file format support and so is completely inextensible by users.

Distinctly from all distributed systems examined in this Thesis thus far,
in Impala all nodes are essentially equal: there is no static master-slave
division. While there is a statestore process which monitors node status, its
only purpose is to inform the Impala workers about nodes that have become
unreachable: query execution does not directly involve the statestore at
all, and the statestore may fail without preventing further queries from
being executed. Since all nodes are equivalent to one another, queries
can be submitted to any node for execution. That node then becomes
the co-ordinator for that query: a sort of per-query master node. The
co-ordinator constructs an execution plan for the query, and instructs the
nodes that have the input data locally available (i.e. are storing blocks of the
relevant HDFS files) to perform the necessary computations. These worker
nodes stream results back to the co-ordinator over the network—never
writing to disk—, with the co-ordinator performing any final reductions
needed before displaying the end result to the user.

As streaming all intermediate data to one node could be prohibitively
slow, Impala is capable of distributing the reduction phase by forming an
execution tree. The leaf nodes in the tree are the nodes that have the data
in local storage, the root node is the co-ordinator, and intermediate nodes
reduce data on the way from the leaves to the root, streaming data both

39

5. I

in and out. Unlike Dremel, Impala currently (as of version 1.1.1) does not
form arbitrarily deep execution trees [ImT13], which can limit performance
for some queries.

Impala does not provide fault tolerance of any kind for queries: if a node
fails during a query, the entire query has to be re-run. The streaming-based
architecture of Impala does make fault tolerance somewhat more onerous
than in MapReduce or Spark: as intermediate results are streamed from
node to node, they are never saved anywhere, so losing an intermediate
node before it has completed its work means that the whole subtree rooted
at that node must be re-executed. Regardless, it is unfortunate that no fault
tolerance mechanism has yet been implemented.

In an effort to speed up query execution, Impala utilizes the LLVM
compiler suite [Lat+04; LLV] for runtime generation of specialized native
code for each query [Li13]. This avoids various overheads that would result
from having to re-interpret the query at every stage of execution. Tests
by Cloudera show a near threefold speedup compared to not using code
generation [Li13].

40

C 6
Storage formats

Clutter and confusion are failures of design,
not attributes of information.

Envisioning Information
E R. T [Tuf90]

The high-level manner in which data is accessed in tabular data warehous-
ing systems such as Hive, Shark, and Impala leaves the choice of the actual
storage format open. As long as the data files comprising a table can be in-
terpreted as collections of records in accordance with the table’s schema, the
files could theoretically even each be stored in a different format—though
the implementations are not all that flexible in practice.

Many distinct file formats are used to store sequencing data [FAQ], with
the choice depending on the use case. They tend to be highly application-
specific and thus very different to the generic formats supported by the
data warehousing systems. In order for the data to be made available in
tables, either it must be converted to a supported format or the necessary
features for using it directly must be implemented in the warehousing
system. Thanks to the extensibility of Hive and Shark, the latter option
is possible without having to directly modify the systems themselves. Ex-
tending Impala with new file format support would be a far more arduous
task. Overall this means that the option of using the original sequencing
data formats exists, but only for Hive and Shark (and any other compat-
ible systems). However, it would then be possible to use Hive or Shark to
copy the data from a table backed by sequencing data formats to another
with a more generic file format, thereby converting between the two and
providing many more systems with access to the data.

41

6. S 

Traditional text files, typically encoded as UTF-8 [Pik+93], are com-
monly used for their simplicity and readability, especially in the realm of se-
quencing data. Text files are attractive for their capacity to be manipulated
without requiring specially purposed tools. Their downside is that they
waste significant amounts of space compared to binary encodings, which
of course also slows down their processing. For small files, such as typical
BED (Browser Extensible Data) files [Qui+10], the overhead is usually in-
significant, in which case textual storage is an acceptable option. Often
the existing format can even be used directly as the table’s data: HiveQL
can define tables backed by text files where the separation between records
and between fields within a record is encoded as a specific character. For
example, BED files have one record per line and thus the record separator
is a newline character, and their fields are separated by the horizontal tab
character.

Binary storage formats, which do not restrict themselves to the reada-
bility of text files, are usually a better choice for large data volumes: they
take less space than textual formats and can therefore also be processed
faster. Some custom-designed binary formats are used for sequencing data,
such as the BAM [Li+09] and BCF [Dan+11] files that are described in detail
in Section 6.1. Except for their unique encoding methods, they are not very
different to the more generic formats supported by the data warehousing
systems, such as the SequenceFiles [SeF] used in Hadoop or the binary
container format of the Apache Avro [Avr13] system.

Both textual and binary formats are usually losslessly compressed for
further space savings, using a compression scheme with low enough pro-
cessing costs so that the performance loss due to compression and decom-
pression is insignificant compared to the gain due to having to perform less
I/O operations. The optimal selection depends on the computer hardware
and its usage patterns:

• Snappy [Sna] and LZO (Lempel-Ziv-Oberhumer) [Obe] are common
choices that are sufficiently low-cost so as to be an improvement in
almost all cases.

• gzip [Deu96b], based on the DEFLATE [Deu96a] algorithm, is more
expensive but also much better compressing.

• Comparatively highly expensive compressors include bzip2 [Sew],
LZMA (Lempel-Ziv-Markov chain algorithm) [Pav13], zpaq [Mah],
and the gzip-compatible Zopfli [Ala+13; Zop]. Long-term archival
is an example of a use case in which the improved compression ratios

42

achieved by these algorithms justify their costs, but for most uses
they are unacceptably slow.

All storage formats mentioned thus far, despite their many differences,
share one fundamental aspect: they encode one datum at a time in the
most obvious manner. Excluding metadata, each format can be considered
as a list of n records ri (i ∈ [0, n)), where each record is encoded in a way
depending on the format f in question: encf (ri)n. This commonality means
that they are all row-major or row-oriented formats, a.k.a. adhering to the
N-ary storage model. Here ‘row’ is to be understood as a record, e.g. as
those forming a table in a data warehousing system.

As can be expected, all storage formats are not row-major: column-
major or column-oriented or simply columnar formats, a.k.a. those us-
ing the decomposition storage model, have also been in use for a long
time [Cop+85; Wie+75]. Instead of storing complete records at a time,
they store values from a column at a time. I.e. for records with k columns
ri = (c1,i, c2,i, … , ck,i), columnar storage files consist essentially of a tuple of
lists of single-column values (encf (c1,i)n, encf (c2,i)n, … , encf (ck,i)n) instead
of a single list of records. Note that because the columns are stored sep-
arately, it is possible to use a different encoding for the data comprising
each column: (enc1f (c1,i)n, enc2f (c2,i)n, … , enckf (ck,i)n). This way encodings
and compression schemes that are suited only to specific kinds of data can
be used effectively. And since values within a column are likely to have
less Shannon entropy [Sha48] than each row considered as a whole, even
generic compression schemes tend to be more effective [Flo+11]. Another
advantage of column-oriented storage, which only affects certain usage
patterns but can be the greatest performance improvement compared to
row-oriented storage, is that it is possible for a computation to completely
avoid performing I/O on columns that it does not need. This feature makes
columnar storage an extremely attractive option for tabular data warehous-
ing systems, as the processing cost of a query is then dependent on the
sum of the sizes of the columns used in the query instead of the size of the
table as a whole. The corresponding disadvantage is that if many columns
are used in a query, fetching all the columns of a record is slower than in a
row-major format due to poor spatial locality.

In an effort to achieve the best of both worlds, hybrid formats, in which
relatively small groups of records are stored in a column-oriented fashion,
have been developed [Ail+01; Han+03]. These are most similar to columnar
storage formats, but instead of laying out all n values from each column
in one sequence, the list of records is partitioned into p groups, and the nj
records in each partition Pj are stored columnarly. Thus the entire format

43

6. S 

is of the form (P1, P2, … , Pp), where:

Pj = 󰊃enc1f (c1,i)nj , enc2f (c2,i)nj , … , enckf (ck,i)nj󰊆 .

With a suitable partition size, this scheme realizes the advantages of colum-
nar formats while keeping the cost of fetching complete records low.

The next Section will discuss row-oriented binary formats with support
among Hive, Shark, and Impala, namely SequenceFiles and the Avro format,
in somewhat more detail before considering two specific formats related to
sequencing data: BAM and BCF. The remaining Sections summarize some
of the column-oriented formats, which are actually all hybrids, that are
relevant to Hive, Shark, and Impala: RCFile, ORC, Trevni, and Parquet.

6.1 Row-oriented binary storage formats
As mentioned previously, row-oriented formats are not very different to
one another. The main differences are in the encoding schemes: the vari-
ous ways in which values are converted into the binary storage format.
Sequencing data formats tend to avoid wasting bits by taking advantage of
the fact that the domains of the values are known: for example, in BAM
the nucleotide bases comprising sequence data are stored as four-bit in-
tegers (two in each byte) since there are only 24 = 16 possible values. More
generic formats typically do not allow for benefiting from this kind of do-
main knowledge, relying instead on the compression scheme to produce a
sufficiently compact result.

SequenceFiles [SeF], being mainly used with Hadoop MapReduce, al-
ways store key-value pairs. Metadata at the beginning of the file—a file
header—names the Java classes corresponding to the key and value types.
Since any classes that can be read and written by Hadoop (those implement-
ing the Writable [Wri] interface) can be used, this is extremely flexible
and extensible, as both the types and their encodings depend on the classes’
implementations. However, relying on Java classes prevents programs that
are incompatible with Java from accessing arbitrary SequenceFiles.

Avro [Avr13] files include a schema in the header, which specifies the
type of data contained in the file. Arbitrary composition of the available
primitive and derived types is possible. This way practically any type of
data can be encoded, but unlike in SequenceFiles, the binary encoding of
each type has been defined ahead of time in the Avro specification. As
such Avro files are more portable than SequenceFiles, but may not be as
efficiently encoded. On the other hand it is possible to deserialize only

44

6.1. Row-oriented binary storage formats

the needed parts of records in an Avro file, whereas in SequenceFiles each
record can be decoded only as a whole.

Both SequenceFiles and Avro files contain synchronization markers,
which are important for allowing efficient parallelization when operating on
large amounts of data. The distributed computing engines mainly discussed
in this Thesis—Hadoop MapReduce, Spark, and Impala—all conceptually
split files into parts, assigning different non-overlapping ranges of the input
data files to different computational tasks. Because the number of parts
is not known when a file is written (and can of course be different every
time the file is used), the offsets within the file demarcating the splits are
computed dynamically, typically based only on the file size and the number
of parts. The problemwith this is that it can result in a data record being split
along themiddle. Thus synchronizationmarkers are placed between records,
or relatively short sequences of records, so that it is possible for readers to
synchronize to record boundaries by scanning for a synchronization marker
before beginning to read data. Both SequenceFiles and Avro files use a
random 128-bit synchronization marker which is given in the file header.
The length and randomness greatly reduce the chance of a collision with
any input data.

The following two Sections discuss compression and BAM and BCF
respectively. In particular, performing synchronization in the presence of
compression and with file formats that lack synchronization markers, like
all sequencing data formats, is explained.

Compression schemes
Compressors ordinarily work on the entire sequence of input data they
are given, producing a single compressed output sequence that can be
decompressed back to the original. For typical uses, there are no issues
with compressing an entire data file in this manner. But when dealing with
Big Data, even individual files can be so large that computations on them
should be parallelized: file splitting is necessary for good performance.
Compressing a file as a whole makes it impossible to access data in the
middle of the file without decompressing everything from the start of the
file, so splitting a compressed stream for parallel access is essentially useless.
Hence, to be useful in a distributed computing context, the file format
should wrap the underlying compressor in such a way that parallel access
is possible.

Many compressors do have a relatively small maximum block size: they
only compress at most a certain amount of input data at a time, emitting
several compressed blocks for one input data sequence. This limits the max-

45

6. S 

imum memory usage of both the compressor and the decompressor, and for
some algorithms, such as the Burrows-Wheeler transform [Bur+94] used
in bzip2, is the only way of making the compressor and decompressor
work incrementally. But, despite emitting blocks that could be logically
assigned to separate tasks, compressors do not tend to include synchron-
ization markers, so reliable splitting is not possible. Furthermore, since
most compressors are unaware of the format of the data they compress,
it is possible for records in the underlying data to be split up across block
boundaries. As long as synchronizing to the record boundaries after de-
compression is possible, this is not a problem, but it makes correct splitting
more difficult and means that tasks may have to decompress an extra block
beyond their assigned range—a minor performance loss.

SequenceFiles and Avro files both allow compressing sequences of re-
cords contained within. This is termed block compression. Note that the
term ‘block’ here refers to consecutive sequences of records, not the previ-
ously discussed compressor output blocks: a single file-level ‘block’ may
consist of any number of compressed blocks, depending on the compressor
used. Since the synchronization markers are not part of the records them-
selves, they are not compressed and thus synchronization can be performed
as usual while having compressed the bulk of the data.

SequenceFiles additionally support record compression, where only the
value in each key-value pair is compressed. The overheads of most com-
pression formats typically cause this form of compression to be a net loss
unless the values are exceptionally large.

BAM and BCF
The BAM (Binary Alignment/Map) [Li+09; SAM13] file format is a row-
oriented binary format consisting of a custom encoding of the textual
SAM (Sequence Alignment/Map) [Li+09; SAM13] format. BAM is addi-
tionally always compressed using the BGZF (‘Blocked GNU Zip Format’
according to e.g. Cánovas and Moffat [Cán+13] and Cock [Coc11]) com-
pressor. BCF (Binary Call Format) [BCF; Dan+11] is to VCF (Variant Call
Format) [Dan+11] as BAM is to SAM. BCF may also be BGZF-compressed,
but unlike with BAM, compression is not mandatory.

Neither BAM, BCF, nor BGZF contain synchronization markers. In
addition, while BGZF is explicitly block-based andwas originally introduced
as part of BAM, records are allowed to cross BGZF block boundaries. All
this makes correctly splitting BAM and BCF somewhat nontrivial.

Note that BAM and BCF can be, and commonly are, indexed. As the
index contains the precise positions of many records in the file, one might

46

6.1. Row-oriented binary storage formats

think that it could be used for aligning splits accurately. Unfortunately
their indexing schemes are not suitable for the task, due to at least all of
the following reasons:

• Indexing requires that the data be sorted by the co-ordinate field,
because the intended use case is looking up records by co-ordinate
ranges. If such an index were the only method of splitting, many
files could not be split at all. Notably, sorting BAM and BCF is a
commonly performed operation that can be significantly sped up
with distributed computing, but it would be impossible if only sorted
inputs were usable.

• The index is optional: it is not necessarily present even for appropri-
ately sorted data. Thus it cannot be relied upon.

• The indexing scheme, based on the strategy used for the Human
Genome Browser of the University of California, Santa Cruz [Ken+02]
and closely resembling the layout of an R-tree [Gut84], is based on
storing the file positions of certain predefined sequence co-ordinate
ranges, called bins. The amount of records in a bin does not affect
the index in any way and therefore, depending on the distribution
of the data, even the smallest bins in terms of sequence length may
be excessively large in terms of actual data length, i.e. as splits. In
theory, an arbitrarily large file whose records all fall in the same bin
is possible, in which case the index would effectively contain only
one split.

• The encoding of the index is limited to sequences whose length is at
most 229 − 1 bp (512 Mibp), so some files cannot be indexed.

Thus the standard indexing used with BAM and BCF is inapplicable and a
custom method must be used.

BAM and BGZF splitting has been previously presented in Niemen-
maa [Nie11] and the supplement to Niemenmaa et al. [Nie+12], and will
thus not be covered in detail here. The basic idea is to use the magic
numbers (present in BGZF only) and the inherent redundancies and con-
sistency requirements in the data as something resembling impromptu
synchronization markers. The equivalent strategy for BCF, implemented
since Hadoop-BAM 6.0, is briefly presented below. Note that synchronizing
to BGZF blocks is a separate issue from synchronizing to the underlying
BAM or BCF data, and so the method used for BAM can be re-used for
BGZF-compressed BCF.

47

6. S 

Field name Description Type

l_shared Length from start of CHROM to
end of INFO

uint32

l_indiv Total length of genotype fields uint32
CHROM Chromosome dictionary index int32
POS 0-based co-ordinate int32
rlen Length of projected record

(ignored)
int32

QUAL Quality (ignored) float32
n_info INFO pair count int16
n_allele REF+ALT record count int16
n_sample Length of each fmt_values uint24
n_fmt Genotype field count (ignored) uint8
ID Identifier(s) str
REF+ALT Sequence strings (ignored) str[n_allele]
FILTER Indices into filter dictionary

(ignored)
vec

INFO Additional metadata (ignored) vec[n_info]

n_fmt genotype fields (all ignored)

fmt_key Identifier (ignored) int
fmt_type Type specifier (ignored) uint8,

optional int
fmt_values n_sample values (ignored) depends on

fmt_type

Table 6.1: The format of the fields of one record in BCF. All integers are
little-endian and floating point values are in the IEEE 754 [IEE08]
format. int (when not followed by a bit width), str, and vec
refer to the custom typed encodings used in BCF which are
not detailed here. Fields that are not used by the algorithms
presented here are marked as ignored. Note that the ‘BCF2 site
information encoding’ table in the BCF specification [BCF] has
QUAL in an incorrect position.

48

6.1. Row-oriented binary storage formats

The binary layout of BCF records is shown in Table 6.1. The constraints
and redundancies exploited in Hadoop-BAM are listed below. nc and ns
refer to information found in the BCF header: the length of the chromosome
dictionary and the number of samples, respectively.

1. The record length is sensible: l_shared + l_indiv > 32.

2. The chromosome dictionary index is valid: CHROM ≥ 0∧CHROM < nc .

3. The positions and the two signed counts are nonnegative: POS ≥
0 ∧ n_info ≥ 0 ∧ n_allele ≥ 0.

4. The sample count matches to the value in the header: n_sample =
ns .

5. The ID field should have a sensible type encoding and a reasonable
length. Here i0 and i1 refer to the first two bytes of ID; l refers to the
decoded length of the string, whose encoded size depends on i0 and
i1; and & is a bitwise AND. The two constraints are as follows:

a) i0 & 0x0f = 0x07

b) If i0 & 0xf0 = 0xf0, then:

(i1 & 0x0f) ∈ [1, 3]
∧ l ≥ 15 ∧ l ≤ l_shared − (32 + n_allele + 2 ⋅ n_info).

Based on the above it is possible to find candidate locations: positions
where a BCF record is likely to begin. A decoding test is then performed
starting at each such location; once a certain number of records have been
successfully read, it is assumed that the location was valid and should be
used for the actual computation. An error at any point during decoding
means that the next position should be tried.

Considerations for bioinformatical file format design
Existing bioinformatics-related file formats have not been designed with the
requirements of distributed frameworks in mind, and so working with them
tends to be needlessly difficult. The previously related experiences with
BAM and BCF are representative of the kinds of issues that may arise. This
Section presents a few considerations that ought to be taken into account
when designing new row-oriented binary formats that may be used to hold
Big Data sets.

49

6. S 

Allowing for accurate splitting, without requiring something akin to
the heuristic method that Hadoop-BAM employs for BAM and BCF, is of
paramount importance. Synchronization markers are one possible method,
with which a simple scan for a certain byte sequence can be used to find
a record boundary. A more robust and performant method would be to
provide, in the file header or footer, an exact index of the positions of
certain records in the file. With an index, no scanning is required, as
splits can be aligned ahead of time based on the contents of the index. In
contrast to the standard BAM and BCF indexing scheme, indexed positions
have to result in a sufficiently fine-grained partitioning for splitting to be
effective: a simple solution would be to index the positions of every 100 000
records, or another similar number that is large enough to keep the index
relatively small but small enough to also keep the minimum calculable split
size suitably small.

Compression with speed-oriented schemes such as LZO or Snappy al-
most always improves I/O performance, which is often the bottleneck in
distributed computing, at practically no cost and is thus worth implement-
ing. However, directly applying a compressor to the file contents effectively
neutralizes the effect of any synchronization markers or indices. There-
fore compression should be implemented as part of the file format itself,
keeping important metadata (such as what is needed for splitting) in the
file uncompressed and compressing only the data records themselves. Ad-
ditionally, because the output of most compressors is not splittable, the
records should be divided into reasonably-sized blocks that are individually
compressed.

Allowing users to choose the compression scheme, either per file or per
block, can also be useful, as different compressors are optimal in different
situations. When dealing with Big Data sets, even small percental differ-
ences between compression ratios can manifest as tens or hundreds of
gigabytes of storage: selecting an appropriate compressor may be very
important. Thus simply enforcing use of a decent but unexceptional com-
pressor, such as the gzip-based BGZF in BAM and BCF, is not ideal.

6.2 RCFile
The RCFile (Record Columnar File) [He+11] format, is a hybrid storage
format that has been implemented in Hive (and thereby Shark), Pig, and
Impala (though Impala’s support is currently, as of version 1.1.1, read-only),
and was adopted as the default storage format by Facebook in its Hive-based
data warehouse. RCFiles are a very simple realization of the hybrid storage

50

6.3. ORC

scheme, with only few special features in addition to the basic storage
layout. These are summarized below.

• RCFiles contain a random 128-bit synchronization marker, just like
SequenceFiles and Avro files, written at the start of each partition or
row group.

• A run-length encoded [Cap59] metadata section, containing the num-
ber of records in the partition and the byte sizes of each column and
each field in each column, is stored between the synchronization
marker and the data columns of a row group.

• Compressed columns are decompressed on demand: when a row
group is read into memory, each column within is kept in compressed
form until its contents are needed for a query.

6.3 ORC
TheORC (Optimized RowColumnar) [ORC13; ORM] file format, or ORCFile,
was designed to improve upon RCFile as a Hive-specific storage format.
It was introduced as a part of Hortonworks’s Stinger Initiative [StI]. Like
RCFiles, ORC files use a hybrid storage layout, but with several unique
features:

• ORC files do not contain synchronization markers. Instead, a footer
at the end of the file (actually split into a compressed footer and a
short, uncompressed postscript) stores the starting position of each
partition or stripe. This way, instead of scanning for a marker, readers
can jump directly to the correct position.

• The footer additionally stores a set of simple and commonly calcu-
lated statistics for each column: the number of non-null values, the
minimum and maximum value, and the sum—as appropriate for the
column type, e.g. strings are not summed, of course.

• Each stripe begins with an index that stores the positions of a subset
of the records in the stripe. This facilitates seeking to a specific row
in each column, which is useful e.g. when a filtering query selects
only certain records. The index also contains the same statistics as
the footer for the records contained in that stripe.

• The data for a column in a stripe may consist of multiple streams
encoding different aspects of the values. Each stream is stored as

51

6. S 

one consecutive, possibly compressed, sequence in the file. ORC
files are aware of the types available in Hive and so can use an
efficient type-specific encoding for each type. For example, a column
containing strings may be dictionary encoded, using four streams
containing:

1. For each unique string, the length of the string.
2. For each unique string, the actual contents of the string.
3. For each string, one bit identifying whether it is null.
4. An index into the stream of string contents, allowing retrieval

of the data.

All streams are compressed using the generic algorithm named in the
file footer, in addition to lightweight stream-specific compression such as
run-length encoding. Unlike RCFile, which supports using any Hadoop-
supported compressor, ORC currently supports three choices aside from
not compressing at all: the DEFLATE algorithm—which it calls zlib pre-
sumably due to using the zlib library [Gai+13], not to be confused with
the zlib format [Deu+96]—, Snappy, and LZO.

Using a footer, as opposed to an arguably more traditional header, for
the stripe index is practically necessary due to the typically append-only
file systems used and the large volumes of data that might be stored in a
single ORC file. It would not be possible to reserve space for a header and
fill it in after writing the data because that requires in-place modification,
and because the amount of space reserved could be underestimated. Writing
the header into a new file and then appending the data would, while possible,
require copying all the written data and thus be too expensive. (A relatively
cheap in-place append operation could be possible in a file system, but
HDFS, at least, does not provide one, and so assuming its existence is not
sensible.)

6.4 Trevni
Trevni [Tre13; TrG] is a hybrid file format that is currently part of the
Apache Avro system and was created by Doug Cutting, who also originated
Hadoop. Trevni is not yet integrated into any data warehouse system, but
inclusion into Hive is planned [TrH12]. While mostly a simple realization
of hybrid storage akin to RCFile, Trevni has some notable distinctions:

• Each row group is stored in a separate file. Each such file consists of
only a single HDFS block—via setting the HDFS block size to a value

52

6.5. Parquet

larger than the default, if necessary. Thus synchronization markers
are not needed: each file should be allocated to only one task, which
need not seek in order to get to its starting position.

• Columns in a row group are split into blocks. Block metadata at the
start of each column indicates the row counts and the byte sizes of
each block. This makes efficient seeking possible, like the position
index in the stripes of ORC files.

• Optionally, the first value in each block can be stored in the block
metadata. This can be used e.g. to speed up range queries in sorted
data sets.

• A checksum of each block can be stored. When only few rows are
queried, this can be cheaper than using the HDFS block checksum-
ming. The only currently supported checksum algorithm is CRC-32,
the 32-bit cyclic redundancy check [Pet+61], with the same field poly-
nomial as used e.g. in the PNG (Portable Network Graphics) [Duc03]
file format.

• Each column can be stored in a different compressed format. Two
options are supported in the current version of Trevni: DEFLATE
and Snappy.

• Trevni does not support the full set of types that Hive does, but it
has special-case handling for arrays. One can define array columns,
in which the values are prefixed by the array length. One can then
define columns that refer to it as a parent, thereby sharing the length
information without explicitly storing it.

6.5 Parquet
Parquet [Kes13; Par; Rya13] is yet another hybrid storage format, co-
developed by Twitter and Cloudera as an improvement of Trevni. As
of yet Parquet has been integrated only into Impala, with Hive support
available as a separate download.

Parquet shares Trevni’s one-to-one mapping of row groups to files and
HDFS blocks, the splitting of columns into blocks (called pages in Parquet),
the optional checksumming, and the ability to compress each column with
a separate compressor—the options currently available are gzip, Snappy,
and LZO. Parquet’s additions include the following:

53

6. S 

• Pages can have different encodings. (Compression is still specified at
the column level.) There are currently two alternative encodings: a
plain encoding, which packs Booleans so that they only use a single
bit each and otherwise stores values as-is, and a dictionary encoding
in which only indices to the dictionary are stored. The lookup table
itself is stored as the first page of each column.

• An efficient columnar encoding of field data for records contain-
ing other, nested records, mixed with possibly repeated fields. For
example, if a record contains an arbitrary number of integers, it
is impossible to tell from a sequence of integers where the record
boundaries are. While in this case storing a separate sequence of
lengths for each record would be a suitable solution, in the presence
of complicated nested structures with many levels of repetition such
a simplistic encoding would not be very compact. The encoding used
in Parquet is based on the technique applied in Dremel [Mel+10] and
due to its complexity will not be detailed here. Note that the tabular
data storage model of Hive implies that there is no nesting: this fea-
ture is only useful for other data models. Fortunately the overhead
for flat data models like that of Hive tables is essentially zero.

• Various integers, such as those used to store indices in the dictionary
encoding or those used in the nested field encoding, are either packed
using the minimum required number of bits per integer, or run-length
encoded. In each page, the more space-efficient encoding for the data
in that page is used.

• Metadata, including among other things the positions of each column
in the file, is stored in a footer, like in ORC files.

54

C 7
Experimental procedure

PLAN, v.t. To bother about the best method of
accomplishing an accidental result.

The Devil’s Dictionary
A B, 1911 [Bie93]

The goal of the experiments performed was to investigate the performance
of the Hive, Shark, and Impala frameworks in interactive sequencing data
analysis tasks. Due to the plethora of file formats available, several different
ones were also included as points of comparison, including alternative com-
pression schemes. Other interesting features whose effect on performance
could have been compared include indexing, table and column statistics,
and partitioning. Unfortunately time constraints prevented their inclusion
in these experiments.

The following Sections cover all of: the type of sequencing data used,
how Hive support for it was implemented, and the data set itself; the origin-
ally intended benchmarks and their purposes; issues encountered during
testing and benchmarking; the final benchmark set; and the setup, includ-
ing the hardware and software environment used. The results obtained are
presented and analysed in Chapter 8.

7.1 Accessing sequencing data
In order to access actual sequencing data, the appropriate file format sup-
port had to be implemented. Since Shark is Hive-compatible, a single
implementation was used for both Hive and Shark. Impala’s lack of ex-
tensibility means that implementing a new file format would require fa-

55

7. E 

miliarity with its internals. In addition, the limited applicability of se-
quencing data formats means that they are not very useful to most Impala
users. Thus such an implementation would likely have not been accep-
ted into Impala proper, meaning that a low-level modification of Impala
would have had to have been maintained indefinitely, or it would have
eventually become useless due to its age. For these reasons, an imple-
mentation for Impala was not written; instead, Hive was used to convert
the data into formats that Impala supports. The source code of the im-
plementation described in the remainder of this Section can be found at
https://github.com/Deewiant/master-hive-bam/.

The file format implemented was the BAM [SAM13] format. Due to
time limitations, only this one format was implemented. There were a
number of constraints which lead to the choice of BAM:

1. Sufficiently large data sets using the format had to be freely available.

2. The data in the format had to map to Hive tables reasonably well, and
expressing interactive analysis tasks on the format in HiveQL had to
be possible. User-defined functions should not have been necessary,
so that Impala could also be tested.

3. The format had to be a compressed binary sequencing data format,
These are more reasonably compared to the formats used in Hive,
Shark, and Impala than the textual formats typically used, since they
can be seen as reasonably ‘optimized’ given that they include their
own compression and encoding schemes.

4. Ideally, the format had to be supported by Hadoop-BAM in order to
minimize implementation work. Hadoop-BAM did not have BCF sup-
port when this work was begun, which, combined with the previous
restrictions, made BAM the best choice.

Because of the additional complexities involved in outputting a correct BAM
file, only input support was implemented. Regardless, as the benchmarked
use case consists of exploratory analysis, outputting BAM is not important.

The BAM record layout is shown in Table 7.1. The brief descriptions of
the fields are not intended to capture their full meanings; for a complete
understanding, refer to the SAM specification [SAM13]. Note that the BAM
header contains information that is needed to fully decode the record: for
example, the refID field is an index to a dictionary contained in the header.
In this work reading the header was not implemented, so such field data is
treated as opaque.

56

https://github.com/Deewiant/master-hive-bam/

7.1. Accessing sequencing data

Field name Description Type

block_size Record length minus 4 int32
refID Reference sequence ID int32
pos 0-based co-ordinate int32
l_read_name Length of read_name uint8
mapq Mapping quality uint8
bin Bin number uint16
n_cigar_op Length of cigar uint16
flag Flags bit field uint16
l_seq Length of decoded seq int32
next_refID refID of next fragment int32
next_pos pos of next fragment int32
tlen Template length int32
read_name Name, null-terminated uint8[l_read_name]
cigar CIGAR string uint32[n_cigar_op]
seq Sequence data uint8[(l_seq+1)/2]
qual Sequence data quality uint8[l_seq]

Auxiliary data until block_size is filled

tag Identifier uint8[2]
val_type Type specifier uint8
value Value depends on

val_type

Table 7.1: The format of the fields of one record in the BAM [SAM13]
format. intN and uintN denote, respectively, two’s comple-
ment signed and unsigned little endian integers with a bit width
of N. x[N] denotes a length-N array of x.

57

7. E 

The Hive table schema corresponding to BAM data, and applied in
the implementation used in the experiments presented here, is given in
Table 7.2. Instead of naïvely mapping the fields directly to their types’ Hive
equivalents, the schema is based on the SAM format. This choice was made
for three main reasons:

1. The BAM data includes fields that are useful only for decoding it,
such as block_size and l_read_name.

2. BAM files use reference sequence IDs, i.e. indices to the reference
sequence dictionary found in the file header, instead of spelling out
the name every time. While this is a significant space saving, it is
an additional dependency on the header, for which a schema was
not implemented, and columnar compression should mitigate the
additional space usage incurred due to simply expanding the whole
string every time.

3. Thirdly, many of the fields are of array type, and the corresponding
ARRAY type of Hive is not supported by Impala [ImU]—to the extent
that it refuses to run any queries on tables containing columns with
unsupported types, whether or not those queries use such columns.
Thus the string encodings of SAM were the only alternatives con-
sidered reasonable.

The auxiliary data fields in the schema are the only exception that do
not adhere to the SAM format: they were grouped by their type, and each
group was mapped to a single string. This was done because Impala does
not support the MAP type. The intended schema would have had each group
turned into a MAP<SMALLINT,T> with the appropriate value type T for
each group. In order to approximate the data volume occupied by the
auxiliary data, it was not dropped entirely, but a string encoding was used
instead. Each group consists essentially of tag=value strings separated
by the four-byte sequence {96, 0, 0, 96}.

Another notable difference between the original BAM data and the
schema arises because Hive does not distinguish signed and unsigned
integers: integers in Hive are always signed. Thus the mapq column must
be used carefully in queries, lest seemingly negative values be mistreated.
Using a larger integer type for the column would have avoided the issue,
but would have instead allowed completely invalid values to be inserted
into the column. Which of these is the ‘lesser evil’ is largely a subjective
matter.

58

7.1. Accessing sequencing data

Column name Column type

qname STRING
flag SMALLINT
rname STRING
pos INT
mapq TINYINT
cigar STRING
rnext STRING
pnext INT
tlen INT
seq STRING
qual STRING
opts_char STRING
opts_int STRING
opts_float STRING
opts_string STRING
opts_arr_int8 STRING
opts_arr_int16 STRING
opts_arr_int32 STRING
opts_arr_float STRING

Table 7.2: The Hive schema used for BAM data in the experiments presen-
ted here. The columns whose names begin with opts corres-
pond to the various kinds of optional fields in SAM, and the
preceding columns and their types correspond to the mandat-
ory fields of SAM.

Mapping the fields into Hive in such a direct manner means that many
useful operations require user-defined functions. For example, the sequence
data itself, its quality metadata, and its comparison to the reference—the
seq, qual, and cigar columns—are essentially opaque to normal Hive
operations. Impala’s limitations were once again a major factor: with this
encoding, user-defined functions are necessary and so Impala is excluded,
but the only other reasonable encoding, in which arrays instead of strings
would be used for these columns, would also have excluded Impala, since it
does not support the ARRAY type [ImU]. Because of Impala’s inability to
query tables containing columns with unsupported types, the nonprohibit-
ive string encodings were chosen.

The data set used was a single BAM file from the 1000 Genomes Pro-

59

7. E 

ject [1kG], with a size of about 301.2 GiB and exactly 986 759 806 records.
Unfortunately, the file is no longer available on the 1000 Genomes web
site. (Its URL was ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data/NA12892/high_coverage_alignment/NA12892.mapped.
ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130520.bam.)
A newer replacement file of somewhat smaller size can be found at
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/
high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.
CEU.high_coverage_pcr_free.20130906.bam. In case of in-
terest towards obtaining the original data set used, the e-mail address
matti.niemenmaa+master@iki.fi may be contacted.

7.2 Intended procedure
The planned sequence of HiveQL queries mostly imitated actions that
might be performed by an analyst interactively exploring a data set. Some
statistics describing the complete data set were to be computed before
narrowing it down to a significantly smaller ‘previously chosen’—for these
experiments, randomly generated—subset for further processing. The subset
was given as a BED file [BED13], which could be directly loaded into
a simple three-column table and combined with the full data set using a
JOIN on the rname and pos columns. In addition, two more synthetic
benchmarks were to be run: one to compare against the sorting capabilities
of Hadoop-BAM by applying an ORDER BY query to the full data set, and
another to test the performance of some aggregation functions such as AVG
and STDDEV_SAMP.

While experimentation using bioinformatically meaningful queries
would have been preferable, the limits of Impala combined with the quite
simplistic SAM-based schema made this infeasible. In order to facilitate
reasonable runtime comparisons, the HiveQL statements used with the
different frameworks had to be as similar to each other as possible. There-
fore introducing user-defined functions was not an option, making most
meaningful operations practically impossible. Hence the queries consisted
only of arbitrary, fairly simple actions.

The experiments were to be run with each of the following numbers of
slave nodes: 1, 2, 4, 8, 16, and 31. Continuing the progression to 32 worker
nodeswas not possible, because one nodewas always allocated as themaster
and cluster policy prevented using more than 32 nodes at a time. In order
to discover the amount of variance in the timings, the experiments were to
be run four times for each combination of slave node count, framework,

60

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130520.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130520.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130520.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130906.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130906.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA12892/high_coverage_alignment/NA12892.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.20130906.bam
mailto:matti.niemenmaa+master@iki.fi

7.3. Issues encountered

and file formats.

7.3 Issues encountered
Throughout this and later Sections in this Chapter, the unqualified terms
‘Hive’, ‘Shark’, and ‘Impala’ refer to their specific versions used in these
experiments: Hive 0.11, Shark 0.7, and Impala 1.0.1. (See Section 7.5 for
more detailed version number information.) The issues discussed may have
been corrected in later versions. It is explicitly noted if such later versions
were released between the times when the experiments were run and this
Thesis was completed.

None of Hive, Shark, and Impala implement a parallel ORDER BY: in
the end, the data being sorted is always sent to a single node. Thus, the idea
of comparing their sorting runtimes to Hadoop-BAM’s was dropped. The
frameworks would only have been impractically slow and likely caused
out-of-memory errors and similar issues. In Hive, this issue [HIV10] has
been addressed in version 0.12, but not in the 0.11 used in these experiments.

Impala does not support STDDEV_SAMP [ImU], nor any of the other
aggregation functions that involve relatively advanced computations com-
pared to e.g. AVG and SUM. The benchmark using STDDEV_SAMP was there-
fore changed to compute the standard deviation manually.

Shark was incapable of performing the join with the BED table without
crashing due to running low on memory. Shark does contain an implemen-
tation of map joins, wherein the join would be done by propagating the
smaller BED table to a number of tasks, each of which joins the entire BED
table with a part of the larger BAM table. It was found that this implemen-
tation is not used by default, likely owing to Hive 0.9’s inability to heuristic-
ally recognize map join opportunities by default. It was thought that Shark
itself had appropriate heuristics for this—perhaps the implementation was
not active in the used version, like partial DAG execution [SHA12], or the
heuristics simply performed poorly in this case. In any case, the implemen-
tation of a standard join was completely impractical for the data set used:
when computing joins that are not map joins, Shark assigns each join key
value to one node, with all rows matching that key being sent to that node
at once. Especially when coupled with the overhead of Java objects, this
easily caused the memory budget to be exceeded.

To perform the join as a map join in Shark, the statement was manually
annotated with a MAPJOIN(bed) hint [HiJ]. While now running without
any fatal errors, Shark did not compute a correct result for the join, out-
putting zero rows instead of the expected 16 616 633. This was a previously

61

7. E 

known issue [SHA13] which was unfortunately not corrected in time for
the experiments run with Shark 0.7, but has since been fixed in Shark 0.8.

With only one worker node, Impala was also incapable of performing
the BED join, instead aborting the query due to running low on memory.
Fortunately two slave nodes were enough: only the single-worker runs
were troublesome.

After converting the data set to the Parquet format in Impala, accessing
the result with Hive was attempted. This resulted only in error messages,
and so testing Parquet under Hive was not included in the experiment. The
later released Impala 1.1.1 includes a fix for this issue [ImF]. Older versions
of Impala, including the used 1.0.1 version, output Parquet files containing
metadata that is incompatible with Hive. Unfortunately this was neither
realized nor corrected in time for the experiments.

An Impala issue concerning Snappy-compressed RCFiles was discovered
and reported [ImB13]. While quite quickly marked as fixed, the code
implementing the fix was not made public for another month [IMP13] and
so was not available for the experiments. (Embarrassingly, the fact that not
using null bytes in the optional field encoding would have worked around
the problem was not realized in time.) As with the Parquet-related issue,
the fix is part of the Impala 1.1.1 release, but not the used 1.0.1.

Finally, Impala seemed to suffer from some kind of stability issue in
RCFile processing when run in configurations with 4, 8, or 16 worker nodes.
Crashes manifested seemingly randomly, with runs sometimes succeeding
and sometimes failing. In the end, the failure rate with 16 slave nodes was
too high to obtain the desired four successful runs with each configuration,
and so Impala’s 16-worker runs were replaced with runs using only 15
slaves. Unfortunately, by the time the severity of this issue became evident,
all of the other frameworks’ 16-worker runs had been completed, so due to
time constraints only the 16-worker runs of Impala were replaced. While
no bug report for this issue has been filed, brief testing with Impala 1.1.1
suggests that the issue is no longer present.

In summary, the issues encountered prevented all of the following:

• Benchmarking the ORDER BY capabilities of each framework com-
pared to the BAM sort of Hadoop-BAM.

• With Shark, and Impala on a single-worker ‘cluster’, properly bench-
marking the join with the BED table and the subsequent operations.

• Using the Parquet file format in Hive.

62

7.4. Final procedure

• With Impala and the Snappy-compressed RCFile format, benchmark-
ing the join with the BED table and the following operations.

• Using clusters of 16 worker nodes with Impala: 15 workers had to be
used instead.

7.4 Final procedure
Three groups of HiveQL statements ended up comprising the benchmarks.
These groups were as follows:

1. Table creation and possible settings needed for the file format, such
as compressor selection. One version of this group was created for
each combination of file format and compression scheme.

2. Queries run on the full data set, including the JOIN statement with a
BED file randomly generated for this purpose.

3. Exploratory queries on the resulting smaller data set.

The table creation statements were run separately so that they could be
easily changed without modifying the queries, thus forming the different
benchmarks. Another reason was that then the table data could be copied
into place directly, speeding up the data loading process. The queries on
the reduced data set were separated due to the issues with Shark discussed
in Section 7.3. (Originally the JOIN was not run on Shark at all due to
producing an incorrect result, but later it was enabled, as it was realized
that its runtime may still indicate something useful.) All HiveQL statements
used are listed in Appendix B; Listings 7.1 to 7.3 below show the statements
used for Hive with the RCFile format and gzip compression.

The statements shown in Listing 7.1 mainly create tables following the
schema given in Table 7.2. Two similar tables are created: one for the full
data set, called bam, and one for the reduced data set computed by the
join, called results. A table for the BED file, called bed, is also created.
Note how BED data can be read directly, as it is a simple row-oriented
textual format with fields separated by horizontal tab characters. Finally,
appropriate settings for gzip-compressed RCFile output, including a split
size recommendation from Cloudera [IRC], are applied.

After creating the tables, their data was copied directly into place by
a separate process—this being possible because converting the original
BAM data into the various file formats was done in advance. Loading
the data separately instead of with LOAD statements allowed using the

63

7. E 

CREATE TABLE bam (
qname STRING, flag SMALLINT, rname STRING, pos INT,
mapq TINYINT, cigar STRING, rnext STRING, pnext INT,
tlen INT, seq STRING, qual STRING, opts_char STRING,
opts_int STRING, opts_float STRING,
opts_string STRING, opts_arr_int8 STRING,
opts_arr_int16 STRING, opts_arr_int32 STRING,
opts_arr_float STRING

) STORED AS RCFILE;
CREATE TABLE results

-- The rest omitted: it is identical to the above.
CREATE TABLE bed (

chrom STRING, chromStart INT, chromEnd INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

SET hive.exec.compress.output=true;
SET mapred.max.split.size=256000000;
SET mapred.output.compression.type=BLOCK;
SET mapred.output.compression.codec=

org.apache.hadoop.io.compress.GzipCodec;

Listing 7.1: HiveQL statements used in Hive to create the tables in the
RCFile format and to prepare for compressing output with
gzip.

Hadoop DistCp (distributed copy) [DCp] tool to speed up the copy into
HDFS. DistCp was used for each file format except BAM, because they split
the data set into hundreds of files, making the file-level parallelization of
DistCp effective. Care was taken to preserve the larger-than-default HDFS
block sizes in the Parquet and ORC files: each file was stored in a single
HDFS block.

TheHiveQL statements concerning the full data set, shown in Listing 7.2,
begin with a further setting: the number of reduce tasks R, which was
set to four times the number of slave nodes available. The sequence of
queries starts with fetching the counts of variously flagged records. The
following queries compute two sorted histograms of the data: first, the
number of records referring to each reference sequence, and second, for
each possible mapping quality value, the number of non-duplicate records
with valid qualities having that value. The PMOD function, which computes
the positive remainder of its first argument divided by its second argument,

64

7.4. Final procedure

SET mapred.reduce.tasks = R;

SELECT COUNT(*) AS total FROM bam;
SELECT COUNT(*) AS mapped FROM bam WHERE flag & 4 = 0;
SELECT COUNT(*) AS passedQC FROM bam

WHERE flag & 512 = 0;
SELECT COUNT(*) AS notDuplicate FROM bam

WHERE flag & 1024 = 0;

SELECT rname, COUNT(*) FROM bam
GROUP BY rname ORDER BY rname;

SELECT PMOD(mapq,256) AS pmapq, COUNT(*) FROM bam
WHERE flag & (4 | 1024) = 0
GROUP BY mapq ORDER BY pmapq;

INSERT OVERWRITE TABLE results
SELECT DISTINCT

-- All columns in bam, omitted for brevity.
FROM bed JOIN (SELECT * FROM bam WHERE

flag & 4 = 0 AND seq <> "*") bam
ON bam.rname = bed.chrom

WHERE bam.pos <= bed.chromEnd
AND bam.pos + length(bam.seq) >= bed.chromStart;

SELECT COUNT(*) FROM results;

Listing 7.2: HiveQL statements used on the full data set—the bam table—in
Hive. R was replaced by four times the number of slave nodes
available.

is used so that the histogram shows the numbers in the range [0, 255] instead
of [−128, −127], thereby also ordering them correctly. These queries were
intended as simulating a user viewing some of the essential characteristics
of the full data set.

The penultimate query in Listing 7.2 is the join with the BED data. It
involves several non-obvious aspects:

• The flag condition filters out BAM records with invalid co-ordinate
data.

• A filtering condition on seq is required for correctness because the

65

7. E 

length of the seq string is used to find the ending co-ordinate of
the range covered by the record. A more typical way would have
been to compute the length from the CIGAR string, since it is more
commonly available, but without user-defined functions this would
have been extremely complicated.

• Because Hive (as well as Shark and Impala) only support equality
expressions in the join condition, the join itself is performed only on
the reference sequence name, with the more important co-ordinate
overlap checks performed as ordinary WHERE conditions.

• Since each BAM record may match to more than one co-ordinate
range in the BED file, the DISTINCT feature is used to remove du-
plicates from the final result.

A count is performed after the join, and after each following INSERT oper-
ation shown in Listing 7.3. This was intended to mimic a user performing
different operations in an attempt to diminish the data set size until it could
be more closely examined in other tools.

After reducing the data set to that covered by the BED table, the HiveQL
statements in Listing 7.3 were run. First another join is computed, this
time to select only the highest-quality reads covering each co-ordinate
range. The read with the highest mapping quality for each pos and tlen is
selected. Once again a PMOD is necessary so that MAX compares the values
in the right way and finds the correct maximum. Next, three simple filters
are applied, performing the final reductions on the data set. Note that the
last filter completely subsumes the second-to-last one: such sequences of
operations can legitimately arise when working interactively, though they
would be deemed mistakes in a non-interactive context.

Finally, the mean and sample standard deviation of the tlen column
values are computed. This is done in one statement using a join with the
mean, to work around Impala’s lack of support for STDDEV_SAMP.

The changes in the size of the data set through the join with the BED
data and the reductions in Listing 7.3 are shown in Table 7.3. Clearly,
the BED join performs the greatest reduction on the data set size. The
following updates are insignificant in comparison. In particular, the last
two selections do not change the data set size at all—thus, not only is the
next-to-last query irrelevant in the face of the last, but in fact they both
have no effect. This, too, is a likely possibility when working interactively.
In theory, a sufficiently smart implementation may compute a histogram
of the LENGTH(seq) values while running the first of these two queries,
thereby recognizing the filtering expression in the second as vacuously true

66

7.4. Final procedure

INSERT OVERWRITE TABLE results
SELECT results.*
FROM (SELECT pos, tlen, MAX(PMOD(mapq,256)) AS maxq

FROM results
WHERE flag & 4 = 0 AND mapq <> -1
GROUP BY pos, tlen) tmp

JOIN results ON results.pos = tmp.pos
AND results.tlen = tmp.tlen

WHERE PMOD(results.mapq,256) = tmp.maxq;
SELECT COUNT(*) FROM results;

INSERT OVERWRITE TABLE results SELECT * FROM results
WHERE mapq <> -1 AND PMOD(mapq,256) >= 60;

SELECT COUNT(*) FROM results;
INSERT OVERWRITE TABLE results SELECT * FROM results

WHERE LENGTH(seq) >= 10;
SELECT COUNT(*) FROM results;
INSERT OVERWRITE TABLE results SELECT * FROM results

WHERE LENGTH(seq) >= 50;
SELECT COUNT(*) FROM results;

SELECT AVG(tlen),
SQRT(SUM(POW(tlen - mean, 2)) / (COUNT(*) - 1))

FROM (SELECT AVG(tlen) AS mean FROM results) tmp
JOIN results;

Listing 7.3: Exploratory HiveQL queries used on the reduced data set—the
results table—in Hive.

immediately. While such a result was not expected, the queries were left as
they are in order to draw attention to such possibilities.

In Shark, since the join with the BED data was not computed correctly,
the statements of Listing 7.3 could not sensibly be run immediately fol-
lowing the join. Instead, the result of the join as computed by Hive was
saved, and then loaded separately for the Shark benchmarks. This of course
may have perturbed the resulting runtimes due to effects on e.g. RDD per-
sistence in Spark or file caching at the operating system level, but it was
the only way of performing the correct computations in Shark. The same
procedure was also used for Impala’s single-worker runs.

67

7. E 

Modification Data set size
(rows)

Data set size
(percentage
of previous)

Initial 986 759 806 100.00%
Joined with BED 16 616 633 1.68%
Selected best mapq 16 546 449 99.58%
Selected mapq ≥ 60 15 153 080 91.58%
Selected LENGTH(seq) ≥ 10 15 153 080 100.00%
Selected LENGTH(seq) ≥ 50 15 153 080 100.00%

Table 7.3: The size of the data set initially, and after each time it is modified
in HiveQL.

Many of the statements had to be tweaked for the different frameworks
due to differences in HiveQL support. The various changes that needed to
be made to the code in Listing 7.2 consisted of the following:

• Impala has no equivalent to the mapred.reduce.tasks setting:
the degree of parallelism is always selected automatically, so no such
setting was applied.

• Impala requires a LIMIT in any query involving ORDER BY. For the
rname histogram, this limit was set to 100 after checking manually
what an appropriate limit would be. For the mapq histogram, the
limit was set to 256: the maximum possible number of different mapq
values.

• As previously discussed: in Shark, the MAPJOIN(bed) hint was
applied to the JOIN statement, and before realizing that timing even
the incorrect result may be useful, the statement was completely
disabled. Thus only partial results for this statement are available in
Chapter 8.

• While Hive’s optimal join ordering requires that the tables be joined
in ascending order [HiJ], in Impala this order is reversed [ImL], and
so the bed table was mentioned last, not first, in the JOIN statement.

The changes required for the code in Listing 7.3 were as follows:

• As above, the order of the tables in the two JOIN statements was
reversed in Impala.

68

7.5. Setup

• Impala refuses to execute a JOIN statement without an equality
predicate [ImL], such as the one used here to compute the sample
standard deviation. The argument that such joins could result in
excess resource usage does not apply here, as the ‘table’ joined with
consists of only one column and one row: the AVG(tlen) value.
To work around this limitation, a dummy column whose value was
always zero was added to each side of the join, and those columns
were used in an equality condition. Note that Impala saw through
simply adding the constant 0, so simple subtractions resulting in zero
were used instead: tlen-tlen and COUNT(tlen)-COUNT(tlen).

The details of the changes are evidenced in Appendix B.

7.5 Setup
Table 7.4 lists all combinations of file formats, compressors, and frameworks
benchmarked. Because the frameworks cannot always output to the same
format as the format of the input data set, the format for the results
table is listed separately. For example, Impala can only write in textual or
the Parquet format, and thus, in these experiments, the results table in
any Impala-using benchmark run is always stored in the Parquet format,
regardless of the format of the bam table.

In an effort to see how the BED join query would behave, different
compressors were used for both tables with RCFile. For Parquet, only the
Snappy compressor was used, because it was the only one supported by
Impala. Similarly, because the version of Shark used is based on Hive 0.9,
it does not provide built-in support for Snappy, and so only gzip was
used. Hive had no significant limitations: when testing it with RCFile and
ORC, both Snappy and the supported DEFLATE-based compressor were
used, respectively as representatives of relatively fast and relatively slow
compressors.

The used versions of all relevant software involved were as follows:

• Hadoop 2.0.0 from Cloudera’s distribution, CDH 4.3.0. Additionally,
the native library [HNL13] was compiled in the hopes of achieving
greater performance. YARN was not used.

• Hive 0.11.0.

• Spark 0.7.3 and Shark 0.7.0, running on Scala 2.9.3. Shark additionally
used its bundled Hive 0.9.0.

69

7. E 

bam table Framework results table
Format Compressor Format Compressor

BAM BGZF Hive RCFile gzip
Snappy

ORC DEFLATE
Snappy

Shark RCFile gzip

RCFile gzip Hive RCFile gzip
Snappy

Shark RCFile gzip
Impala Parquet Snappy

Snappy Hive RCFile gzip
Snappy

Shark RCFile gzip
Impala Parquet Snappy

ORC DEFLATE Hive ORC DEFLATE

Snappy Hive ORC Snappy

Parquet Snappy Impala Parquet Snappy

Table 7.4: The experiment plan: the file formats, compressors, and frame-
works used, with separate formats and compressors for the bam
and results tables.

• Impala 1.0.1.

• Hadoop-BAM 6.0.

• PostgreSQL 9.2.4, which was used as the metastore.

• Snappy 1.1.0 and zlib 1.2.3, which implements both gzip and plain
DEFLATE. Snappy was compiled manually, while zlibwas provided
by the Linux distribution used—Scientific Linux 6.4.

• Dstat 0.7.0 [Wie], which was run together with the experiments to
observe resource utilization in detail.

• Java Standard Edition Development Kit 7u25, and the runtime en-
vironment included with it. Since the frameworks were available as
pre-built binaries, the development tools were used only to compile

70

7.5. Setup

the BAM input support for Hive and Shark, and when building the
native Hadoop libraries. The runtime environment was used to run
all software based on Java or Scala.

• The GNU Compiler Collection, version ‘4.4.7 (Red Hat 4.4.7-3)’, which
was used to build the native Hadoop library as well as the Snappy
libraries.

• Python 2.6.6, which ran at least Dstat as well as parts of the Impala
frontend.

• Linux 2.6.32-358.14.1.el6.x86_64 and glibc 2.12 were the kernel and
base C library installed on the nodes.

The hardware used was a larger cluster’s 100-node subset with nodes
composed of the following main components:

• Two six-core Intel Xeon X5650 processors clocked at 2.67 GHz.

• 48 GiB of DDR3 SDRAM [DDR12] main memory clocked at 1066 MHz.

• 4x QDR Infiniband network connections, for an aggregate 40 Gbps
of theoretical maximum throughput.

• About 837 GiB of usable local disk space, striped across two 7200 RPM
hard disk drives. Be aware that because of uneven disk performance
this striped configurationmay be suboptimal compared to treating the
disks as separate volumes, in what is commonly called a JBOD (just
a bunch of disks) configuration [Kre+11].

In addition, log files were written to a version 1.8.7 Lustre [Lus; Sch03] file
system served by a DataDirect Networks SFA10K system [DDN] with four
storage servers and two metadata servers.

The experiments were mostly run as described in Section 7.2: with 1, 2,
4, 8, 16, and 31 worker nodes, and four times for each combination of node
count, framework, and storage formats. The main exception to this came
about due to the previously mentioned Impala issue forcing runs with 15
worker nodes instead of 16. Other than that, one 31-slave run in each of
the configurations shown in Table 7.5 was not run (i.e. did not receive a
resource allocation in the queueing system used on the cluster) in time for
this publication and thus their results are unavailable. As each combination
was to be run four times, these losses are not problematic: they only mean
that for some combinations, only three sets of results were obtained.

71

7. E 

bam table Framework results table
Format Compressor Format Compressor

RCFile Snappy Hive RCFile gzip
Snappy

Shark RCFile gzip
Impala Parquet Snappy

ORC DEFLATE Hive ORC DEFLATE

Parquet Snappy Impala Parquet Snappy

Table 7.5: The experimental configurations for which a set of 31-node
results could not be completed due to time constraints. In each
case, precisely one result for every applicable query is missing.

Various important configuration settings are listed below. The almost
complete settings used, excluding only environment-specific information
such as precise file paths and network host names, are available in Ap-
pendix A.

• The HDFS replication level was set to max(3, ⌊n/2⌋), where n was the
number of slave nodes used.

• The number of map and reduce slots per node were set to 12 and 6,
respectively.

• Map output compression using Snappy was enabled, meaning that
the output of map tasks was compressed with Snappy before being
sent to the reduce tasks.

• In accordance with the configuration settings recommended in the
Impala documentation [ImC], short-circuit reads and block location
tracking were both enabled.

72

C 8
Experimental results

Science invites us to let the facts in, even when
they don’t conform to our preconceptions.

‘Why We Need To Understand Science’
C S [Sag90]

This Chapter is divided into two Sections. The first Section discusses the
size of the data set when stored with different formats and compressors. The
second Section examines query performance across both the frameworks
and the storage formats.

8.1 Data set size
Table 8.1 shows the size of the data set in each of the format-compressor
combinations benchmarked and in variously compressed SAM formats. The
sizes are compared to BAM, as it is the de facto binary storage format for
this kind of sequence data and the original format used by the source of
the data, the 1000 Genomes Project [1kG]. The remainder of this Section is
focused on analysing Table 8.1.

Two things concerning the information in Table 8.1 should be noted.
Firstly, while the header data is only included in the SAM and BAM formats
due to the schema used, its presence has barely any effect in this compar-
ison, because it consists of only 3515 bytes when uncompressed—less than
a millionth of the data set size in any of the formats. Secondly, all the
gzip compressors, including BGZF, used the default level of compression,
striking a balance between data size and compression speed. Since the de-
compression speed of gzip is likely to only improve as a higher level of

73

8. E 

Format Compressor Size (bytes) Size (relative)

SAM none 1 363 445 233 534 421.60%
gzip 291 484 653 668 90.13%
BGZF 314 945 209 503 97.39%

BAM none 1 217 084 188 364 376.35%
gzip 295 794 591 321 91.47%
BGZF 323 395 742 321 100.00%

RCFile gzip 243 640 049 627 75.34%
Snappy 466 314 416 496 144.19%

ORC DEFLATE 344 239 681 323 106.45%
Snappy 586 681 615 929 181.41%

Parquet Snappy 485 801 576 705 150.22%

Table 8.1: The size of the data set in different file formats and with different
compressors.

compression is used [Col05], this was nothing but a pessimization. Except
for the BGZF-compressed BAM file, which was provided by 1000 Genomes,
this came about as the result of assuming that Hive, which was used to
create the gzip-compressed RCFile data set, would default to the highest
level of compression, an assumption that was found to be false only when
it was too late to re-run the experiments. For the sake of fair comparison,
the same compression level was then applied to SAM and BAM resulting
in the values in Table 8.1.

Among the first results visible in Table 8.1 is the fact that the data set
was slightly smaller in SAM than in BAM when the two were compressed
with the same compressor, even though BAM was smaller than SAM when
uncompressed. This raises the question of whether performing computa-
tions on compressed SAM would also be slightly faster, which would make
SAM superior to BAM for all practical purposes. Unfortunately this invest-
igation was not performed in these experiments.

Another result shown is that BGZF was about 8% less effective than the
gzip it is based on. This can be explained via the limitation imposed by
BGZF that compressed blocks be at most 64 KiB in size. While the difference
in compression ratios is not a new result in itself, its magnitude has previ-
ously been assumed to be smaller than this for sequencing data [Coc11].

When it comes to the tabular formats, an unexpected result seen in
Table 8.1 is that RCFile was smaller than both ORC and Parquet. While the

74

8.2. Query performance

difference between the RCFile and Parquet sizes was not particularly large,
and can be explained with Parquet’s additional complexity and metadata,
using ORC results in the largest data set sizes by far. This contradicts
previous results comparing ORC to RCFile [OMa13] in which the data set
of the TPC-DS [TPC] benchmark was smaller in ORC than in the RCFile
format. One possible, though highly questionable, explanation is that
Cloudera’s recommended settings for compressed RCFile output [IRC]
simply caused that large a difference, assuming that the previous results
used much less optimized settings. A more likely possibility is that ORC
somehow copes poorly with the kind of sequencing data found in BAM
files, perhaps in particular when combined with the schema used in the
tabular formats. ORC is still a new technology, so the presence of such a
problem is plausible. Future improvements are possible and may mitigate
the issue.

A final note regarding the size data is that compressors optimized for
speed can indeed result in noticeably larger sizes than even fairly bal-
anced compressors: Snappy compression gives approximately 170% of
the gzip-compressed size with RCFile and about 191% of the DEFLATE-
compressed with ORC. Thus, as the differences can be highly significant,
selecting the appropriate compressor based on one’s needs is very import-
ant.

8.2 Query performance
The full query performance data presented and analysed in the remainder
of this Section can be obtained from https://github.com/Deewiant/
master-data/. In addition to the timings themselves, the output of Dstat
as well as Impala’s per-query profiles are included.

Overviews by framework
Figures 8.1 and 8.2 show overviews of query performance, displaying the
same data points but with linear and logarithmic time scales respectively.
Each point corresponds to the execution of a single query in a certain
framework. To enable comparing the different frameworks, their data points
are slightly separated from one another at each X-axis position. Note that
the timings of Shark’s BED joins, in spite of the incorrect results produced,
are included in these Figures (and later Figures where appropriate).

It is clearly visible in Figure 8.2 that Hive was incapable of executing
any query in less than ten seconds. This matches with the previously known

75

https://github.com/Deewiant/master-data/
https://github.com/Deewiant/master-data/

8. E 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16* 31

Ti
m
e
(s
)

Worker count

Hive
Shark
Impala

Figure 8.1: The runtime of each individual query shown on a linear scale
compared to the amount of worker nodes available, with the
data points separated by the execution framework.
*For Impala, 15 workers were used instead of 16, but those runs
are considered replacements for the 16-worker runs and are
thus grouped as such.

76

8.2. Query performance

9000

0.1

1

10

100

1000

1 2 4 8 16* 31

Ti
m
e
(s
)

Worker count

Hive
Shark
Impala

Figure 8.2: The runtime of each individual query shown on a logarithmic
scale compared to the amount of worker nodes available, with
the data points separated by the execution framework.
*For Impala, 15 workers were used instead of 16, but those runs
are considered replacements for the 16-worker runs and are
thus grouped as such.

77

8. E 

result that the startup time of aMapReduce job is about ten seconds [Pav+09;
Xin+12]. This lower bound is arguably Hive’s main weakness in interactive
use. Satisfyingly, Shark managed to complete many queries in as little as
one second, and Impala often reached the half-second mark.

For the most part, all three frameworks achieved decent speedups with
increasing worker node counts on the longer-running queries. The more
quickly finishing queries reached the 10 s lower limit in Hive and a seeming
0.5 s lower limit in Impala already at the two worker node mark, and so
did not speed up similarly well overall. With Impala’s extremely fast speed,
however, this can hardly be considered an issue. Shark seemed to achieve
speedups in the faster queries all the way up to the maximum of 31 worker
nodes used, although the returns diminished rapidly after eight worker
nodes.

The stability issue affecting Impala in RCFile processing, described in
Section 7.3, clearly also had an effect on the runtimes even when crashes
did not occur. Figure 8.3 shows the runtimes of only the queries run on the
bam table by Impala, with the different storage formats used for the table
separated for comparison. Therein all the queries seem to speed up quite
naturally between one and two worker node clusters. However, the RCFile
runtimes were chaotic when four or eight worker nodes were used, with
several queries being much slower than even with just one worker node.
The crashing issue only affected those two slave node counts. But there
also appear to have been other issues with Impala’s RCFile implementation,
given the poor and often negative speedup observed between 2 and 15 or
even 31 workers.

As is most evident in Figure 8.1, Hive tended to have the longest-running
queries until the 16-slave mark, after which point Impala definitely failed
to keep up. This analysis is muddled by Impala’s RCFile processing issue
causing great slowdowns after the two worker node mark; were it not for
that issue, it could likely be conclusively stated that Hive was the slowest
of the frameworks.

Overviews by storage format

Hive has the widest level of format support of the frameworks benchmarked,
enabling the rich set of storage format comparisons presented in Figures 8.4
to 8.7. Figures 8.4 and 8.5 exhibit the queries run by Hive on the bam
table with linear and logarithmic scales respectively, while Figures 8.6
and 8.7 latter portray those run on the results table, also with linear and
logarithmic scales respectively. Note that the results of running the BED

78

8.2. Query performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8 15 31

Ti
m
e
(s
)

Worker count

Impala, RCFile, gzip
Impala, RCFile, Snappy
Impala, Parquet, Snappy

Figure 8.3: The runtime of each query run by Impala on the bam table.
The data is shown on a linear scale compared to the amount of
worker nodes available, with the data points separated by the
storage format of the bam table.

JOIN statement, which is affected by the format of both tables, are included
in all four Figures.

From Figures 8.4 and 8.5 it can be seen that BAM did not perform
particularly poorly. While not allowing for the fastest runtimes, it was
also not the slowest of the formats. Among these results, the runtime
differences between the BAM and gzip-compressed RCFile formats appear
to largely follow the differences in the corresponding data sets’ sizes, with
gzip-compressed RCFile tending to have been about 25% faster, just as
it was smaller—recall Table 8.1. Apart from the BED join (mostly clearly
visible in each Figure as a separate set of slower points at any worker
count), Snappy-compressed RCFile was similarly about 40% slower than

79

8. E 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Hive, BAM
Hive, RCFile, gzip
Hive, RCFile, Snappy
Hive, ORC, DEFLATE
Hive, ORC, Snappy

Figure 8.4: The runtime of each query run by Hive on the bam table. The
data is shown on a linear scale compared to the amount of
worker nodes available, with the data points separated by the
storage format of the bam table.

80

8.2. Query performance

9000

0.1

1

10

100

1000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Hive, BAM
Hive, RCFile, gzip
Hive, RCFile, Snappy
Hive, ORC, DEFLATE
Hive, ORC, Snappy

Figure 8.5: The runtime of each query run by Hive on the bam table. The
data is shown on a logarithmic scale compared to the amount
of worker nodes available, with the data points separated by
the storage format of the bam table.

81

8. E 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Hive, RCFile, gzip
Hive, RCFile, Snappy
Hive, ORC, DEFLATE
Hive, ORC, Snappy

Figure 8.6: The runtime of each query run by Hive on the results table.
The data is shown on a linear scale compared to the amount of
worker nodes available, with the data points separated by the
storage format of the results table.

82

8.2. Query performance

9000

0.1

1

10

100

1000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Hive, RCFile, gzip
Hive, RCFile, Snappy
Hive, ORC, DEFLATE
Hive, ORC, Snappy

Figure 8.7: The runtime of each query run by Hive on the results table.
The data is shown on a logarithmic scale compared to the
amount of worker nodes available, with the data points separ-
ated by the storage format of the results table.

83

8. E 

BAM. However, the BAM runs seemed to suffer from diminishing returns
after 16 worker nodes, bringing the Snappy-compressed RCFile format
approximately even with BAM in the end.

These results are likely to be partially due to the very CPU-heavy
worker nodes used. Compared to Cloudera’s recommendations for Ha-
doop clusters [ODe13], the worker nodes used in this experiment were
laughably disk-light, having only two hard disk drives for twelve CPU
cores. Even for a ‘Compute Intensive Configuration’ in which disks are of
lesser importance, Cloudera suggests four to eight disk drives for twelve
CPU cores. This explains why the DEFLATE-compressed formats were very
competitive with, and often better than, Snappy-compressed formats: the
CPUs were waiting on I/O so much that the more computationally inten-
sive compression could be performed with no trouble.

Also visible in Figures 8.4 and 8.5 is that ORC continued to perform
poorly. Not only were its data sizes unexpectedly large, but its query
runtime performance was also sub-par. ORC was never the fastest format
here, although it sometimes was the slowest. Its greater data set size
partially explains this phenomenon, but not completely: at the 16 and 31
worker node marks, BAM produces noticeably faster runtimes than ORC,
despite only an approximately 6% difference in their data set sizes.

In Figures 8.6 and 8.7 it can be seen that with this far smaller data set in
Hive, the different storage formats are practically equivalent in performance.
Still, the inferiority of ORC is evident. It is especially pronounced with the
data points corresponding to the BED join, which are visible in Figure 8.6
as the clearly slower set of points for each worker node count. This shows
that ORC seems to be simply poorly optimized all around, as it was the
slowest both for reading (all queries in Figures 8.4 and 8.5) and writing
(most queries in Figures 8.6 and 8.7), and it used noticeably more space to
store the data set than the other formats (referring to Table 8.1).

A closer look at speedups
Excluding Impala’s RCFile issue, each framework demonstrated impeccable
speedups on the relatively long-running bam table queries. Even for Impala,
this can be seen in Figure 8.3 with Parquet, though most of the queries
were extremely fast with Parquet to begin with. For Hive, this is clearly
visible in Figures 8.4 and 8.5. Shark provided equally obvious successes in
this respect, as displayed in Figures 8.9 and 8.10.

With the small results table and the resultingly quite fast queries,
the speedups following the BED join were not as impressive. Many im-
provements still took place, but the timings tended to plateau with already

84

8.2. Query performance

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Hive, RCFile, gzip
Hive, RCFile, Snappy
Hive, ORC, DEFLATE
Hive, ORC, Snappy

Figure 8.8: The Hive runtimes of the queries following the BED join. The
data is shown on a linear scale compared to the amount of
worker nodes available, with the data points separated by the
storage format of the results table.

a few worker nodes. For Hive, these results are best visible in Figure 8.8,
which contains the same data points as Figures 8.6 and 8.7, but excluding
the BED join times. After four or more slaves were used, most of the results
no longer changed significantly. At 16 workers, the previously noticeably
slower queries fell into the sub-four-minute range along with the rest, and
at 31 workers, the timings tended to only worsen.

Shark achieved speedups very similar to Hive in the queries following
the BED join, as shown in Figure 8.11. The main difference is that in Shark’s
case most of the speedup was achieved already at the two-worker mark,
owing to the slowness of the very first query (counting the size of the

85

8. E 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Shark, BAM
Shark, RCFile, gzip
Shark, RCFile, Snappy

Figure 8.9: The runtime of each query run by Shark on the bam table. The
data is shown on a linear scale compared to the amount of
worker nodes available, with the data points separated by the
storage format of the bam table.

BED join) when only one slave node was available. As the number of
worker nodes was increased, Shark demonstrated mostly gradual speedups
throughout, with the biggest gap once again between 8 and 16 workers,
and the difference between 16 and 31 being negligible. (Recall that all
these timings may be slightly perturbed by the fact that they were timed
separately using Hive’s BED join output.)

Impala was extremely solid with the short results table queries. Their
runtimes in Impala are displayed in Figure 8.12. The queries sped up cleanly
up to 15 worker nodes. Most were even faster with 31 worker nodes, making
Impala the only framework that managed to scale to the largest tested
cluster size even with a very small amount of data. However, the JOIN

86

8.2. Query performance

9000

0.1

1

10

100

1000

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Shark, BAM
Shark, RCFile, gzip
Shark, RCFile, Snappy

Figure 8.10: The runtime of each query run by Shark on the bam table. The
data is shown on a logarithmic scale compared to the amount
of worker nodes available, with the data points separated by
the storage format of the bam table.

query selecting ‘high-quality’ reads mysteriously slowed down between 15
and 31 worker nodes, falling to a speed only slightly faster than when four
slaves were used. This suggests that the benchmarked version of Impala
suffers from an inefficiency in its join implementation which may only
become evident in sufficiently large clusters.

Detailed comparisons
A comparison between gzip-compressed and Snappy-compressed RCFile
that goes intomore detail than the Figures seen thus far is shown in Table 8.2.
The numbers in the Table are ratios between the median runtimes of the cor-

87

8. E 

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16 31

Ti
m
e
(s
)

Worker count

Shark, RCFile, gzip

Figure 8.11: The Shark runtimes of the queries following the BED join.
The data is shown on a linear scale compared to the amount
of worker nodes available. The results table was always
stored in gzip-compressed RCFile format. Recall that these
timings were conducted separately, with the BED join result
of Hive.

responding Hive-run query in each storage format and with the respective
worker node count. All ratios are shown as percentages: values below 100
indicate that the query ran faster with gzip than with Snappy compression.

Table 8.2 demonstrates how much the type of workload can affect
the optimal compressor choice. The queries operating solely on the bam
table were significantly faster with gzip than with Snappy. This can be
attributed to their read-only nature coupled with the previously mentioned
relative excess of CPU power in the worker nodes: decompressing gzip
was sufficiently fast that having to wait less for the local disks to provide the
data set made all the difference. Referring to Table 8.1, it can be calculated

88

8.2. Query performance

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 15 31

Ti
m
e
(s
)

Worker count

Impala, Parquet, Snappy

Figure 8.12: The Impala runtimes of the queries after the BED join. The
data is shown on a linear scale compared to the amount
of worker nodes available. The results table was always
stored in Snappy-compressed Parquet format. Recall that
the single-worker results were run separately, starting from
Hive’s BED join output.

that the size of the gzip-compressed data set was about 52.2% of the size
of the Snappy-compressed data set, matching very closely with the mean
speedup of gzip over Snappy in the queries on the full data set. With 8
and 16 worker nodes even noticeably higher speedups were achieved. One
possible explanation for this improvement is that eight slave nodes was the
earliest point at which the gzip-compressed data set could fit fully in the
nodes’ collective memory. Then, with 31 workers, the greater amount of
disk drives relative to the data set size allowed Snappy to catch up.

Similar behaviour can be seen in the queries following the BED join:
those that did notwrite to the results table—the counts and the jointmean

89

8. E 

Workers 1 2 4 8 16 31 mean

Median runtime ratio (%)

Count all 54 46 50 41 31 87 51
Count mapped 55 47 52 34 39 82 51
Count QC-passed 55 47 52 37 37 86 52
Count unique 54 47 51 34 31 80 49
rname histogram 55 48 52 37 34 89 52
mapq histogram 54 48 53 36 36 81 51
BED join 102 107 102 98 116 137 112
Count remaining 26 64 83 67 93 85 70
mapq join 148 182 187 181 165 145 168
Count remaining 25 45 93 75 86 86 68
mapq filter 330 259 445 477 523 501 423
Count remaining 69 74 93 86 86 86 82
10-length filter 364 287 461 482 590 548 455
Count remaining 69 70 75 86 86 92 80
50-length filter 376 290 493 539 594 616 485
Count remaining 64 70 93 92 86 86 82
Mean and stddev 63 84 87 89 93 91 85

Table 8.2: Ratios between the median runtimes of each query with the
gzip-compressed and Snappy-compressed RCFile formats, in
Hive. Each number is a percentage, so values below 100 indicate
that using gzip was faster.

and standard deviation query—were faster with gzip, while those that did
write to it were faster with Snappy. As the data set here was small enough to
fit in the main memory of even one worker node even when uncompressed,
the comparison is dominated by the speeds of the compressors. The speed
advantage of Snappy over gzip is clearly evident in the results for the
three simple filtering statements, with six-fold speedups being reached in
many cases. This matches with what Snappy’s own documentation states
about its speed: ‘compared to the fastest mode of zlib, Snappy is an order
of magnitude faster for most inputs’ [Sna].

For the two join statements, the results displayed in Table 8.2 are more
equal. Snappy held a distinct advantage with the reduced data set of the
second join, but sometimes even fell slightly behind gzip in the BED
join. Observing Hive’s runtime strategy explains these results: Hive used
two MapReduce jobs to compute the result of each of the two joins, thus

90

8.2. Query performance

writing significant amounts of temporary data to disk in order to facilitate
communication between the jobs. Therefore the joins involved both much
writing and much reading. In the case of the BED join, the overwhelming
difference in the size of the bam table between the two compressors means
that despite its superiority in writes, Snappy could mostly only barely keep
up with gzip due to causing so much more data to be read from disk.
Naturally, as the amount of disk drives was increased, the size advantage
of gzip diminished and Snappy pulled ahead. In the later join, this was
realized from the start, as the data set was quite small to begin with, and so
Snappy was clearly in the lead throughout. In addition, while this result
has not been tabulated, it was found that when performing the BED join
with differently compressed bam and results tables, the timings ranked
as one would expect from Table 8.2: reading gzip and writing Snappy gave
rise to the predominantly best speeds.

Table 8.3 provides a detailed comparison of Hive runtimes in the BAM
and gzip-compressed RCFile formats. Since no write support was available
for BAM, only the queries operating on the bam table are included, and the
output format for the BED join was gzip-compressed RCFile in both cases.
Values below 100 indicate that using BAM was faster than using RCFile.

Workers 1 2 4 8 16 31 mean

Median runtime ratio (%)

Count all 130 132 149 190 154 93 141
Count mapped 125 125 143 195 130 108 138
Count QC-passed 125 125 144 193 126 104 136
Count unique 125 125 145 212 126 112 141
rname histogram 127 126 144 199 126 86 135
mapq histogram 120 121 138 202 116 91 131
BED join 119 119 116 116 98 86 109

Table 8.3: Ratios between the median runtimes of each query with the
BAM and gzip-compressed RCFile formats, in Hive. For the
BED join, the output format was gzip-compressed RCFile. Each
number is a percentage, so values below 100 indicate that using
BAM was faster.

It is clear from Table 8.3 that BAM was almost always at a disadvantage
to gzip-compressed RCFile. However, as the number of worker nodes was
increased, the performance of BAM approached and sometimes even sur-
passed that of the RCFile format. The differences were small, and mostly

91

8. E 

Workers 1 2 4 8 16 31 mean

Median runtime ratio (%)

Count all 49 60 59 48 20 33 45
Count mapped 60 66 70 43 21 24 47
Count QC-passed 61 66 72 48 21 26 49
Count unique 61 66 74 45 22 27 49
rname histogram 60 65 74 52 26 40 53
mapq histogram 62 68 75 52 29 33 53
BED join 86 91 91 91 83 79 87
Count remaining 31 50 54 52 65 67 53
mapq join 52 63 66 70 77 83 69
Count remaining 33 43 50 55 60 67 51
mapq filter 61 28 57 63 84 72 61
Count remaining 28 47 52 60 63 55 51
10-length filter 67 34 65 67 85 56 62
Count remaining 33 47 46 60 67 55 51
50-length filter 68 34 65 61 82 54 61
Count remaining 29 45 52 60 67 55 51
Mean and stddev 39 57 64 69 77 64 62

Table 8.4: Ratios between the median runtimes of each query with
the gzip-compressed RCFile and DEFLATE-compressed ORC
formats, in Hive. Each number is a percentage, so values below
100 indicate that using RCFile was faster.

due to the RCFile runs hitting some sort of limit between 16 and 31 worker
nodes: BAM managed to speed up a bit more than RCFile at that stage.
Unfortunately SequenceFiles were not included in the benchmarks—a com-
parison to them may have clarified whether this kind of trend is a feature
of BAM or of row-oriented formats in general. Regardless, the 16-slave
performance of gzip-compressed RCFile was so close to the 31-slave per-
formances of both formats that it is fair to say that RCFile was the overall
winner here, even if BAM managed to eke out slightly faster runtimes in
the end.

In order to examine just how badly ORC performs compared to RCFile,
Table 8.4 compares gzip-compressed RCFile to DEFLATE-compressed ORC
and Table 8.5 compares Snappy-compressed RCFile to Snappy-compressed
ORC. As previously, the numbers are based on the query runtimes of Hive.
In both Tables, values below 100 signify that using RCFile was faster.

92

8.2. Query performance

Workers 1 2 4 8 16 31 mean

Median runtime ratio (%)

Count all 68 86 82 73 57 29 66
Count mapped 73 90 83 82 42 27 66
Count QC-passed 73 90 85 84 45 29 68
Count unique 74 90 84 83 50 30 69
rname histogram 72 89 86 84 54 39 71
mapq histogram 76 93 85 84 57 41 73
BED join 82 87 92 83 74 57 79
Count remaining 80 90 70 75 78 83 79
mapq join 67 63 57 50 74 66 63
Count remaining 79 103 63 46 83 78 75
mapq filter 29 44 32 38 48 51 40
Count remaining 34 68 59 61 78 74 62
10-length filter 31 49 34 50 45 48 43
Count remaining 33 72 67 54 83 72 64
50-length filter 30 49 35 40 43 42 40
Count remaining 36 77 59 62 83 74 65
Mean and stddev 50 77 76 87 86 83 77

Table 8.5: Ratios between the median runtimes of each query with the
RCFile and ORC formats in Hive, using Snappy compression
with both formats. Each number is a percentage, so values below
100 indicate that using RCFile was faster.

The contents of Tables 8.4 and 8.5 once again clearly show that ORC was
slower than RCFile in all operations. Per-query trends are not completely
obvious, but there seem to be two overall progressions: with the pre-join
queries concerning the bam table, ORC tended to slow down relatively
to RCFile as more workers are added, whereas with the post-join queries
operating only on the results table, ORC instead tended to catch up to
RCFile. The latter can likely be explained with the limited room for speedup
available to RCFile, given Hive’s MapReduce-imposed ten-second lower
bound on query runtimes. Many of the queries complete in times very near
to that limit with as few as two worker nodes with RCFile, while ORC lags
at least another ten seconds behind. It is unsurprising, then, that the gaps
between the two formats’ timings tended to narrow with the small data set.

With the bam table, the greatest speedups seemed to be realized near
the worker counts at which the data set could fit into the collective main

93

8. E 

memory of the nodes in only one format, as was the case when comparing
gzip to Snappy in Table 8.2. Here in Tables 8.4 and 8.5, however, that is
not a sufficient explanation, as the speedups continued to improve even
when the ORC data set should also have fit entirely into memory. With the
DEFLATE compressors, ORC at least catches up somewhat at the 31-worker
mark, but otherwise it only slows down compared to RCFile as more nodes
are available. All these ORC-related results suggest some kind of funda-
mental implementation issue: such poor performance is unnatural.

In Table 8.6, the runtimes of Impala and Shark, with both using the
gzip-compressed RCFile format, are compared. Since Shark could only
output gzip-compressed RCFile and Impala could only output Snappy-
compressed Parquet, only the queries depending on the input-only bam
table, i.e. those prior to and including the BED join, are included. Values
below 100 denote that Impala was faster.

Workers 1 2 4 8 16* 31 mean

Median runtime ratio (%)

Count all 70 80 426 1011 1595 1426 772
Count mapped 70 78 493 389 3556 3886 1373
Count QC-passed 70 80 499 401 2033 4319 1264
Count unique 70 78 636 318 1892 4993 1328
rname histogram 68 76 93 33 156 175 109
mapq histogram 69 76 102 60 185 1141 314
BED join N/A† 116 114 123 131 333 216

Table 8.6: Ratios between the median runtimes of the queries on the bam
table in Impala and Shark, both with the gzip-compressed
RCFile format. Each number is a percentage, so values below
100 indicate that Impala was faster.
*For Impala, 15 workers were used instead of 16.
†Impala was unable to run the JOIN statement with only a
single worker.

Table 8.6 illustrates Impala’s RCFile issues once again: with only one or
two worker nodes, Impala was solidly faster than Shark. However, beyond
that point, the performance numbers fluctuated erratically. Even using the
medians to somewhat curb the variance does not hide this behaviour, and
for most queries the performance of Impala was simply poor with more
than two slaves. The more complex queries seemed to behave better, but
all suffered dramatic slowdowns by the 15 or 31 worker node marks.

94

8.2. Query performance

The only results in Table 8.6 that seem to have no unexpected issues
are the ones where the runs were performed with one or two workers.
Unfortunately it makes little sense to discuss trends with only two data
points per query: e.g. while it seems that Shark slightly caught up to
Impala when the cluster size was increased, it is impossible to determine
whether such behaviour would have continued without Impala’s RCFile
issue. If Impala’s best-case results with eight worker nodes would have
been consistent, that trend would have reversed for at least some of the
queries. The BED join results are also, despite their greater stability, able to
clarify little, since the fact that Shark computed an incorrect result makes
its timings barely comparable to Impala’s. Impala’s inability to compute
the join in the case of one worker node also complicates the analysis.

To approximate how Impala’s performance might compare to Shark
if the results were not plagued by the mysterious RCFile bug, Table 8.7
displays the simple case where Impala uses Snappy-compressed Parquet
throughout and Shark uses gzip-compressed RCFile throughout. Of course,
the Table may most aptly constitute a comparison of Parquet to RCFile:
based on the available data it is impossible to know howmuch of the relative
performance is due to the frameworks, as opposed to the different file
formats. As such, the precise values in the Table are not as meaningful as
in the previous comparisons. One can still, though, observe the differences
between the values to see how different queries or worker node counts
affect the relative runtimes.

The BED join numbers in Table 8.7 are mostly meaningless, as they
are in Table 8.6. Shark computed an incorrect zero-length result and so
it is hardly surprising that it was faster than even the otherwise clearly
victorious Impala. In addition, Impala could not perform the join at all with
only one worker node.

The bam table queries completed ridiculously fast with Parquet, as also
seen previously in Figure 8.3. Even with only one worker node, Impala
finished each one in less than a minute. Table 8.7 re-iterates just how great
a difference this is: Impala was often about 200 times as fast as Shark.
Parquet’s extensive built-in metadata clearly allow the kinds of simple
filters and groupings represented by the queries on the bam table to be
completed without requiring more than a small fraction of the whole data
set: fully scanning the 452.4 TiB data set in one minute would have required
nearly 65 Gbps of throughput, a value well beyond even the theoretical
maximum of the network used.

Table 8.7 shows that in general, Shark sped up much more between the
one and two worker node marks than did Impala, as was also visible in
Table 8.6. The only cases where this trend was not present were the bam

95

8. E 

Workers 1 2 4 8 16* 31 mean

Median runtime ratio (%)

Count all 2.1 1.3 4.0 5.1 13.1 7.2 5.5
Count mapped 2.3 1.6 3.3 3.6 15.0 6.4 5.4
Count QC-passed 0.5 0.6 0.7 0.9 2.6 3.3 1.4
Count unique 0.5 0.6 0.7 0.9 2.3 3.4 1.4
rname histogram 2.4 1.9 1.9 2.3 8.3 4.8 3.6
mapq histogram 1.3 1.3 1.4 2.3 6.5 4.5 2.9
BED join N/A† 146.3 208.8 269.3 259.8 115.0 199.8
Count remaining 11.7 18.3 18.1 24.8 32.6 34.4 23.3
mapq join 10.6 28.6 19.1 15.5 6.8 20.3 16.8
Count remaining 1.4 19.9 24.8 34.3 13.4 54.8 24.8
mapq filter 66.4 90.5 80.8 84.0 62.1 48.5 72.1
Count remaining 12.1 20.9 24.9 25.1 31.9 54.1 28.2
10-length filter 65.6 91.7 82.2 74.0 48.4 35.7 66.3
Count remaining 14.1 21.2 30.6 44.4 48.2 57.0 35.9
50-length filter 65.9 79.9 82.9 80.4 63.5 51.6 70.7
Count remaining 14.7 23.6 24.9 33.4 17.2 59.3 28.9
Mean and stddev 4.7 5.0 3.1 2.3 1.7 1.7 3.1

Table 8.7: Ratios between themedian runtimes of each query in Impala and
Shark, using Snappy-compressed Parquet and gzip-compressed
RCFile respectively. Each number is a percentage, so values
below 100 indicate that Impala was faster. Since quite small
numbers are involved, an additional decimal is used.
*For Impala, 15 workers were used instead of 16.
†Impala was unable to run the JOIN statement with only a single
worker. Thus the single-worker timings for the later queries
were obtained separately, using Hive’s join result.

96

8.2. Query performance

table queries with Parquet. Of course this may be due to how much room
for speedup there was: the queries run on results were already initially
so fast in Impala that keeping such a lead on Shark may be a completely
unrealistic proposition.

Lastly, Table 8.7 shows the power of Impala’s LLVM-based code genera-
tion. While Impala was typically 2–4 times as fast as Shark in the results
table queries, the last query run, which computes the mean and standard
deviation, was completed 20–50 times as quickly by Impala as by Shark.
Clearly, as soon as some nontrivial arithmetic is involved, Impala is far
ahead of its competition.

97

C 9
Conclusions

The most merciful thing in the world, I think,
is the inability of the human mind to correlate
all its contents.

Francis Wayland Thurston
‘The Call of Cthulhu’

H. P. L [Lov28]

This Thesis discussed interactive analysis of sequencing data using SQL-
based frameworks designed for working with Big Data. The results of the
experiments show that the emergence of frameworks made with interac-
tivity in mind is a boon for exploratory analysts. The difference in response
time between Hive, which lacks such considerations, and both Shark and
Impala is, in the best case, immense. The ten-second lower bound on the
runtime of MapReduce jobs [Pav+09; Xin+12] makes Hive practically un-
suitable for interactive use. Furthermore, storing one’s data set in an appro-
priate storage format, designed to have these frameworks operate at their
highest effectiveness, can make an even greater difference to just using
Hive with a ‘default’ format such as BAM. New advanced columnar formats
such as Parquet are especially promising in this regard.

Regrettably, there was not enough time to investigate the effect of vari-
ous features that may have tipped the scales in Hive’s favour. For example,
Hive’s indexes are utilized by neither Shark [ShC] nor Impala [ImQ], and
therefore might have noticeably narrowed the performance gap between
Hive and the others. In addition, while table and column statistics are
supported by both Hive and Impala and while partitioned tables are sup-
ported by all three frameworks benchmarked, the improvements resulting
from these may apply more significantly to Hive than the others, since

99

9. C

Hive’s longer runtimes give it more room for improvement. Thus, it may be
possible to create a setup in which Hive performs far more reasonably for
interactive use than in these experiments. However, the ten-second lower
bound on MapReduce job runtime remains unconquerable with modifica-
tions such as these. In order for Hive to be able to compete with Shark and
Impala, the use of MapReduce must be limited by turning to alternative
computational backends such as Tez [Mur+13; TeH; Tez].

All benchmarked frameworks sped up very well on long-running que-
ries on the large data set all the way up to the largest cluster size tested,
with 31 worker nodes. When it came to more interactive queries, however,
improvements after adding more than a few worker nodes were scant. In
part this is understandable and acceptable, as runtimes approaching the
single-second mark are at the point where noticeable improvements are
both difficult to achieve and not particularly necessary. In the case of Hive,
it is understandable due to the previously mentioned limitations of Map-
Reduce, but still makes for a disappointing comparison with Shark and
especially Impala, both of which were able to push runtimes much lower
than that.

Unimplemented features and bugs in the tested versions of the frame-
works (Hive 0.11, Shark 0.7, and Impala 1.0.1) prevented many interesting
benchmarks from being performed. While several have been fixed in new
releases made since then [HIV10; ImB13; ImF; SHA13], others remain un-
attended to [ImL; ImQ; ImU; SHA12]. Particularly Shark and Impala exhib-
ited many limitations and caused many re-runs due to crashes. As such it
must be concluded that if one is not prepared to deal with any unexpected
issues, one should stick to the very stable Hive framework.

The BAM format was, for the most part, not the optimal choice, as was
to be expected. The columnar formats (apart from ORC as discussed below),
with their optimizations for distributed processing, naturally perform better
at what they were designed for. While it seems to be possible to use a large
enough cluster to overcome the limitations of BAM, that is simply ineffi-
cient use of resources. The resulting wins are hardly worth the expenditure:
a columnar format can perform almost as well with far fewer nodes. Un-
fortunately time constraints prevented a comparison to SequenceFiles that
would have clarified whether other row-oriented formats perform similarly
to BAM. In all, it seems that despite its own optimizations, BAM is not the
best choice for Big Data sets of sequencing data, regardless of use case. For
solely archival purposes, even the simple alternative of gzip-compressed
SAM would be better, as the resulting file size tends to be smaller—not only
is compressed SAM slightly smaller than BAM, but gzip gives about 8%
smaller compressed sizes than BGZF. Whether this translates to also mak-

100

ing SAM preferable for computational purposes remains unknown, so BAM
can be thought of as a reasonable trade-off. Nevertheless, both RCFile and
Parquet performed better on average, and a standardized file format based
on either of these would be a viable and more efficient replacement for
BAM.

Among the columnar formats, RCFile had the smallest size out of both
the DEFLATE-compressed and Snappy-compressed files. It also offered
respectable runtimes for the queries benchmarked, making it a very good
choice for any use case.

Impala’s results showed, however, that Parquet is far ahead of RCFile in
query performance. Of course the specific queries discussed will affect this
conclusion somewhat, but Parquet is well optimized for several common
types of filters and statistics and will likely continue to perform better than
RCFile in any real-world workload. The issue affecting Impala’s RCFile per-
formance, while somewhatmuddying the results, is unlikely to have affected
the trends so much as to weaken this conclusion. The difference in data
set size between the Snappy-compressed RCFile and Snappy-compressed
Parquet formats suggests that Parquet’s size will be at worst only slightly
larger than that of RCFile regardless of the compressor. Overall, Parquet
seems to be the best choice for any use case except those in which data set
size is of paramount importance.

ORC performed extremely poorly compared to both RCFile and Parquet.
The size of the data set in ORC was the largest among all the formats, and
query performance was even slower than could be explained by the size
disparity alone. Perhaps future advancements in the Stinger Initiative [StI]
will make ORC more competitive with the other formats. Until then, based
on the results obtained here, ORC cannot be recommended for sequencing
data—a conclusion that unexpectedly contradicts previous comparisons of
ORC to RCFile [OMa13].

Aside from the file formats, the choice of compressor was also found
to be an important factor in query performance. Naturally this was the
case with the large data set, in which the difference between the DEFLATE-
compressed and the Snappy-compressed size was over 200 GiB, but the
choice was found to have significant effects even on queries run on the
much smaller reduced data set. In a hardware environment more suited
for Hadoop (constructible e.g. by following the Cloudera recommenda-
tions [ODe13]) than the CPU-heavy cluster used for benchmarking in
this Thesis, the query runtimes would likely have been even more strongly
affected, potentially giving an edge to Snappy.

All in all, it appears that withmodern tools and reasonably large clusters,
interactive exploratory analysis of Big sequencing data is currently vi-

101

9. C

able. Of course more complicated analyses, involving far costlier oper-
ations than benchmarked here, such as joining multiple large BAM files
together, are also possible and of interest to bioinformaticians. For such
workloads, running at interactive speeds is likely to require optimizing the
existing solutions further, if not creating entirely new solutions. Thank-
fully, there is plenty of room for improvement in all of Hive, Shark, and
Impala as well as in the newer file formats, Parquet and ORC, and all are
in active development. Other solutions based on SQL-on-Hadoop which
were not evaluated in this work, such as Presto [Pre; Tra13], Tez, and the
unconventional BlinkDB [Aga+12; Aga+13; BDB], are also promising. In
addition, the fault tolerance issue in large clusters appears to have been
kept well in mind, with nearly all frameworks having a solution of some
kind. The future seems to bode well for all kinds of interactive Big Data
computations.

On the other hand, Big Data is only growing bigger. Whether this proves
to be an insurmountable issue regarding interactive analysis remains to
be seen. For now, assuming that at least one of the tested frameworks
can continue scaling to more nodes as effectively as in these experiments,
warehouse-scale computers should be able to handle any current sequencing
data set. There are now a large number of SQL-on-Hadoop-based query
engines designed for interactive analysis of Big Data sets: it remains to be
seen which one of them will see widespread adoption.

102

A A
Experimental configuration

A short listing of the most important settings used during the experiments
presented in Chapter 7 was presented in Section 7.5. In this Appendix,
almost every individual setting is shown, including ones set in configuration
files, those given as command line parameters, and relevant environment
variables. The only settings not listed here are those specifying highly
environment-specific information such as network host names and ports,
paths to software components and configuration directories, usernames
and passwords, etc.

Since the XML (Extensible Markup Language) [Bra+08] format used for
much of the configuration is rather verbose, the settings are not displayed
in their precise original format, but instead as simple name-value pairs.
Still, some names are long enough to require line wrapping. Instead of
hyphenation, which could cause confusion regarding whether the hyphen
is part of the name or not, such line wraps are indicated with an ellipsis
after the line break.

A.1 Hadoop
Tables A.1 and A.2 list the settings from two main Hadoop XML files:
core-site.xml and hdfs-site.xml, respectively.

For security reasons, dfs.domain.socket.path, shown in Table A.2,
was not allowed to be on the local file system nor in the global temporary
data directory (/tmp)—those choices were rejected programmatically. The
only alternatives were the user’s home directory, which resided on an
NFS (Network File System), or the user’s private directory on the Lustre file
system. While the end result of placing a domain socket on a network file

103

A. E 

Name Value

io.sort.mb 1280
fs.inmemory.size.mb 1280
io.sort.factor 100
io.file.buffer.size 65536
hadoop.tmp.dir a directory on the local file system
io.compression.codecs added org.apache.hadoop.io.

⋯compress.SnappyCodec

Table A.1: Hadoop settings given in core-site.xml.

Name Value

dfs.client.file-block-
⋯storage-locations.
⋯timeout

3000

dfs.client.read.shortcir-
cuit

true

dfs.datanode.hdfs-blocks-
⋯metadata.enabled

true

dfs.namenode.hand-
ler.count

32

dfs.replication max(3, ⌊n/2⌋)where nwas the num-
ber of slave nodes

dfs.domain.socket.path a directory on the Lustre file system
dfs.data.dir a directory on the local file system

Table A.2: HDFS settings given in hdfs-site.xml.

system may seem curious, the performance impact should be negligible as
the file system itself is not involved when communicating over the socket.

The remainingHadoop configuration file settings are shown in Table A.3,
while Table A.4 lists the used Hadoop-affecting environment variables.

Additionally, the command ulimit -u 4096 was used to increase
the maximum number of running processes allowed for the user. This was
required for Impala, as it sometimes caused the HDFS datanode processes
to reach the default limit of 1024.

104

A.2. Hive

Name Value

mapred.tasktracker.map.
⋯tasks.maximum

12

mapred.tasktracker.
⋯reduce.tasks.maximum

6

mapred.job.tracker.
⋯handler.count

32

mapred.child.java.opts -Xmx3072m
mapred.compress.map.out-
put

true

mapred.map.output.
⋯compression.codec

org.apache.hadoop.io.
⋯compress.SnappyCodec

Table A.3: Hadoop MapReduce settings given in mapred-site.xml.

Name Value

HADOOP_HEAPSIZE 2048
HADOOP_NICENESS 0
HADOOP_PID_DIR a directory on the local file system
HADOOP_LOG_DIR a directory on the Lustre file system

Table A.4: The relevant environment variables for Hadoop.

A.2 Hive
Table A.5 lists the settings used for Hive, most of which were given in the
main hive-site.xml configuration file.

The Hive frontend processes were started with the -v option for addi-
tional verbosity.

A.3 Shark
Environment variables relevant to Shark are shown in Table A.6.

The SPARK_JAVA_OPTS environment variable was modified to include
the settings displayed in Table A.7 in addition to the defaults from the
provided shark-env.sh.template file.

All Spark workers were started with the -m 44G command line para-
meter, giving some extra memory for each worker as a whole beyond the

105

A. E 

Name Value

hive.exec.parallel true
hive.exec.compress.inter-
mediate

true

hive.merge.mapredfiles true
hive.stats.ndv.error 5.0
hive.exec.scratchdir a directory on the local file system
hive.querylog.location a directory on the Lustre file system
hive.log.dir a directory on the Lustre file system

Table A.5: Hive configuration variables.

Name Value

SHARK_MASTER_MEM 2g
SPARK_MEM 40G

Table A.6: Shark environment variables.

Name Value

spark.local.dir a directory on the local file system
spark.worker.timeout 30000
spark.akka.timeout 30000
spark.storage.
⋯blockManagerHeartBeatMs

30000

spark.akka.retry.wait 30000
spark.akka.frameSize 10000

Table A.7: Parameters given in SPARK_JAVA_OPTS.

per-task SPARK_MEM setting. The -d option was used to specify a scratch
space directory on the local file system.

For additional verbosity, -v was passed to the Shark frontend process.

A.4 Impala
The ulimit -u 4096 command was used before starting the impalad
processes, for reasons similar to its inclusion in the Hadoop settings.

106

A.4. Impala

Table A.8 shows the environment variable settings for Impala. Note
that they all concern only logging.

Name Value

IMPALA_LOG_DIR a directory on the Lustre file system
GLOG_v 1
GLOG_minloglevel 0
GLOG_stderrthreshold 0
GLOG_logtostderr 1

Table A.8: Impala environment variables, all concerning only logging.

As with Hive and Shark, additional verbosity was requested from the
Impala frontend process with the appropriate command line option, -V. In
addition, the -r option was used in place of the refresh command.

107

A B
HiveQL statements used

The HiveQL statements which were used in the experiments presented in
Chapter 7 are listed here. They are split up into three Sections in accordance
with the three groups explained in Section 7.4.

Each HiveQL Listing is accompanied by a marginal note demarcating
the frameworks with which the program code in the Listing was used. Only
the first letter of each framework’s name is used: H for Hive, S for Shark,
and I for Impala. Different code for different frameworks may be included
in one Listing, in which case the alternatives are separated with dotted
lines. Below is an example Listing.

Example Hive-only code. H
...
Example code used with Shark and Impala. SI

B.1 Table creation and settings
Table creation statements are shown only for the bam table. For all storage
formats used, the results table was always created identically to the
bam table in the same format, with only the name of the table differing.
Furthermore, the statements for each combination of input and output
formats are not listed in full: instead, only the individual statements from
which the combinations can trivially be reconstructed are shown.

The table schema was always the same, as shown in Listing B.1 below.

Listing B.1: HiveQL code describing the table schema.
qname STRING, flag SMALLINT, rname STRING, pos INT, HSI
mapq TINYINT, cigar STRING, rnext STRING, pnext INT,

109

B. HQL  

tlen INT, seq STRING, qual STRING, opts_char STRING,
opts_int STRING, opts_float STRING, opts_string STRING,
opts_arr_int8 STRING, opts_arr_int16 STRING,
opts_arr_int32 STRING, opts_arr_float STRING

For the sake of brevity, this set of columns is not repeated below. In its
stead, the marker columns is used.

Listing B.2: The HiveQL statement used to create the bam table in BAM
format.

CREATE TABLE bam ROW FORMAT SERDE "SAMSerDe" STORED AS HS
INPUTFORMAT "DeprecatedBAMInputFormat"
OUTPUTFORMAT "HiveKeyIgnoringBAMOutputFormat";

Note that due to the usage of a SerDe, the columns of Listing B.1 were not
given in the statement shown in Listing B.2: the SerDe itself defines the
schema.

Listing B.3: TheHiveQL statement creating the bam table in RCFile format.
CREATE TABLE bam (columns) STORED AS RCFILE; HSI

Listing B.4: HiveQL statements creating the bam table in ORC format,
showing both DEFLATE and Snappy compression.

CREATE TABLE bam (columns) STORED AS ORC H
TBLPROPERTIES ("orc.compress" = "ZLIB");

CREATE TABLE bam (columns) STORED AS ORC
TBLPROPERTIES ("orc.compress" = "SNAPPY");

Listing B.5: The HiveQL statement creating the bam table in Parquet
format.

CREATE TABLE bam (columns) STORED AS PARQUETFILE; I

Listing B.6: The HiveQL statement used to create the BED table.
CREATE TABLE bed HSI

(chrom STRING, chromStart INT, chromEnd INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

Listing B.7: The RCFile compression settings used with both compressors.
SET hive.exec.compress.output=true; HS

110

B.2. Queries on the full data set

SET mapred.max.split.size=256000000;
SET mapred.output.compression.type=BLOCK;

Listing B.8: The RCFile gzip compression setting.
SET mapred.output.compression.codec= HS

org.apache.hadoop.io.compress.GzipCodec;

Listing B.9: The RCFile Snappy compression setting.
SET mapred.output.compression.codec= H

org.apache.hadoop.io.compress.SnappyCodec;

Listing B.10: HiveQL code creating the tables and enabling the settings
that were used when separately benchmarking the post-BED
join exploratory queries on the results table in Shark.

CREATE TABLE orig (columns) STORED AS RCFILE; S
CREATE TABLE results (columns) STORED AS RCFILE;
SET hive.exec.compress.output=true;
SET mapred.max.split.size=256000000;
SET mapred.output.compression.type=BLOCK;
SET mapred.output.compression.codec=

org.apache.hadoop.io.compress.GzipCodec;

Listing B.11: HiveQL code creating the tables used when separately bench-
marking the post-BED join exploratory queries on the res-
ults table in Impala with one worker node.

CREATE TABLE orig (columns) STORED AS PARQUETFILE; I
CREATE TABLE results (columns) STORED AS PARQUETFILE;

B.2 Queries on the full data set

Listing B.12: The parallelism setting, which was in place also for the ex-
ploratory queries.

SET mapred.reduce.tasks = R; HS

Listing B.13: The initial counting statements on the full data set.
SELECT COUNT(*) AS total FROM bam; HSI

111

B. HQL  

SELECT COUNT(*) AS mapped FROM bam WHERE flag & 4 = 0;
SELECT COUNT(*) AS passedQC FROM bam

WHERE flag & 512 = 0;
SELECT COUNT(*) AS notDuplicate FROM bam

WHERE flag & 1024 = 0;

Listing B.14: The statements computing the two histograms, by name and
quality respectively.

SELECT rname, COUNT(*) FROM bam HS
GROUP BY rname ORDER BY rname;

SELECT PMOD(mapq,256) AS pmapq, COUNT(*) FROM bam
WHERE flag & (4 | 1024) = 0
GROUP BY mapq ORDER BY pmapq;

...
SELECT rname, COUNT(*) FROM bam I

GROUP BY rname ORDER BY rname LIMIT 100;

SELECT PMOD(mapq,256) AS pmapq, COUNT(*) FROM bam
WHERE flag & (4 | 1024) = 0
GROUP BY mapq ORDER BY pmapq LIMIT 256;

The full list of columns in the bam table is shown in Listing B.15. For
brevity, the bamColumns marker is used below instead of the full code.

Listing B.15: Code specifying the columns in the bam table.
bam.qname, bam.flag, bam.rname, bam.pos, bam.mapq, HSI
bam.cigar, bam.rnext, bam.pnext, bam.tlen, bam.seq,
bam.qual, bam.opts_char, bam.opts_int, bam.opts_float,
bam.opts_string, bam.opts_arr_int8, bam.opts_arr_int16,
bam.opts_arr_int32, bam.opts_arr_float

Listing B.16: The join with the BED table.
INSERT OVERWRITE TABLE results H

SELECT DISTINCT bamColumns
FROM bed JOIN (SELECT * FROM bam WHERE

flag & 4 = 0 AND seq <> "*") bam
ON bam.rname = bed.chrom

WHERE bam.pos <= bed.chromEnd
AND bam.pos + length(bam.seq) >= bed.chromStart;

112

B.3. Exploratory queries on the reduced data set

...
INSERT OVERWRITE TABLE results S

SELECT /*+ MAPJOIN(bed) */ DISTINCT bamColumns
FROM bed JOIN (SELECT * FROM bam WHERE

flag & 4 = 0 AND seq <> "*") bam
ON bam.rname = bed.chrom

WHERE bam.pos <= bed.chromEnd
AND bam.pos + length(bam.seq) >= bed.chromStart;

...
INSERT OVERWRITE TABLE results I

SELECT DISTINCT bamColumns
FROM (SELECT * FROM bam WHERE

flag & 4 = 0 AND seq <> "*") bam
JOIN bed ON bam.rname = bed.chrom

WHERE bam.pos <= bed.chromEnd
AND bam.pos + length(bam.seq) >= bed.chromStart;

As Shark was not able to compute the BED join correctly, the result from
Hive was used instead. An initial copy of the data was made in case of any
differences between Hive’s and Shark’s outputs, as shown in Listing B.17.
The same code was used for Impala’s single-worker runs due to the similar
problem with the BED join therein.

Listing B.17: The statement taking Hive’s separately computed BED join
result into use for the later exploratory queries.

INSERT OVERWRITE TABLE results SELECT * FROM orig; SI

Listing B.18: The query counting the size of the result of the BED join.
SELECT COUNT(*) FROM results; HSI

B.3 Exploratory queries on the reduced data
set

Listing B.19: The join used to select for highest mapping quality, and the
count computing the result’s size.

INSERT OVERWRITE TABLE results HS
SELECT results.*
FROM (SELECT pos, tlen, MAX(PMOD(mapq,256)) AS maxq

113

B. HQL  

FROM results
WHERE flag & 4 = 0 AND mapq <> -1
GROUP BY pos, tlen) tmp

JOIN results
ON results.pos = tmp.pos

AND results.tlen = tmp.tlen
WHERE PMOD(results.mapq,256) = tmp.maxq;

SELECT COUNT(*) FROM results;
...
INSERT OVERWRITE TABLE results I

SELECT results.*
FROM results JOIN

(SELECT pos, tlen, MAX(PMOD(mapq,256)) AS maxq
FROM results
WHERE flag & 4 = 0 AND mapq <> -1
GROUP BY pos, tlen) tmp

ON results.pos = tmp.pos
AND results.tlen = tmp.tlen

WHERE PMOD(results.mapq,256) = tmp.maxq;
SELECT COUNT(*) FROM results;

Listing B.20: The simple filters and the interspersed counts on the res-
ults table.

INSERT OVERWRITE TABLE results HSI
SELECT * FROM results

WHERE mapq <> -1 AND PMOD(mapq,256) >= 60;
SELECT COUNT(*) FROM results;
INSERT OVERWRITE TABLE results

SELECT * FROM results WHERE LENGTH(seq) >= 10;
SELECT COUNT(*) FROM results;
INSERT OVERWRITE TABLE results

SELECT * FROM results WHERE LENGTH(seq) >= 50;
SELECT COUNT(*) FROM results;

Listing B.21: The roundabout mean and standard deviation calculation.
SELECT AVG(tlen), H

SQRT(SUM(POW(tlen - mean, 2)) / (COUNT(*) - 1)) FROM
(SELECT AVG(tlen) AS mean FROM results) tmp
JOIN results;

...

114

B.3. Exploratory queries on the reduced data set

SELECT AVG(tlen), S
SQRT(SUM(POW(tlen - mean, 2)) / (COUNT(*) - 1)) FROM
results JOIN
(SELECT AVG(tlen) AS mean FROM results) tmp;

...
SELECT AVG(tlen), I

SQRT(SUM(POW(tlen - mean, 2)) / (COUNT(*) - 1)) FROM
(SELECT tlen, tlen-tlen as x FROM results) tmp
JOIN
(SELECT AVG(tlen) AS mean,

COUNT(tlen)-COUNT(tlen) as x
FROM results) tmp2
ON tmp.x = tmp2.x;

In Shark, the order of the tables in the join in Listing B.21 was found to
have no measurable effect on the runtime. The ordering shown was chosen
to differ from Hive’s purely due to whimsy.

115

Bibliography

[1kG] 1000 Genomes. A Deep Catalog of Human Genetic Variation.
: http://www.1000genomes.org.

[Aga+12] Sameer Agarwal, Aurojit Panda, Barzan Mozafari, Anand P.
Iyer, Samuel Madden, and Ion Stoica. “Blink and It’s Done:
InteractiveQueries on Very Large Data”. In: PVLDB 5.12 (2012),
pp. 1902–1905. : http://vldb.org/pvldb/vol5/p19
02_sameeragarwal_vldb2012.pdf.

[Aga+13] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Mil-
ner, Samuel Madden, and Ion Stoica. ‘BlinkDB: Queries with
Bounded Errors and Bounded Response Times on Very Large
Data’. In: EuroSys. Ed. by Zdenek Hanzálek, Hermann Härtig,
Miguel Castro, and M. Frans Kaashoek. ACM, 2013, pp. 29–42.
: 978-1-4503-1994-2. : 10.1145/2465351.2465355.

[Ail+01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, andMarios
Skounakis. ‘Weaving Relations for Cache Performance’. In:
VLDB. Ed. by Peter M. G. Apers, Paolo Atzeni, Stefano Ceri,
Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard
T. Snodgrass. Morgan Kaufmann, 2001, pp. 169–180. :
1-55860-804-4. : http://www.vldb.org/conf/20
01/P169.pdf.

[Aiy+12] Amitanand S. Aiyer, Mikhail Bautin, Guoqiang Jerry Chen,
Pritam Damania, Prakash Khemani, Kannan Muthukkarup-
pan, Karthik Ranganathan, Nicolas Spiegelberg, Liyin Tang,
and Madhuwanti Vaidya. ‘Storage Infrastructure Behind Face-
book Messages: Using HBase at Scale’. In: IEEE Data Engin-

117

http://www.1000genomes.org
http://vldb.org/pvldb/vol5/p1902_sameeragarwal_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1902_sameeragarwal_vldb2012.pdf
http://dx.doi.org/10.1145/2465351.2465355
http://www.vldb.org/conf/2001/P169.pdf
http://www.vldb.org/conf/2001/P169.pdf

B

eering Bulletin 35.2 (2012), pp. 4–13. : http://sites.
computer.org/debull/A12june/facebook.pdf.

[Ala+13] Jyrki Alakuijala and Lode Vandevenne. Data compres-
sion using Zopfli. Tech. rep. Google Inc., Feb. 2013. :
https://zopfli.googlecode.com/files/Data_
compression_using_Zopfli.pdf.

[Ale+11] Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian
Hueske, Odej Kao, Volker Markl, Erik Nijkamp, and Daniel
Warneke. ‘MapReduce and PACT - Comparing Data Paral-
lel Programming Models’. In: Proceedings of the 14th Confer-
ence on Database Systems for Business, Technology, and Web
(BTW). BTW 2011. Kaiserslautern, Germany: GI, 2011, pp. 25–
44. : 978-3-88579-274-1. : http://stratosphere.
eu/assets/papers/ComparingMapReduceAndPACTs_
11.pdf.

[And] Simon Andrews. FastQC: A Quality Control tool for High
Throughput Sequence Data. Babraham Bioinformatics. :
http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/.

[Apa] The Apache Software Foundation. : https : / / www .
apache.org.

[Arm97] Joe L. Armstrong. ‘The Development of Erlang’. In: ICFP. Ed. by
Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman.
ACM, 1997, pp. 196–203. : 978-0-89791-918-0. : 10.11
45/258948.258967.

[Aur+12] Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave De
Maagd, Alex Feinberg, Phanindra Ganti, Lei Gao, Bhas-
kar Ghosh, Kishore Gopalakrishna, Brendan Harris, Joel
Koshy, Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha
Narkhede, Sasha Pachev, Igor Perisic, Lin Qiao, Tom Quiggle,
Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger,
Adam Silberstein, Boris Shkolnik, Chinmay Soman, Roshan
Sumbaly, Kapil Surlaker, Sajid Topiwala, Cuong Tran, Balaji
Varadarajan, Jemiah Westerman, Zach White, David Zhang,
and Jason Zhang. ‘Data Infrastructure at LinkedIn’. In: ICDE.
Ed. by Anastasios Kementsietsidis and Marcos Antonio Vaz
Salles. IEEE Computer Society, 2012, pp. 1370–1381. :
978-0-7685-4747-3. : 10.1109/ICDE.2012.147.

118

http://sites.computer.org/debull/A12june/facebook.pdf
http://sites.computer.org/debull/A12june/facebook.pdf
https://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
https://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
http://stratosphere.eu/assets/papers/ComparingMapReduceAndPACTs_11.pdf
http://stratosphere.eu/assets/papers/ComparingMapReduceAndPACTs_11.pdf
http://stratosphere.eu/assets/papers/ComparingMapReduceAndPACTs_11.pdf
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.apache.org
https://www.apache.org
http://dx.doi.org/10.1145/258948.258967
http://dx.doi.org/10.1145/258948.258967
http://dx.doi.org/10.1109/ICDE.2012.147

Bibliography

[Avr13] Apache Avro™ 1.7.4 Specification. Apache Software Foundation.
26th Feb. 2013. : https://avro.apache.org/docs/1
.7.4/spec.html.

[Bac+02] David F. Bacon, Stephen J. Fink, and David Grove. ‘Space- and
Time-Efficient Implementation of the Java Object Model’. In:
ECOOP. Ed. by Boris Magnusson. Vol. 2374. Lecture Notes
in Computer Science. Springer, 2002, pp. 111–132. :
3-540-43759-2. : 10.1007/3-540-47993-7_5.

[Bar+03] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. ‘Web Search
for a Planet: The Google Cluster Architecture’. In: IEEE Micro
23.2 (2003), pp. 22–28. : 10.1109/MM.2003.1196112.

[Bar+13] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The
Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Second edition. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers,
July 2013. : 10.2200/S00516ED2V01Y201306CAC024.

[BCF] BCF (Binary VCF) version 2. Version 2.1. : http://www.1
000genomes.org/wiki/analysis/variant- call-
format/bcf-binary-vcf-version-2.

[BDB] BlinkDB: Queries with Bounded Errors and Bounded Response
Times on Very Large Data. : http://blinkdb.org.

[BED13] BED File Format. Version 73. Sept. 2013. : http://www.
ensembl.org/info/website/upload/bed.html.

[Ber+05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986 (Internet Standard).
Network Working Group, Jan. 2005. : https://tools.
ietf.org/html/rfc3986.

[Bie93] Ambrose Bierce. The Devil’s Dictionary. Ed. by Aloysius of
&tSftDotIotE. 15th Apr. 1993. :http://www.gutenberg.
org/ebooks/972.

[Blo70] Burton H. Bloom. ‘Space/Time Trade-offs in Hash Coding with
Allowable Errors’. In: Communications of the ACM 13.7 (1970),
pp. 422–426. : 10.1145/362686.362692.

119

https://avro.apache.org/docs/1.7.4/spec.html
https://avro.apache.org/docs/1.7.4/spec.html
http://dx.doi.org/10.1007/3-540-47993-7_5
http://dx.doi.org/10.1109/MM.2003.1196112
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://www.1000genomes.org/wiki/analysis/variant-call-format/bcf-binary-vcf-version-2
http://www.1000genomes.org/wiki/analysis/variant-call-format/bcf-binary-vcf-version-2
http://www.1000genomes.org/wiki/analysis/variant-call-format/bcf-binary-vcf-version-2
http://blinkdb.org
http://www.ensembl.org/info/website/upload/bed.html
http://www.ensembl.org/info/website/upload/bed.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
http://www.gutenberg.org/ebooks/972
http://www.gutenberg.org/ebooks/972
http://dx.doi.org/10.1145/362686.362692

B

[Bor+11] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma,
Kannan Muthukkaruppan, Nicolas Spiegelberg, Hairong
Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind
Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand
Aiyer. ‘Apache Hadoop Goes Realtime at Facebook’. In:
Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’11. Athens,
Greece: ACM, 2011, pp. 1071–1080. : 978-1-4503-0661-4.
: 10.1145/1989323.1989438.

[Bos13] Pradip Bose. ‘Is dark silicon real?: technical perspective’. In:
Communications of the ACM 56.2 (2013), p. 92. : 10.1145
/2408776.2408796.

[Bra+08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and François Yergeau, eds. Extensible Markup Language (XML)
1.0. 5th ed. 26th Nov. 2008. : http://www.w3.org/TR/2
008/REC-xml-20081126/.

[Bu+10] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D.
Ernst. ‘HaLoop: Efficient Iterative Data Processing on Large
Clusters’. In: PVLDB 3.1 (2010), pp. 285–296. : http://
www.comp.nus.edu.sg/~vldb2010/proceedings/
files/papers/R25.pdf.

[Bur+94] M. Burrows and D.J. Wheeler. A Block-sorting Lossless Data
Compression Algorithm. Tech. rep. 124. Palo Alto, California
94301: Digital Systems Research Center, 10th May 1994.

[Cal+11] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Ar-
ild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,
Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy
Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul
Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya
Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sank-
aran, Kavitha Manivannan, and Leonidas Rigas. ‘Windows
Azure Storage: a Highly Available Cloud Storage Service with
Strong Consistency’. In: SOSP. Ed. by Ted Wobber and Peter
Druschel. ACM, 2011, pp. 143–157. : 978-1-4503-0977-6.
: 10.1145/2043556.2043571.

[Cán+13] Rodrigo Cánovas and Alistair Moffat. ‘Practical Compression
for Multi-Alignment Genomic Files’. In: Computer Science 2013
(ACSC 2013). Ed. by B. Thomas. Vol. 135. CRPIT. Adelaide,

120

http://dx.doi.org/10.1145/1989323.1989438
http://dx.doi.org/10.1145/2408776.2408796
http://dx.doi.org/10.1145/2408776.2408796
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R25.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R25.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R25.pdf
http://dx.doi.org/10.1145/2043556.2043571

Bibliography

Australia: ACS, 2013, pp. 51–60. : https://crpit.com/
confpapers/CRPITV135Canovas.pdf.

[Cap59] Jack Capon. ‘A Probabilistic Model for Run-Length Coding of
Pictures’. In: Information Theory, IRE Transactions on 5.4 (Dec.
1959), pp. 157–163. : 0096-1000. : 10.1109/TIT.195
9.1057512.

[Car+91] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay.
‘The information visualizer, an information workspace’. In:
CHI. Ed. by Scott P. Robertson, Gary M. Olson, and Judith S.
Olson. ACM, 1991, pp. 181–186. : 978-0-89791-383-6. :
10.1145/108844.108874.

[CAS11] CASAVA v1.8 User Guide. Illumina, Inc. 2011. : http://
biowulf.nih.gov/apps/CASAVA_UG_15011196B.pdf.

[CDH] CDH. Cloudera, Inc. : https://www.cloudera.com/
content/cloudera/en/products/cdh.html.

[Cha+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Michael Burrows, Tushar Chandra, An-
drew Fikes, and Robert Gruber. ‘Bigtable: A Distributed Stor-
age System for Structured Data’. In: OSDI. Ed. by Brian N. Ber-
shad and Jeffrey C. Mogul. USENIX Association, 2006, pp. 205–
218. : 978-1-931971-47-8. : http://www.usenix.
org/events/osdi06/tech/chang.html.

[Cha+11] Biswapesh Chattopadhyay, Liang Lin,Weiran Liu, SagarMittal,
Prathyusha Aragonda, Vera Lychagina, Younghee Kwon, and
Michael Wong. ‘Tenzing. A SQL Implementation On The Map-
Reduce Framework’. In: PVLDB 4.12 (2011), pp. 1318–1327.
: http://www.vldb.org/pvldb/vol4/p1318-
chattopadhyay.pdf.

[Cha+12] Yu-Jung Chang, Chien-Chih Chen, Jan-Ming Ho, and Chuen-
Liang Chen. ‘De Novo Assembly of High-Throughput Sequen-
cing Data with Cloud Computing and New Operations on
String Graphs’. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on. 2012, pp. 155–161. : 10.1109
/CLOUD.2012.123.

[Cha+74] Donald D. Chamberlin and Raymond F. Boyce. ‘SEQUEL: A
Structured English Query Language’. In: SIGMOD Workshop,
Vol. 1. Ed. by Randall Rustin. ACM, 1974, pp. 249–264. : 10
.1145/800296.811515.

121

https://crpit.com/confpapers/CRPITV135Canovas.pdf
https://crpit.com/confpapers/CRPITV135Canovas.pdf
http://dx.doi.org/10.1109/TIT.1959.1057512
http://dx.doi.org/10.1109/TIT.1959.1057512
http://dx.doi.org/10.1145/108844.108874
http://biowulf.nih.gov/apps/CASAVA_UG_15011196B.pdf
http://biowulf.nih.gov/apps/CASAVA_UG_15011196B.pdf
https://www.cloudera.com/content/cloudera/en/products/cdh.html
https://www.cloudera.com/content/cloudera/en/products/cdh.html
http://www.usenix.org/events/osdi06/tech/chang.html
http://www.usenix.org/events/osdi06/tech/chang.html
http://www.vldb.org/pvldb/vol4/p1318-chattopadhyay.pdf
http://www.vldb.org/pvldb/vol4/p1318-chattopadhyay.pdf
http://dx.doi.org/10.1109/CLOUD.2012.123
http://dx.doi.org/10.1109/CLOUD.2012.123
http://dx.doi.org/10.1145/800296.811515
http://dx.doi.org/10.1145/800296.811515

B

[Cha+98] Chee Yong Chan and Yannis E. Ioannidis. ‘Bitmap Index Design
and Evaluation’. In: SIGMOD Conference. Ed. by Laura M. Haas
and Ashutosh Tiwary. ACM Press, 1998, pp. 355–366. :
978-0-89791-995-1. : 10.1145/276304.276336.

[Che+12] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. ‘Interactive
Analytical Processing in Big Data Systems: A Cross-Industry
Study of MapReduce Workloads’. In: PVLDB 5.12 (2012),
pp. 1802–1813. : http://vldb.org/pvldb/vol5/p18
02_yanpeichen_vldb2012.pdf.

[Clo] Cloudera, Inc. : http://www.cloudera.com.
[Coc+10] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael

L. Heuer, and Peter M. Rice. ‘The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/Illumina FASTQ
variants’. In: Nucleic Acids Research 38.6 (2010), pp. 1767–1771.
: 10.1093/nar/gkp1137.

[Coc11] Peter Cock. ‘BGZF - Blocked, Bigger & Better GZIP!’ In: Blasted
Bioinformatics⁉ (8th Nov. 2011). : http://blastedbio.
blogspot.com/2011/11/bgzf- blocked- bigger-
better-gzip.html.

[Cod70] E. F. Codd. ‘A Relational Model of Data for Large Shared Data
Banks’. In: Communications of the ACM 13.6 (1970), pp. 377–
387. : 10.1145/362384.362685.

[Col05] Lasse Collin. A Quick Benchmark: Gzip vs. Bzip2 vs. LZMA.
31st May 2005. : http : / / tukaani . org / lzma /
benchmarks.html.

[Coo+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. ‘Benchmarking Cloud
Serving Systems with YCSB’. In: SoCC. Ed. by Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum.
ACM, 2010, pp. 143–154. : 978-1-4503-0036-0. :
10.1145/1807128.1807152.

[Cop+85] George P. Copeland and Setrag Khoshafian. ‘A Decomposition
Storage Model’. In: SIGMOD Conference. Ed. by Shamkant B.
Navathe. ACM Press, 1985, pp. 268–279. : 10.1145/3188
98.318923.

122

http://dx.doi.org/10.1145/276304.276336
http://vldb.org/pvldb/vol5/p1802_yanpeichen_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1802_yanpeichen_vldb2012.pdf
http://www.cloudera.com
http://dx.doi.org/10.1093/nar/gkp1137
http://blastedbio.blogspot.com/2011/11/bgzf-blocked-bigger-better-gzip.html
http://blastedbio.blogspot.com/2011/11/bgzf-blocked-bigger-better-gzip.html
http://blastedbio.blogspot.com/2011/11/bgzf-blocked-bigger-better-gzip.html
http://dx.doi.org/10.1145/362384.362685
http://tukaani.org/lzma/benchmarks.html
http://tukaani.org/lzma/benchmarks.html
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/318898.318923
http://dx.doi.org/10.1145/318898.318923

Bibliography

[Dan+11] Petr Danecek, Adam Auton, Gonçalo R. Abecasis, Cornelis A.
Albers, Eric Banks, Mark A. DePristo, Robert E. Handsaker,
Gerton Lunter, Gabor T. Marth, Stephen T. Sherry, Gilean
McVean, and Richard Durbin. ‘The variant call format and
VCFtools’. In: Bioinformatics 27.15 (2011), pp. 2156–2158. :
10.1093/bioinformatics/btr330.

[Dar+03] Aaron E. Darling, Lucas Carey, and Wu-chun Feng. ‘The
Design, Implementation, and Evaluation of mpiBLAST’. In:
ClusterWorld. 2003. : http://www.mpiblast.org/
downloads/pubs/cwce03.pdf.

[dAra+11] Emerson de Araujo Macedo, Alba Cristina Magalhaes Alves
de Melo, Gerson Henrique Pfitscher, and Azzedine Bouker-
che. ‘Hybrid MPI/OpenMP Strategy for Biological Multiple Se-
quence Alignment with DIALIGN-TX in Heterogeneous Mul-
ticore Clusters’. In: IPDPS Workshops. IEEE, 2011, pp. 418–425.
: 978-1-61284-425-1. : 10.1109/IPDPS.2011.169.

[Dat06] C. J. Date. Date on Database: Writings 2000–2006. Apress, 2006.
: 978-1-59059-746-0.

[Daw+09] Michael Dawson, Graeme Johnson, and Andrew Low. ‘Best
practices for using the Java Native Interface. Techniques and
tools for averting the 10 most common JNI programming mis-
takes’. In: IBM developerWorks (7th July 2009). : https:
//www.ibm.com/developerworks/java/library/j-
jni/.

[DCp] DistCp Guide. Version 1.2.1. : https://hadoop.apache.
org/docs/r1.2.1/distcp.html.

[DDN] DDN | SFA10K-X™. DataDirect Networks, Inc. : https:
//www.ddn.com/products/sfa10000.

[DDR08] Double Data Rate (DDR) SDRAM. Tech. rep. JESD79F. JEDEC
Solid State Technology Association, Feb. 2008. : http://
www.jedec.org/standards-documents/docs/jesd-
79f.

[DDR12] DDR3 SDRAM Standard. Tech. rep. JESD79-3F. JEDEC Solid
State Technology Association, July 2012. : http://www.
jedec.org/standards-documents/docs/jesd-79-3
d.

123

http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.mpiblast.org/downloads/pubs/cwce03.pdf
http://www.mpiblast.org/downloads/pubs/cwce03.pdf
http://dx.doi.org/10.1109/IPDPS.2011.169
https://www.ibm.com/developerworks/java/library/j-jni/
https://www.ibm.com/developerworks/java/library/j-jni/
https://www.ibm.com/developerworks/java/library/j-jni/
https://hadoop.apache.org/docs/r1.2.1/distcp.html
https://hadoop.apache.org/docs/r1.2.1/distcp.html
https://www.ddn.com/products/sfa10000
https://www.ddn.com/products/sfa10000
http://www.jedec.org/standards-documents/docs/jesd-79f
http://www.jedec.org/standards-documents/docs/jesd-79f
http://www.jedec.org/standards-documents/docs/jesd-79f
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d

B

[Dea+04] Jeffrey Dean and Sanjay Ghemawat. ‘MapReduce: Simplified
Data Processing on Large Clusters’. In: OSDI. USENIX Associ-
ation, 2004, pp. 137–150. : http://www.usenix.org/
events/osdi04/tech/dean.html.

[Dea+13] Jeffrey Dean and Luiz André Barroso. ‘The Tail at Scale’. In:
Communications of the ACM 56.2 (2013), pp. 74–80. : 10.1
145/2408776.2408794.

[Dea09] Jeffrey Dean. ‘Designs, Lessons and Advice from Building
Large Distributed Systems’. 2009. : https://www.cs.
cornell.edu/projects/ladis2009/talks/dean-
keynote-ladis2009.pdf.

[Den+07] R.H. Dennard, F.H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout,
Ernest Bassous, and Andre R. LeBlanc. “Design of Ion-
Implanted MOSFET’s with Very Small Physical Dimensions”.
In: Solid-State Circuits Society Newsletter, IEEE 12.1 (2007),
pp. 38–50. : 1098-4232. : 10.1109/N-SSC.2007.47
85543.

[Deu+96] L. Peter Deutsch and Jean-Loup Gailly. ZLIB Compressed Data
Format Specification version 3.3. RFC 1950 (Informational). Net-
work Working Group, May 1996. : https://tools.
ietf.org/html/rfc1950.

[Deu96a] L. Peter Deutsch. DEFLATE Compressed Data Format Specifica-
tion version 1.3. RFC 1951 (Informational). Network Working
Group, May 1996. : https://tools.ietf.org/html/
rfc1951.

[Deu96b] L. Peter Deutsch. GZIP file format specification version 4.3. RFC
1952 (Informational). NetworkWorking Group, May 1996. :
https://tools.ietf.org/html/rfc1952.

[DeW+84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Sha-
piro, Michael Stonebraker, and David A. Wood. ‘Implementa-
tion Techniques for Main Memory Database Systems’. In: SIG-
MOD Conference. Ed. by Beatrice Yormark. ACM Press, 1984,
pp. 1–8. : 10.1145/602259.602261.

[DOI] DOI® Handbook. : 10.1000/182.
[Dri] Apache Drill. The Apache Software Foundation. : https:

//incubator.apache.org/drill/.

124

http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/2408776.2408794
https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf
http://dx.doi.org/10.1109/N-SSC.2007.4785543
http://dx.doi.org/10.1109/N-SSC.2007.4785543
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1952
http://dx.doi.org/10.1145/602259.602261
http://dx.doi.org/10.1000/182
https://incubator.apache.org/drill/
https://incubator.apache.org/drill/

Bibliography

[Duc03] David Duce, ed. Portable Network Graphics (PNG) Specification.
2nd ed. 10th Nov. 2003. : http://www.w3.org/TR/200
3/REC-PNG-20031110/.

[Elm+10] Ahmed K. Elmagarmid and Divyakant Agrawal, eds. Proceed-
ings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June
6-10, 2010. ACM, 2010. : 978-1-4503-0032-2.

[Ens13] Ensembl Glossary. Version 73. Sept. 2013. : http://www.
ensembl.org/info/website/glossary.html.

[Esm+11] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. ‘Dark silicon
and the end of multicore scaling’. In: ISCA. Ed. by Ravi Iyer,
Qing Yang, and Antonio González. ACM, 2011, pp. 365–376.
: 978-1-4503-0472-6. : 10.1145/2000064.2000108.

[Fac] Facebook. : https://www.facebook.com.
[FAQ] Frequently Asked Questions: Data File Formats. UCSC Genome

Bioinformatics. : http://www.genome.ucsc.edu/
FAQ/FAQformat.html.

[Flo+11] Avrilia Floratou, Jignesh M. Patel, Eugene J. Shekita, and
Sandeep Tata. ‘Column-Oriented Storage Techniques for Map-
Reduce’. In: PVLDB 4.7 (Apr. 2011), pp. 419–429. : http:
//www.vldb.org/pvldb/vol4/p419-floratou.pdf.

[Fri+76] Daniel P. Friedman and David S. Wise. ‘CONS Should Not
Evaluate its Arguments’. In: ICALP. 1976, pp. 257–284.

[Gai+13] Jean-loup Gailly and Mark Adler. zlib Home Site. Version 1.2.8.
28th Apr. 2013. : http://zlib.net.

[GAQ] Geraldine Van der Auwera. Overview of Queue. Broad Insti-
tute. : https://www.broadinstitute.org/gatk/
guide/article?id=1306.

[Gat+09] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep
Kamath, Shravan Narayanam, Christopher Olston, Benjamin
Reed, Santhosh Srinivasan, and Utkarsh Srivastava. ‘Building
a High-Level Dataflow System on top of Map-Reduce: The
Pig Experience’. In: PVLDB 2.2 (2009), pp. 1414–1425. :
http://www.vldb.org/pvldb/2/vldb09-1074.pdf.

[Geo11] Lars George. HBase: The Definitive Guide. Random Access to
Your Planet-Size Data. O’Reilly, 2011. : 978-1-449-39610-7.

125

http://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.ensembl.org/info/website/glossary.html
http://www.ensembl.org/info/website/glossary.html
http://dx.doi.org/10.1145/2000064.2000108
https://www.facebook.com
http://www.genome.ucsc.edu/FAQ/FAQformat.html
http://www.genome.ucsc.edu/FAQ/FAQformat.html
http://www.vldb.org/pvldb/vol4/p419-floratou.pdf
http://www.vldb.org/pvldb/vol4/p419-floratou.pdf
http://zlib.net
https://www.broadinstitute.org/gatk/guide/article?id=1306
https://www.broadinstitute.org/gatk/guide/article?id=1306
http://www.vldb.org/pvldb/2/vldb09-1074.pdf

B

[Ghe+03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. ‘The
Google file system’. In: SOSP. Ed. by Michael L. Scott and Larry
L. Peterson. ACM, 2003, pp. 29–43. : 978-1-58113-757-6.
: 10.1145/945445.945450.

[Gia99] Dominic Giampaolo. Practical File System Design with the Be
File System. Morgan Kaufmann, 1999. : 978-1-55860-497-1.
: http : / / www . nobius . org / ~dbg / practical -
file-system-design.pdf.

[Gir] Apache Giraph. The Apache Software Foundation. : https:
//giraph.apache.org.

[GNU] TheGNUOperating System. Free Software Foundation, Inc. :
https://gnu.org.

[Goo] Google. : https://www.google.com.
[Gos+13] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha,

and Alex Buckley. The Java Language Specification, Java
SE 7 Edition. Addison-Wesley Professional, Feb. 2013. :
978-0-1332-6022-9.

[Gro+09] James R. Groff, Paul N. Weinberg, and Andrew J. Oppel. SQL:
The Complete Reference. Third Edition. McGraw-Hill Osborne
Media, Aug. 2009. : 978-0-0715-9255-0.

[Gut84] Antonin Guttman. ‘R-Trees: A Dynamic Index Structure for
Spatial Searching’. In: SIGMOD Conference. Ed. by Beatrice
Yormark. ACM Press, 1984, pp. 47–57. : 10.1145/60225
9.602266.

[Had] Apache Hadoop. The Apache Software Foundation. :
https://hadoop.apache.org.

[HaL] haloop - An modified version of Hadoop to support efficient iter-
ative data processing on large commodity clusters. : https:
//code.google.com/p/haloop/.

[Han+03] Richard A. Hankins and Jignesh M. Patel. ‘Data Morphing:
An Adaptive, Cache-Conscious Storage Technique’. In: VLDB.
2003, pp. 417–428. : http://www.vldb.org/conf/20
03/papers/S13P03.pdf.

[Har+11] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Ana-
stasia Ailamaki. ‘Toward Dark Silicon in Servers’. In: IEEE
Micro 31.4 (2011), pp. 6–15. : 10.1109/MM.2011.77.

126

http://dx.doi.org/10.1145/945445.945450
http://www.nobius.org/~dbg/practical-file-system-design.pdf
http://www.nobius.org/~dbg/practical-file-system-design.pdf
https://giraph.apache.org
https://giraph.apache.org
https://gnu.org
https://www.google.com
http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1145/602259.602266
https://hadoop.apache.org
https://code.google.com/p/haloop/
https://code.google.com/p/haloop/
http://www.vldb.org/conf/2003/papers/S13P03.pdf
http://www.vldb.org/conf/2003/papers/S13P03.pdf
http://dx.doi.org/10.1109/MM.2011.77

Bibliography

[HAW13] Pivotal HD: HAWQ. A true SQL engine for Hadoop. White paper.
Pivotal, Inc., 24th Apr. 2013. : http://gopivotal.com/
sites/default/files/Hawq_WP_042313_FINAL.pdf.

[HBa] Apache HBase. The Apache Software Foundation. : https:
//hbase.apache.org.

[HBA12] [HBASE-5954] Allow proper fsync support for HBase. Apache
Software Foundation. 2012. : https://issues.apache.
org/jira/browse/HBASE-5954.

[HBM] Hadoop-BAM. : http : / / sourceforge . net /
projects/hadoop-bam/.

[HBP] Hbase/PoweredBy. : https : / / wiki . apache . org /
hadoop/Hbase/PoweredBy.

[HBR] The Apache HBase Reference Guide. The Apache Software
Foundation. : https://hbase.apache.org/book.
html.

[He+11] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain,
Xiaodong Zhang, and Zhiwei Xu. ‘RCFile: A fast and space-
efficient data placement structure in MapReduce-based ware-
house systems’. In: ICDE. Ed. by Serge Abiteboul, Klemens
Böhm, Christoph Koch, and Kian-Lee Tan. IEEE Computer
Society, 2011, pp. 1199–1208. : 978-1-4244-8958-9. :
10.1109/ICDE.2011.5767933.

[Hee+12] Jeffrey Heer and Sean Kandel. ‘Interactive analysis of big data’.
In: ACM Crossroads 19.1 (2012), pp. 50–54. : 10.1145/23
31042.2331058.

[Hen+76] Peter Henderson and James H. Morris Jr. ‘A Lazy Evaluator’.
In: POPL. Ed. by Susan L. Graham, Robert M. Graham, Michael
A. Harrison, William I. Grosky, and Jeffrey D. Ullman. ACM
Press, 1976, pp. 95–103. : 10.1145/800168.811543.

[HGS13] HGST Ships 6TB Ultrastar® He6 Helium-filled Drives for High-
density, Massive Scale-out Data Center Environments. HGST, Inc.
4th Nov. 2013. : http://www.hgst.com/press-room/
press-releases/hgst-ships-6TB-Ultrastar-HE6-
helium-filled.

[HiJ] LanguageManual Joins. Apache Software Foundation. :
https://cwiki.apache.org/confluence/display/
Hive/LanguageManual+Joins.

127

http://gopivotal.com/sites/default/files/Hawq_WP_042313_FINAL.pdf
http://gopivotal.com/sites/default/files/Hawq_WP_042313_FINAL.pdf
https://hbase.apache.org
https://hbase.apache.org
https://issues.apache.org/jira/browse/HBASE-5954
https://issues.apache.org/jira/browse/HBASE-5954
http://sourceforge.net/projects/hadoop-bam/
http://sourceforge.net/projects/hadoop-bam/
https://wiki.apache.org/hadoop/Hbase/PoweredBy
https://wiki.apache.org/hadoop/Hbase/PoweredBy
https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
http://dx.doi.org/10.1109/ICDE.2011.5767933
http://dx.doi.org/10.1145/2331042.2331058
http://dx.doi.org/10.1145/2331042.2331058
http://dx.doi.org/10.1145/800168.811543
http://www.hgst.com/press-room/press-releases/hgst-ships-6TB-Ultrastar-HE6-helium-filled
http://www.hgst.com/press-room/press-releases/hgst-ships-6TB-Ultrastar-HE6-helium-filled
http://www.hgst.com/press-room/press-releases/hgst-ships-6TB-Ultrastar-HE6-helium-filled
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Joins

B

[Hin+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali
Ghodsi, AnthonyD. Joseph, Randy Katz, Scott Shenker, and Ion
Stoica. ‘Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center’. In: NSDI. Boston, MA, USA: USENIX As-
sociation, Apr. 2011, pp. 295–308. : 978-931971-84-3. :
https://www.usenix.org/legacy/events/nsdi11
/tech/full_papers/Hindman_new.pdf.

[Hiv] Apache Hive. The Apache Software Foundation. : https:
//hive.apache.org.

[HIV10] [HIVE-1402] Add parallel ORDER BY to Hive. Apache Software
Foundation. 2010. : https://issues.apache.org/
jira/browse/HIVE-1402.

[HNL13] Native Libraries Guide. Version 2.2.0. 7th Oct. 2013. :
https://hadoop.apache.org/docs/r2.2.0/hadoop-
project- dist/hadoop- common/NativeLibraries.
html.

[Hof13] Lars Hofhansl. ‘Protecting HBase against data center out-
ages’. In: HBase (2nd July 2013). : http : / / hadoop -
hbase.blogspot.com/2013/07/protected-hbase-
against-data-center.html.

[Hor] Hortonworks Inc. : http://www.hortonworks.com.
[IEE08] ‘IEEE Standard for Floating-Point Arithmetic’. In: IEEE Std

754-2008 (2008), pp. 1–70. : 10.1109/IEEESTD.2008.4
610935.

[ImB13] [#IMPALA-482] ”block size is too big” error with Snappy-
compressed RCFile containing null. 2013. : https :
//issues.cloudera.org/browse/IMPALA-482.

[ImC] Post-Installation Configuration for Impala. : https://
www.cloudera.com/content/cloudera- content/
cloudera-docs/Impala/1.0.1/Installing-and-
Using-Impala/ciiu_config_performance.html.

[ImD] Cloudera Impala Documentation. Cloudera, Inc. : https:
/ / www . cloudera . com / content / support / en /
documentation / cloudera - impala / cloudera -
impala-documentation-v1-latest.html.

128

https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://www.usenix.org/legacy/events/nsdi11/tech/full_papers/Hindman_new.pdf
https://hive.apache.org
https://hive.apache.org
https://issues.apache.org/jira/browse/HIVE-1402
https://issues.apache.org/jira/browse/HIVE-1402
https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/NativeLibraries.html
https://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/NativeLibraries.html
http://hadoop-hbase.blogspot.com/2013/07/protected-hbase-against-data-center.html
http://hadoop-hbase.blogspot.com/2013/07/protected-hbase-against-data-center.html
http://hadoop-hbase.blogspot.com/2013/07/protected-hbase-against-data-center.html
http://www.hortonworks.com
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://issues.cloudera.org/browse/IMPALA-482
https://issues.cloudera.org/browse/IMPALA-482
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_config_performance.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_config_performance.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_config_performance.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_config_performance.html
https://www.cloudera.com/content/support/en/documentation/cloudera-impala/cloudera-impala-documentation-v1-latest.html
https://www.cloudera.com/content/support/en/documentation/cloudera-impala/cloudera-impala-documentation-v1-latest.html
https://www.cloudera.com/content/support/en/documentation/cloudera-impala/cloudera-impala-documentation-v1-latest.html
https://www.cloudera.com/content/support/en/documentation/cloudera-impala/cloudera-impala-documentation-v1-latest.html

Bibliography

[ImF] New Features in Impala. : https://www.cloudera.
com/content/cloudera-content/cloudera-docs/
Impala/latest/Cloudera-Impala-Release-Notes/
cirn_new_features.html.

[ImG] Cloudera Impala. : https://github.com/cloudera/
impala.

[ImL] Impala SQL Language Elements. : https : / / www .
cloudera . com / content / cloudera - content /
cloudera - docs / Impala / 1 . 0 . 1 / Installing -
and-Using-Impala/ciiu_langref_sql.html.

[Imp] Introducing Impala. Cloudera, Inc. : http://cloudera.
com/impala/.

[IMP13] IMPALA-482: ”block size is too big” error with Snappy-
compressed RCFi…. 2013. : https : / / github . com /
cloudera/impala/commit/7730fae3365eeeaaa5d0
d991d68c775c4ed6e86a.

[ImQ] Cloudera Impala Frequently Asked Questions. : https://
www.cloudera.com/content/cloudera- content/
cloudera-docs/Impala/1.0.1/Cloudera-Impala-
Frequently-Asked-Questions/Cloudera-Impala-
Frequently-Asked-Questions.html.

[ImT13] Cloudera Impala: How exactly does a multi-level execution tree
improve ImpalaQuery performance? 2013. : https://www.
quora.com/Cloudera-Impala/How-exactly-does-
a-multi-level-execution-tree-improve-Impala-
Query-performance?share=1.

[ImU] Unsupported Language Elements. : https : / / www .
cloudera . com / content / cloudera - content /
cloudera-docs/Impala/1.0.1/Installing-and-
Using-Impala/ciiu_langref_unsupported.html.

[Int05] Excerpts from A Conversation with Gordon Moore: Moore’s
Law. Intel Corporation, 2005. : https://web.archive.
org/web/20130420194212/http://download.intel.
com / museum / Moores _ Law / Video - Transcripts /
Excepts_A_Conversation_with_Gordon_Moore.pdf.

129

https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Release-Notes/cirn_new_features.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Release-Notes/cirn_new_features.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Release-Notes/cirn_new_features.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Cloudera-Impala-Release-Notes/cirn_new_features.html
https://github.com/cloudera/impala
https://github.com/cloudera/impala
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_sql.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_sql.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_sql.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_sql.html
http://cloudera.com/impala/
http://cloudera.com/impala/
https://github.com/cloudera/impala/commit/7730fae3365eeeaaa5d0d991d68c775c4ed6e86a
https://github.com/cloudera/impala/commit/7730fae3365eeeaaa5d0d991d68c775c4ed6e86a
https://github.com/cloudera/impala/commit/7730fae3365eeeaaa5d0d991d68c775c4ed6e86a
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Cloudera-Impala-Frequently-Asked-Questions/Cloudera-Impala-Frequently-Asked-Questions.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Cloudera-Impala-Frequently-Asked-Questions/Cloudera-Impala-Frequently-Asked-Questions.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Cloudera-Impala-Frequently-Asked-Questions/Cloudera-Impala-Frequently-Asked-Questions.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Cloudera-Impala-Frequently-Asked-Questions/Cloudera-Impala-Frequently-Asked-Questions.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Cloudera-Impala-Frequently-Asked-Questions/Cloudera-Impala-Frequently-Asked-Questions.html
https://www.quora.com/Cloudera-Impala/How-exactly-does-a-multi-level-execution-tree-improve-Impala-Query-performance?share=1
https://www.quora.com/Cloudera-Impala/How-exactly-does-a-multi-level-execution-tree-improve-Impala-Query-performance?share=1
https://www.quora.com/Cloudera-Impala/How-exactly-does-a-multi-level-execution-tree-improve-Impala-Query-performance?share=1
https://www.quora.com/Cloudera-Impala/How-exactly-does-a-multi-level-execution-tree-improve-Impala-Query-performance?share=1
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_unsupported.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_unsupported.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_unsupported.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_langref_unsupported.html
https://web.archive.org/web/20130420194212/http://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
https://web.archive.org/web/20130420194212/http://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
https://web.archive.org/web/20130420194212/http://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
https://web.archive.org/web/20130420194212/http://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf

B

[IRC] Using RCFile, SequenceFile, or Text Files. : https :
//www.cloudera.com/content/cloudera-content/
cloudera-docs/Impala/1.0.1/Installing-and-
Using-Impala/ciiu_rcfile.html.

[ISO92] International Organization for Standardization. ISO/IEC
9075:1992. Information technology – Database languages – SQL.
Geneva, Switzerland, 1992. : http://www.iso.org/
iso/catalogue_detail.htm?csnumber=16663.

[Jun+11] F.P. Junqueira, B.C. Reed, and M. Serafini. ‘Zab: High-
performance broadcast for primary-backup systems’. In:
Dependable Systems Networks (DSN), 2011 IEEE/IFIP 41st
International Conference on. 2011, pp. 245–256. : 10.1109
/DSN.2011.5958223.

[Ken+02] W. James Kent, Charles W. Sugnet, Terrence S. Furey, Krishna
M. Roskin, TomH. Pringle, AlanM. Zahler, and David Haussler.
‘The Human Genome Browser at UCSC’. In: Genome Research
12.6 (2002), pp. 996–1006. : 10.1101/gr.229102.

[Kes13] Justin Kestelyn. ‘Introducing Parquet: Efficient Columnar Stor-
age for Apache Hadoop’. In: Cloudera Blog (13th Mar. 2013).
: https://blog.cloudera.com/blog/2013/0
3/introducing-parquet-columnar-storage-for-
apache-hadoop/.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume
III: Sorting and Searching. Addison-Wesley, 1973. :
978-0-201-03803-3.

[Kor+12] Marcel Kornacker and Justin Erickson. ‘Cloudera Impala:
Real-Time Queries in Apache Hadoop, For Real’. In: Cloudera
Blog (24th Oct. 2012). : https : / / blog . cloudera .
com/blog/2012/10/cloudera-impala-real-time-
queries-in-apache-hadoop-for-real/.

[Kre+11] Elie Krevat, Joseph Tucek, and Gregory R. Ganger. ‘Disks are
like snowflakes: no two are alike’. In: Proceedings of the 13th
USENIX conference on Hot topics in operating systems. HotOS’13.
Berkeley, CA, USA: USENIX Association, 2011, pp. 14–14. :
http://dl.acm.org/citation.cfm?id=1991596.19
91615.

130

https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_rcfile.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_rcfile.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_rcfile.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/1.0.1/Installing-and-Using-Impala/ciiu_rcfile.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16663
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16663
http://dx.doi.org/10.1109/DSN.2011.5958223
http://dx.doi.org/10.1109/DSN.2011.5958223
http://dx.doi.org/10.1101/gr.229102
https://blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-hadoop/
https://blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-hadoop/
https://blog.cloudera.com/blog/2013/03/introducing-parquet-columnar-storage-for-apache-hadoop/
https://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
https://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
https://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://dl.acm.org/citation.cfm?id=1991596.1991615
http://dl.acm.org/citation.cfm?id=1991596.1991615

Bibliography

[Kry+09] M.H. Kryder and Chang Soo Kim. ‘After Hard Drives — What
Comes Next?’ In: Magnetics, IEEE Transactions on 45.10 (2009),
pp. 3406–3413. : 0018-9464. : 10.1109/TMAG.2009
.2024163.

[Lam98] Leslie Lamport. ‘The Part-Time Parliament’. In: ACM Transac-
tions on Computer Systems 16.2 (1998), pp. 133–169. : 10.1
145/279227.279229.

[Lan+09] Ben Langmead, Michael Schatz, Jimmy Lin, Mihai Pop, and
Steven Salzberg. ‘Searching for SNPs with cloud computing’.
In: Genome Biology 10.11 (2009), R134. : 1465-6906. :
10.1186/gb-2009-10-11-r134. PMID: 19930550.

[Lan+10] Ben Langmead, Kasper Hansen, and Jeffrey Leek. ‘Cloud-scale
RNA-sequencing differential expression analysis with Myrna’.
In: Genome Biology 11.8 (2010), R83. : 1465-6906. : 10
.1186/gb-2010-11-8-r83. PMID: 20701754.

[Lat+04] Chris Lattner and Vikram S. Adve. ‘LLVM: A Compilation
Framework for Lifelong Program Analysis & Transforma-
tion’. In: CGO. IEEE Computer Society, 2004, pp. 75–88. :
978-0-7695-2102-2. : 10.1109/CGO.2004.1281665.

[Leb13] Scott Leberknight. “Cloudera’s Impala”. 9th July 2013. :
http://www.slideshare.net/cloudera/impala-v1
update130709222849phpapp01.

[Li+09] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue
Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard
Durbin, and 1000 Genome Project Data Processing Subgroup.
‘The Sequence Alignment/Map format and SAMtools’. In:
Bioinformatics 25.16 (2009), pp. 2078–2079. : 10.1093
/bioinformatics/btp352.

[Li13] Nong Li. ‘Inside Cloudera Impala: Runtime Code Generation’.
In: Cloudera Blog (11th Feb. 2013). : https://blog.
cloudera.com/blog/2013/02/inside- cloudera-
impala-runtime-code-generation/.

[LiI] LinkedIn. : https://www.linkedin.com.
[Lin+11] Jimmy Lin, Dmitriy Ryaboy, and Kevin Weil. ‘Full-text In-

dexing for Optimizing Selection Operations in Large-Scale
Data Analytics’. In: Proceedings of the second international
workshop on MapReduce and its applications. MapReduce

131

http://dx.doi.org/10.1109/TMAG.2009.2024163
http://dx.doi.org/10.1109/TMAG.2009.2024163
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1186/gb-2009-10-11-r134
http://www.ncbi.nlm.nih.gov/pubmed/19930550
http://dx.doi.org/10.1186/gb-2010-11-8-r83
http://dx.doi.org/10.1186/gb-2010-11-8-r83
http://www.ncbi.nlm.nih.gov/pubmed/20701754
http://dx.doi.org/10.1109/CGO.2004.1281665
http://www.slideshare.net/cloudera/impala-v1update130709222849phpapp01
http://www.slideshare.net/cloudera/impala-v1update130709222849phpapp01
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1093/bioinformatics/btp352
https://blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
https://blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
https://blog.cloudera.com/blog/2013/02/inside-cloudera-impala-runtime-code-generation/
https://www.linkedin.com

B

’11. San Jose, California, USA: ACM, 2011, pp. 59–66. :
978-1-4503-0700-0. : 10.1145/1996092.1996105.

[LLV] The LLVM Compiler Infrastructure Project. : http://llvm.
org.

[Lov28] H. P. Lovecraft. ‘The Call of Cthulhu’. In: Weird Tales 11.2
(Feb. 1928). Ed. by Farnsworth Wright. : https://en.
wikisource.org/wiki/The_Call_of_Cthulhu.

[Lus] Lustre. Xyratex. : http://lustre.org.
[Mah] Matt Mahoney. ZPAQ. : http://mattmahoney.net/

dc/zpaq.html.
[Mal+10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James

C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
‘Pregel: A System for Large-Scale Graph Processing’. In: SIG-
MOD Conference. Ed. by Ahmed K. Elmagarmid and Divyakant
Agrawal. ACM, 2010, pp. 135–146. : 978-1-4503-0032-2.
: 10.1145/1807167.1807184.

[MaR] MapR Technologies, Inc. : http://www.mapr.com.
[Mar13] Vivien Marx. ‘Biology: The big challenges of big data’. In:

Nature 498.7453 (13th June 2013). Technology Feature, pp. 255–
260. : 0028-0836. : 10.1038/498255a.

[Mar96] Robert C. Martin. Re: Challenge: Modelling Human Un-
derstanding (Was: Re: Programmers to dumb…?) On
Usenet, newsgroup comp.object. Message-ID: rmartin-
1108962342100001@vh1-006.wwa.com. 11th Aug. 1996.

[Mas] Matt Massie. ADAM: Datastore Alignment Map. : https:
//github.com/massie/adam/.

[Mat+08] Andréa M. Matsunaga, Maurício O. Tsugawa, and José A. B.
Fortes. ‘CloudBLAST: Combining MapReduce and Virtualiza-
tion on Distributed Resources for Bioinformatics Applications’.
In: eScience. IEEE Computer Society, 2008, pp. 222–229. :
10.1109/eScience.2008.62.

[McK+09] Marshall Kirk McKusick and Sean Quinlan. ‘GFS: Evolution
on Fast-forward’. In: Queue 7.7 (Aug. 2009), 10:10–10:20. :
1542-7730. : 10.1145/1594204.1594206.

132

http://dx.doi.org/10.1145/1996092.1996105
http://llvm.org
http://llvm.org
https://en.wikisource.org/wiki/The_Call_of_Cthulhu
https://en.wikisource.org/wiki/The_Call_of_Cthulhu
http://lustre.org
http://mattmahoney.net/dc/zpaq.html
http://mattmahoney.net/dc/zpaq.html
http://dx.doi.org/10.1145/1807167.1807184
http://www.mapr.com
http://dx.doi.org/10.1038/498255a
https://github.com/massie/adam/
https://github.com/massie/adam/
http://dx.doi.org/10.1109/eScience.2008.62
http://dx.doi.org/10.1145/1594204.1594206

Bibliography

[McK+10] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Si-
vachenko, Kristian Cibulskis, Andrew Kernytsky, Kiran Gar-
imella, David Altshuler, Stacey Gabriel, Mark Daly, and Mark
A. DePristo. ‘The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing
data’. In: Genome Research 20.9 (2010), pp. 1297–1303. : 10
.1101/gr.107524.110.

[Mel+10] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassila-
kis. ‘Dremel: Interactive Analysis of Web-Scale Datasets’. In:
PVLDB 3.1 (2010), pp. 330–339. : http://www.comp.nus.
edu.sg/~vldb2010/proceedings/files/papers/R2
9.pdf.

[Mes] Apache Mesos. The Apache Software Foundation. : https:
//mesos.apache.org.

[Moh+13] Nabeel M. Mohamed, Heshan Lin, and Wu-chun Feng. ‘Ac-
celerating Data-Intensive Genome Analysis in the Cloud’. In:
5th International Conference on Bioinformatics and Computa-
tional Biology (BICoB). Honolulu, Hawaii, USA, Mar. 2013. :
http://synergy.cs.vt.edu/pubs/papers/nabeel-
bicob13-genome-analysis-cloud.pdf.

[Mon+13] Alberto Montañola, Concepcio Roig, and Porfidio Hernán-
dez. ‘Pairwise Sequence Alignment Method for Distributed
Shared Memory Systems’. In: PDP. IEEE Computer Society,
2013, pp. 432–436. : 978-1-4673-5321-2. : 10.1109
/PDP.2013.69.

[Moo65] Gordon E. Moore. ‘Cramming more components onto integrat-
ed circuits’. In: Electronics 38.8 (Apr. 1965).

[Moo75] G.E. Moore. ‘Progress in digital integrated electronics’. In: Elec-
tron Devices Meeting, 1975 International. Vol. 21. 1975, pp. 11–
13.

[MPI93] ‘MPI: AMessage Passing Interface’. In: SC. Ed. by Bob Borchers
and Dona Crawford. The MPI Forum. IEEE Computer Society
/ ACM, 1993, pp. 878–883. : 978-0-8186-4340-8. : 10.1
145/169627.169855.

133

http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1101/gr.107524.110
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R29.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R29.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R29.pdf
https://mesos.apache.org
https://mesos.apache.org
http://synergy.cs.vt.edu/pubs/papers/nabeel-bicob13-genome-analysis-cloud.pdf
http://synergy.cs.vt.edu/pubs/papers/nabeel-bicob13-genome-analysis-cloud.pdf
http://dx.doi.org/10.1109/PDP.2013.69
http://dx.doi.org/10.1109/PDP.2013.69
http://dx.doi.org/10.1145/169627.169855
http://dx.doi.org/10.1145/169627.169855

B

[Mur+13] Arun C. Murthy and Bikas Saha. ‘Apache Tez: Accelerating
Hadoop Query Processing’. 9th July 2013. : http : / /
www.slideshare.net/Hadoop_Summit/murhty-saha-
june26255pmroom212.

[Mur12] Arun Murthy. ‘Apache Hadoop YARN – Background and an
Overview’. In: (7th Aug. 2012). : https://hortonworks.
com/blog/apache-hadoop-yarn-background-and-
an-overview/.

[Ngu+11] Tung Nguyen, Weisong Shi, and Douglas Ruden. ‘Cloud-
Aligner: A fast and full-featured MapReduce based tool for
sequence mapping’. In: BMC Research Notes 4.1 (2011), p. 171.
: 1756-0500. : 10.1186/1756-0500-4-171. PMID:
21645377.

[Nie+12] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri
Klemelä, Eija Korpelainen, and Keijo Heljanko. ‘Hadoop-BAM:
directly manipulating next generation sequencing data in the
cloud’. In: Bioinformatics 28.6 (2012), pp. 876–877. : 10.10
93/bioinformatics/bts054.

[Nie11] Matti Niemenmaa. ‘Interactivity for Big Data: Preprocessing
genomic data with MapReduce’. Bachelor’s Thesis. Aalto Uni-
versity School of Science, 4th May 2011. : https : / /
deewiant.iki.fi/writings/thesis-bachelor.pdf.

[Nit+91] Bill Nitzberg and Virginia Mary Lo. ‘Distributed Shared
Memory: A Survey of Issues and Algorithms’. In: IEEE
Computer 24.8 (1991), pp. 52–60. : 10.1109/2.84877.

[Nor+13] Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang.
‘BioPig: A Hadoop-based Analytic Toolkit for Large-Scale
Sequence Data’. In: Bioinformatics (2013). : 10.1093/
bioinformatics/btt528.

[Nov13] Jordan Novet. ‘Facebook unveils Presto engine for query-
ing 250 PB data warehouse’. In: GigaOM (6th June 2013).
: http://gigaom.com/2013/06/06/facebook-
unveils-presto-engine-for-querying-250-pb-
data-warehouse/.

[Nut] Apache Nutch. The Apache Software Foundation. : https:
//nutch.apache.org.

134

http://www.slideshare.net/Hadoop_Summit/murhty-saha-june26255pmroom212
http://www.slideshare.net/Hadoop_Summit/murhty-saha-june26255pmroom212
http://www.slideshare.net/Hadoop_Summit/murhty-saha-june26255pmroom212
https://hortonworks.com/blog/apache-hadoop-yarn-background-and-an-overview/
https://hortonworks.com/blog/apache-hadoop-yarn-background-and-an-overview/
https://hortonworks.com/blog/apache-hadoop-yarn-background-and-an-overview/
http://dx.doi.org/10.1186/1756-0500-4-171
http://www.ncbi.nlm.nih.gov/pubmed/21645377
http://dx.doi.org/10.1093/bioinformatics/bts054
http://dx.doi.org/10.1093/bioinformatics/bts054
https://deewiant.iki.fi/writings/thesis-bachelor.pdf
https://deewiant.iki.fi/writings/thesis-bachelor.pdf
http://dx.doi.org/10.1109/2.84877
http://dx.doi.org/10.1093/bioinformatics/btt528
http://dx.doi.org/10.1093/bioinformatics/btt528
http://gigaom.com/2013/06/06/facebook-unveils-presto-engine-for-querying-250-pb-data-warehouse/
http://gigaom.com/2013/06/06/facebook-unveils-presto-engine-for-querying-250-pb-data-warehouse/
http://gigaom.com/2013/06/06/facebook-unveils-presto-engine-for-querying-250-pb-data-warehouse/
https://nutch.apache.org
https://nutch.apache.org

Bibliography

[Obe] Markus F.X.J. Oberhumer. LZO real-time data compression lib-
rary. : http://www.oberhumer.com/opensource/
lzo/.

[OCo+10] Brian D. O’Connor, Barry Merriman, and Stanley F. Nelson.
‘SeqWare Query Engine: storing and searching sequence data
in the cloud’. In: BMC Bioinformatics 11.S-12 (2010), S2. :
10.1186/1471-2105-11-S12-S2.

[Ode+06] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dra-
gos, Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
Lex Spoon, and Matthias Zenger. An Overview of the Scala
Programming Language. Tech. rep. LAMP-REPORT-2006-001.
1015 Lausanne, Switzerland: École Polytechnique Fédérale de
Lausanne, 2006. : http://scala-lang.org/docu/
files/ScalaOverview.pdf.

[ODe13] Kevin O’Dell. How-to: Select the Right Hardware for Your
New Hadoop Cluster. 28th Aug. 2013. : http://blog.
cloudera.com/blog/2013/08/how-to-select-the-
right-hardware-for-your-new-hadoop-cluster/.

[Ols+08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, and Andrew Tomkins. ‘Pig Latin: A Not-So-Foreign
Language for Data Processing’. In: SIGMOD Conference.
Ed. by Jason Tsong-Li Wang. ACM, 2008, pp. 1099–1110. :
978-1-60558-102-6. : 10.1145/1376616.1376726.

[OMa13] Owen O’Malley. ‘Optimizing Hive Queries’. 27th Mar. 2013.
: http://www.slideshare.net/oom65/optimize-
hivequeriespptx.

[ORC13] [HIVE-3874] Create a new Optimized Row Columnar file format
for Hive. Apache Software Foundation. 2013. : https:
//issues.apache.org/jira/browse/HIVE-3874.

[ORM] LanguageManual ORC. Apache Software Foundation. :
https://cwiki.apache.org/confluence/display/
Hive/LanguageManual+ORC.

[Ous+11] John K. Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra,
Aravind Narayanan, Diego Ongaro, Guru M. Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan
Stutsman. ‘The case for RAMCloud’. In: Communications of

135

http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://dx.doi.org/10.1186/1471-2105-11-S12-S2
http://scala-lang.org/docu/files/ScalaOverview.pdf
http://scala-lang.org/docu/files/ScalaOverview.pdf
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://dx.doi.org/10.1145/1376616.1376726
http://www.slideshare.net/oom65/optimize-hivequeriespptx
http://www.slideshare.net/oom65/optimize-hivequeriespptx
https://issues.apache.org/jira/browse/HIVE-3874
https://issues.apache.org/jira/browse/HIVE-3874
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

B

the ACM 54.7 (2011), pp. 121–130. : 10.1145/1965724
.1965751.

[Pab+13] Stephan Pabinger, Andreas Dander, Maria Fischer, Rene Sna-
jder, Michael Sperk, Mirjana Efremova, Birgit Krabichler, Mi-
chael R. Speicher, Johannes Zschocke, and Zlatko Trajanoski.
‘A survey of tools for variant analysis of next-generation gen-
ome sequencing data’. In: Briefings in Bioinformatics (2013).
: 10.1093/bib/bbs086.

[Par] Parquet: Columnar Storage for Hadoop. : http : / /
parquet.io.

[Pat04] David A. Patterson. ‘Latency lags bandwith’. In: Communica-
tions of the ACM 47.10 (2004), pp. 71–75. : 10.1145/102
2594.1022596.

[Pav+09] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker.
‘A Comparison of Approaches to Large-Scale Data Analysis’.
In: SIGMOD Conference. Ed. by Ugur Çetintemel, Stanley B.
Zdonik, Donald Kossmann, and Nesime Tatbul. ACM, 2009,
pp. 165–178. : 978-1-60558-551-2. : 10.1145/15598
45.1559865.

[Pav13] Igor Pavlov. LZMA SDK (Software Development Kit). 2013. :
http://www.7-zip.org/sdk.html.

[Pea+88] William R. Pearson and David J. Lipman. ‘Improved tools for
biological sequence comparison’. In: PNAS 85.8 (Apr. 1988),
pp. 2444–2448. PMID: 3162770.

[Pet+61] W.W. Peterson and D. T. Brown. ‘Cyclic Codes for Error Detec-
tion’. In: Proceedings of the IRE 49.1 (1961), pp. 228–235. :
0096-8390. : 10.1109/JRPROC.1961.287814.

[Pig] Apache Pig. The Apache Software Foundation. : https:
//pig.apache.org.

[Pik+93] Rob Pike and KenThompson. ‘HelloWorld or Καλημέρα κόσμε
or こんにちは 世界’. In: USENIX Winter. 1993, pp. 43–50.
: http://doc.cat-v.org/plan_9/4th_edition/
papers/utf.

136

http://dx.doi.org/10.1145/1965724.1965751
http://dx.doi.org/10.1145/1965724.1965751
http://dx.doi.org/10.1093/bib/bbs086
http://parquet.io
http://parquet.io
http://dx.doi.org/10.1145/1022594.1022596
http://dx.doi.org/10.1145/1022594.1022596
http://dx.doi.org/10.1145/1559845.1559865
http://dx.doi.org/10.1145/1559845.1559865
http://www.7-zip.org/sdk.html
http://www.ncbi.nlm.nih.gov/pubmed/3162770
http://dx.doi.org/10.1109/JRPROC.1961.287814
https://pig.apache.org
https://pig.apache.org
http://doc.cat-v.org/plan_9/4th_edition/papers/utf
http://doc.cat-v.org/plan_9/4th_edition/papers/utf

Bibliography

[Pir+11a] Luca Pireddu, Simone Leo, and Gianluigi Zanetti. ‘MapRedu-
cing a Genomic Sequencing Workflow’. In: Proceedings of the
second international workshop on MapReduce and its applica-
tions. MapReduce ’11. San Jose, California, USA: ACM, 2011,
pp. 67–74. : 978-1-4503-0700-0. : 10.1145/1996092
.1996106.

[Pir+11b] Luca Pireddu, Simone Leo, and Gianluigi Zanetti. ‘SEAL: a
distributed short read mapping and duplicate removal tool’.
In: Bioinformatics 27.15 (2011), pp. 2159–2160. : 10.1093
/bioinformatics/btr325.

[Pla+11] Hasso Plattner and Alexander Zeier. In-Memory Data Manage-
ment. An Inflection Point for Enterprise Applications. Berlin,
Heidelberg: Springer-Verlag, 2011. : 978-3-642-19362-0.
: 10.1007/978-3-642-19363-7.

[Pra+12] Brian Pratt, J. Jeffry Howbert, Natalie I. Tasman, and Erik
J. Nilsson. ‘MR-Tandem: parallel X!Tandem using Hadoop
MapReduce on Amazon Web Services’. In: Bioinformatics 28.1
(2012), pp. 136–137. : 10.1093/bioinformatics/btr6
15.

[Pre] Presto | Distributed SQL Query Engine for Big Data. Facebook.
: http://prestodb.io.

[Pri71] Ludwig Prinn. De Vermiis Mysteriis. Ed. by Robert Bloch and
H. P. Lovecraft. 1271.

[Pyt] Python Programming Language. Python Software Foundation.
: http://www.python.org/.

[Qui+10] Aaron R. Quinlan and Ira M. Hall. ‘BEDTools: a flexible suite
of utilities for comparing genomic features’. In: Bioinformatics
26.6 (2010), pp. 841–842. : 10.1093/bioinformatics/
btq033.

[Red] Amazon Redshift. Amazon Web Services, Inc. : https:
//aws.amazon.com/redshift/.

[Ree10] Benjamin Reed. “Hadoop @ Yahoo! an admin’s perspective”.
2010. : http://www.cs.duke.edu/smdb10/_files/
toc_data/SMDB/panel/reed.pdf.

[Rey98] Carson Reynolds. ‘As WeMay Communicate’. In: ACM SIGCHI
Bulletin 30.3 (July 1998), pp. 40–44. : 0736-6906. : 10
.1145/565711.565714.

137

http://dx.doi.org/10.1145/1996092.1996106
http://dx.doi.org/10.1145/1996092.1996106
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1093/bioinformatics/btr325
http://dx.doi.org/10.1007/978-3-642-19363-7
http://dx.doi.org/10.1093/bioinformatics/btr615
http://dx.doi.org/10.1093/bioinformatics/btr615
http://prestodb.io
http://www.python.org/
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1093/bioinformatics/btq033
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
http://www.cs.duke.edu/smdb10/_files/toc_data/SMDB/panel/reed.pdf
http://www.cs.duke.edu/smdb10/_files/toc_data/SMDB/panel/reed.pdf
http://dx.doi.org/10.1145/565711.565714
http://dx.doi.org/10.1145/565711.565714

B

[Rez+06] S. Rezaei, M. Monwar, and J. Bai. ‘Performance Comparison of
MPI-Based Parallel Multiple Sequence Alignment Algorithm
Using Single and Multiple Guide Trees’. In: Cognitive Informat-
ics, 2006. ICCI 2006. 5th IEEE International Conference on. Vol. 1.
2006, pp. 595–600. : 10.1109/COGINF.2006.365552.

[Rob+11] Thomas Robinson, Sarah Killcoyne, Ryan Bressler, and John
Boyle. ‘SAMQA: error classification and validation of high-
throughput sequenced read data’. In: BMC Genomics 12.1
(2011), p. 419. : 1471-2164. : 10.1186/1471-2164-1
2-419. PMID: 21851633.

[Rya13] Dmitriy Ryaboy. ‘Announcing Parquet 1.0: Columnar Storage
for Hadoop’. In: Twitter Blog (30th July 2013). : https:
//blog.twitter.com/2013/announcing-parquet-1
0-columnar-storage-for-hadoop.

[Sag90] Carl Sagan. ‘Why We Need To Understand Science’. In: The
Skeptical Inquirer 14 (3 1990). : http://www.csicop.
org / si / show / why _ we _ need _ to _ understand _
science.

[SAM13] Sequence Alignment/Map Format Specification. Tech. rep.
Version 321f786. The SAM/BAM Format Specification
Working Group, 29th May 2013. : http://samtools.
sourceforge.net/SAMv1.pdf.

[Sch+] Michael Schatz, Jeremy Chambers, Avijit Gupta, Rushil Gupta,
David Kelley, Jeremy Lewi, Deepak Nettem, Dan Sommer,
and Mihai Pop. Contrail: Assembly of Large Genomes using
Cloud Computing. : http://sourceforge.net/apps/
mediawiki/contrail-bio/.

[Sch+12] Sebastian Schönherr, Lukas Forer, Hansi Weißensteiner,
Florian Kronenberg, Günther Specht, and Anita Kloss-
Brandstätter. ‘Cloudgene: A graphical execution platform for
MapReduce programs on private and public clouds’. In: BMC
Bioinformatics 13 (2012), p. 200. : 10.1186/1471-2105-
13-200.

[Sch+13a] André Schumacher, Luca Pireddu, Aleksi Kallio, Matti Niemen-
maa, Eija Korpelainen, Gianluigi Zanetti, and Keijo Heljanko.
‘Scripting for large-scale sequencing based on Hadoop’.
In: EMBnet.journal 19.A (2013). : http : / / journal .
embnet.org/index.php/embnetjournal/article/
view/628.

138

http://dx.doi.org/10.1109/COGINF.2006.365552
http://dx.doi.org/10.1186/1471-2164-12-419
http://dx.doi.org/10.1186/1471-2164-12-419
http://www.ncbi.nlm.nih.gov/pubmed/21851633
https://blog.twitter.com/2013/announcing-parquet-10-columnar-storage-for-hadoop
https://blog.twitter.com/2013/announcing-parquet-10-columnar-storage-for-hadoop
https://blog.twitter.com/2013/announcing-parquet-10-columnar-storage-for-hadoop
http://www.csicop.org/si/show/why_we_need_to_understand_science
http://www.csicop.org/si/show/why_we_need_to_understand_science
http://www.csicop.org/si/show/why_we_need_to_understand_science
http://samtools.sourceforge.net/SAMv1.pdf
http://samtools.sourceforge.net/SAMv1.pdf
http://sourceforge.net/apps/mediawiki/contrail-bio/
http://sourceforge.net/apps/mediawiki/contrail-bio/
http://dx.doi.org/10.1186/1471-2105-13-200
http://dx.doi.org/10.1186/1471-2105-13-200
http://journal.embnet.org/index.php/embnetjournal/article/view/628
http://journal.embnet.org/index.php/embnetjournal/article/view/628
http://journal.embnet.org/index.php/embnetjournal/article/view/628

Bibliography

[Sch+13b] André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi
Kallio, Eija Korpelainen, Gianluigi Zanetti, and Keijo Heljanko.
‘SeqPig: simple and scalable scripting for large sequencing
data sets in Hadoop’. In: Bioinformatics (2013). : 10.1093
/bioinformatics/btt601.

[Sch03] Philip Schwan. ‘Lustre: Building a File Fystem for 1,000-node
Clusters’. In: Proceedings of the 2003 Linux Symposium. Cluster
File Systems, Inc. 2003. : https://www.kernel.org/
doc/ols/2003/ols2003-pages-380-386.pdf.

[Sch09] Michael C. Schatz. ‘CloudBurst: highly sensitive read mapping
with MapReduce’. In: Bioinformatics 25.11 (2009), pp. 1363–
1369. : 10.1093/bioinformatics/btp236.

[SDR94] Synchronous Dynamic Random Access Memory (SDRAM).
June 1994. : http://www.jedec.org/standards-
documents/docs/sdram-311.

[SeF] SequenceFile. API documentation. Version 2.2.0. : https:
//hadoop.apache.org/docs/r2.2.0/api/org/
apache/hadoop/io/SequenceFile.html.

[Seq] SeqPig Manual. : http://seqpig.sourceforge.net.
[Sew] Julian Seward. bzip2. : http://www.bzip.org.
[Sha] Shark. : https://github.com/amplab/shark/wiki.
[Sha+12] Weiyi Shang, Bram Adams, and Ahmed E. Hassan. ‘Using Pig

as a data preparation language for large-scale mining software
repositories studies: An experience report’. In: Journal of Sys-
tems and Software 85.10 (2012), pp. 2195–2204. : 10.1016
/j.jss.2011.07.034.

[SHA12] [SHARK-96] Port partial dag execution back to trunk. 2012. :
https://spark-project.atlassian.net/browse/
SHARK-96.

[SHA13] [SHARK-147] map join runs abnormal in cluster mode. 2013. :
https://spark-project.atlassian.net/browse/
SHARK-147.

[Sha48] C. E. Shannon. ‘A Mathematical Theory of Communication’.
In: Bell System Technical Journal 27 (July and October 1948),
pp. 379–423, 623–656. : http://cm.bell-labs.com/
cm/ms/what/shannonday/paper.html.

139

http://dx.doi.org/10.1093/bioinformatics/btt601
http://dx.doi.org/10.1093/bioinformatics/btt601
https://www.kernel.org/doc/ols/2003/ols2003-pages-380-386.pdf
https://www.kernel.org/doc/ols/2003/ols2003-pages-380-386.pdf
http://dx.doi.org/10.1093/bioinformatics/btp236
http://www.jedec.org/standards-documents/docs/sdram-311
http://www.jedec.org/standards-documents/docs/sdram-311
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/SequenceFile.html
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/SequenceFile.html
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/SequenceFile.html
http://seqpig.sourceforge.net
http://www.bzip.org
https://github.com/amplab/shark/wiki
http://dx.doi.org/10.1016/j.jss.2011.07.034
http://dx.doi.org/10.1016/j.jss.2011.07.034
https://spark-project.atlassian.net/browse/SHARK-96
https://spark-project.atlassian.net/browse/SHARK-96
https://spark-project.atlassian.net/browse/SHARK-147
https://spark-project.atlassian.net/browse/SHARK-147
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

B

[ShC] Compatibility with Apache Hive. : https://github.
com / amplab / shark / wiki / Compatibility - with -
Apache-Hive.

[Sim71] Herbert A. Simon. ‘Designing Organizations for an
Information-Rich World’. In: Computers, Communication, and
the Public Interest. Ed. by Martin Greenberger. The Johns
Hopkins Press, 1971, pp. 40–41. : 978-0-8018-1135-7.

[Sna] snappy - A fast compressor/decompressor. : https://code.
google.com/p/snappy/.

[Spa] Spark. UC Berkeley AMPLab. : http://www.spark-
project.org.

[SPD] : https : / / github . com / rxin / shark / tree /
partial_dag.

[Ste10] Lincoln Stein. ‘The case for cloud computing in genome infor-
matics’. In: Genome Biology 11.5 (2010), p. 207. : 1465-6906.
: 10.1186/gb-2010-11-5-207. PMID: 20441614.

[StI] SQL-in-Hadoop : The Stinger Initiative. Hortonworks Inc. :
https://hortonworks.com/stinger/.

[Sto+10] Inc. Storspeed and NetApp. NFS Version 4 Minor Version 1.
Ed. by S. Shepler, M. Eisler, and D. Noveck. RFC 5661 (Proposed
Standard). Internet Engineering Task Force (IETF), Jan. 2010.
: https://tools.ietf.org/html/rfc5661.

[Str13] Bjarne Stroustrup. The C++ Programming Language. Fourth
edition. Addison-Wesley Professional, May 2013. :
978-0-3215-6384-2.

[Sun90] Vaidy S. Sunderam. ‘PVM: A Framework for Parallel Distrib-
uted Computing’. In: Concurrency - Practice and Experience 2.4
(1990), pp. 315–339. : 10.1002/cpe.4330020404.

[Sut09] Herb Sutter. ‘The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software’. In: (Aug. 2009–). : http:
//www.gotw.ca/publications/concurrency-ddj.
htm.

[Tay10] Ronald C. Taylor. ‘An overview of the Hadoop/MapReduce/H-
Base framework and its current applications in bioinformatics’.
In: BMC Bioinformatics 11.S-12 (2010), S1. : 10.1186/147
1-2105-11-S12-S1.

140

https://github.com/amplab/shark/wiki/Compatibility-with-Apache-Hive
https://github.com/amplab/shark/wiki/Compatibility-with-Apache-Hive
https://github.com/amplab/shark/wiki/Compatibility-with-Apache-Hive
https://code.google.com/p/snappy/
https://code.google.com/p/snappy/
http://www.spark-project.org
http://www.spark-project.org
https://github.com/rxin/shark/tree/partial_dag
https://github.com/rxin/shark/tree/partial_dag
http://dx.doi.org/10.1186/gb-2010-11-5-207
http://www.ncbi.nlm.nih.gov/pubmed/20441614
https://hortonworks.com/stinger/
https://tools.ietf.org/html/rfc5661
http://dx.doi.org/10.1002/cpe.4330020404
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://dx.doi.org/10.1186/1471-2105-11-S12-S1
http://dx.doi.org/10.1186/1471-2105-11-S12-S1

Bibliography

[TeH] Apache Tez. Hortonworks Inc. : https://hortonworks.
com/hadoop/tez/.

[Tez] Tez. The Apache Software Foundation. : http://tez.
incubator.apache.org/.

[Thu+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. ‘Hive - A Warehousing Solution Over a
Map-Reduce Framework’. In: PVLDB 2.2 (2009), pp. 1626–1629.
: http://www.vldb.org/pvldb/2/vldb09-938
.pdf.

[Thu+10a] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Ning Zhang, Suresh Anthony, Hao Liu, and
Raghotham Murthy. ‘Hive – A Petabyte Scale Data Ware-
house Using Hadoop’. In: ICDE. Ed. by Feifei Li, Mirella
M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa,
Gerhard Weikum, Michael J. Carey, Fabio Casati, Edward
Y. Chang, Ioana Manolescu, Sharad Mehrotra, Umeshwar
Dayal, and Vassilis J. Tsotras. IEEE, 2010, pp. 996–1005. :
978-1-4244-5444-0. : 10.1109/ICDE.2010.5447738.

[Thu+10b] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba
Borthakur, Namit Jain, Joydeep Sen Sarma, Raghotham
Murthy, and Hao Liu. ‘Data Warehousing and Analytics
Infrastructure at Facebook’. In: SIGMOD Conference. Ed. by
Ahmed K. Elmagarmid and Divyakant Agrawal. ACM, 2010,
pp. 1013–1020. : 978-1-4503-0032-2. : 10.1145/1807
167.1807278.

[TPC] TPC-DS. : http://www.tpc.org/tpcds/.
[Tra13] Martin Traverso. ‘Presto: Interacting with petabytes of data

at Facebook’. In: (6th Nov. 2013). : https : / / www .
facebook . com / notes / facebook - engineering /
presto- interacting- with- petabytes- of- data-
at-facebook/10151786197628920.

[Tre13] Trevni Specification. Version 0.1. Apache Software Foundation.
21st Feb. 2013. : https://avro.apache.org/docs/1
.7.4/trevni/spec.html.

[TrG] : https://github.com/cutting/trevni.

141

https://hortonworks.com/hadoop/tez/
https://hortonworks.com/hadoop/tez/
http://tez.incubator.apache.org/
http://tez.incubator.apache.org/
http://www.vldb.org/pvldb/2/vldb09-938.pdf
http://www.vldb.org/pvldb/2/vldb09-938.pdf
http://dx.doi.org/10.1109/ICDE.2010.5447738
http://dx.doi.org/10.1145/1807167.1807278
http://dx.doi.org/10.1145/1807167.1807278
http://www.tpc.org/tpcds/
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920
https://avro.apache.org/docs/1.7.4/trevni/spec.html
https://avro.apache.org/docs/1.7.4/trevni/spec.html
https://github.com/cutting/trevni

B

[TrH12] [HIVE-3585] Integrate Trevni as another columnar oriented file
format. Apache Software Foundation. 2012. : https://
issues.apache.org/jira/browse/HIVE-3585.

[Tuf90] Edward R. Tufte. Envisioning Information. Graphics Press, May
1990, p. 51. : 978-0-9613921-1-6.

[Twi] Twitter. : https://twitter.com.
[UTF] UTF-8, UTF-16, UTF-32 & BOM. Unicode, Inc. : http://

www.unicode.org/faq/utf_bom.html.
[Wad71] C. P. Wadsworth. ‘Semantics and Pragmatics of the Lambda-

Calculus.’ Doctoral thesis. University of Oxford, 1971.
[Wal05] Chip Walter. “Kryder’s Law”. In: Scientific American 293 (2

2005), pp. 32–33. : 10.1038/scientificamerican08
05-32.

[Wat12] John K. Waters. “Apache Hadoop Community Promotes YARN
– But Don’t Call it MapReduce 2”. In: WatersWorks (15th Aug.
2012). : http://adtmag.com/blogs/watersworks/
2012/08/apache-yarn-promotion.aspx.

[WAz] Windows Azure. Microsoft Corporation. : https://www.
windowsazure.com.

[Wei10] Kevin Weil. ‘Hadoop at Twitter’. 2010. : http://www.
slideshare.net/kevinweil/hadoop-at-twitter-
hadoop-summit-2010.

[Whi09] Tom White. Hadoop: The Definitive Guide. MapReduce
for the Cloud. O’Reilly, 2009, pp. I–XIX, 1–501. :
978-0-596-52197-4.

[Wie] Dag Wieërs. Dstat: Versatile resource statistics tool. : http:
//dag.wieers.com/home-made/dstat/.

[Wie+75] Gio Wiederhold, James F. Fries, and Stephen Weyl. ‘Struc-
tured organization of clinical data bases’. In: AFIPS National
Computer Conference. Vol. 44. AFIPS Conference Proceedings.
AFIPS Press, 1975, pp. 479–485. : 10.1145/1499949.15
00043.

[Wir95] Niklaus Wirth. ‘A Plea for Lean Software’. In: IEEE Computer
28.2 (Feb. 1995), pp. 64–68. : 10.1109/2.348001.

[Wri] Writable. API documentation. Version 2.2.0. : https :
//hadoop.apache.org/docs/r2.2.0/api/org/
apache/hadoop/io/Writable.html.

142

https://issues.apache.org/jira/browse/HIVE-3585
https://issues.apache.org/jira/browse/HIVE-3585
https://twitter.com
http://www.unicode.org/faq/utf_bom.html
http://www.unicode.org/faq/utf_bom.html
http://dx.doi.org/10.1038/scientificamerican0805-32
http://dx.doi.org/10.1038/scientificamerican0805-32
http://adtmag.com/blogs/watersworks/2012/08/apache-yarn-promotion.aspx
http://adtmag.com/blogs/watersworks/2012/08/apache-yarn-promotion.aspx
https://www.windowsazure.com
https://www.windowsazure.com
http://www.slideshare.net/kevinweil/hadoop-at-twitter-hadoop-summit-2010
http://www.slideshare.net/kevinweil/hadoop-at-twitter-hadoop-summit-2010
http://www.slideshare.net/kevinweil/hadoop-at-twitter-hadoop-summit-2010
http://dag.wieers.com/home-made/dstat/
http://dag.wieers.com/home-made/dstat/
http://dx.doi.org/10.1145/1499949.1500043
http://dx.doi.org/10.1145/1499949.1500043
http://dx.doi.org/10.1109/2.348001
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/Writable.html
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/Writable.html
https://hadoop.apache.org/docs/r2.2.0/api/org/apache/hadoop/io/Writable.html

Bibliography

[Xin+12] Reynold Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin,
Scott Shenker, and Ion Stoica. ‘Shark: SQL and Rich Analytics
at Scale’. In: CoRR abs/1211.6176 (2012). arXiv: 1211.6176
[cs.DB].

[Ya!] Yahoo! : http://www.yahoo.com.
[Yor84] Beatrice Yormark, ed. SIGMOD’84, Proceedings of Annual Meet-

ing, Boston, Massachusetts, June 18-21, 1984. ACM Press, 1984.
[YRN] Hadoop YARN. A next-generation framework for Hadoop data

processing. Hortonworks Inc. : https://hortonworks.
com/hadoop/yarn/.

[YRN13] Apache Hadoop NextGen MapReduce (YARN). Version 2.2.0.
7th Oct. 2013. : https://hadoop.apache.org/docs/
r2.2.0/hadoop- yarn/hadoop- yarn- site/YARN.
html.

[Zah+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott
Shenker, and Ion Stoica. ‘Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Comput-
ing’. In: NSDI. San Jose, CA, USA: USENIX Association, Apr.
2012, pp. 15–28. : 978-931971-92-8. : https://www.
usenix.org/system/files/conference/nsdi12/
nsdi12-final138.pdf.

[Zoo] Apache ZooKeeper. The Apache Software Foundation. :
https://zookeeper.apache.org.

[Zop] zopfli - Zopfli Compression Algorithm. : https://code.
google.com/p/zopfli/.

143

http://arxiv.org/abs/1211.6176
http://arxiv.org/abs/1211.6176
http://www.yahoo.com
https://hortonworks.com/hadoop/yarn/
https://hortonworks.com/hadoop/yarn/
https://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://zookeeper.apache.org
https://code.google.com/p/zopfli/
https://code.google.com/p/zopfli/

	Contents
	List of abbreviations
	List of Tables
	List of Figures
	List of Listings
	1 Introduction
	2 MapReduce
	2.1 Execution model
	2.2 Distributed file system

	3 Apache Hadoop
	3.1 Apache Pig
	3.2 Apache Hive
	3.3 Apache HBase

	4 Hadoop in bioinformatics
	4.1 Hadoop-BAM
	4.2 SeqPig

	5 Interactivity
	5.1 Apache Spark
	5.2 Shark
	5.3 Cloudera Impala

	6 Storage formats
	6.1 Row-oriented binary storage formats
	Compression schemes
	BAM and BCF
	Considerations for bioinformatical file format design

	6.2 RCFile
	6.3 ORC
	6.4 Trevni
	6.5 Parquet

	7 Experimental procedure
	7.1 Accessing sequencing data
	7.2 Intended procedure
	7.3 Issues encountered
	7.4 Final procedure
	7.5 Setup

	8 Experimental results
	8.1 Data set size
	8.2 Query performance
	Overviews by framework
	Overviews by storage format
	A closer look at speedups
	Detailed comparisons

	9 Conclusions
	A Experimental configuration
	A.1 Hadoop
	A.2 Hive
	A.3 Shark
	A.4 Impala

	B HiveQL statements used
	B.1 Table creation and settings
	B.2 Queries on the full data set
	B.3 Exploratory queries on the reduced data set

	Bibliography

