141 research outputs found

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm

    Get PDF
    This document is the Accepted Manuscript version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the problem of cooperative communication between relays and base station in an advanced MIMO-OFDM framework, under the assumption that the relays are supplied by electric power drawn from energy harvesting (EH) sources. In particular, we focus on the relay selection, with the goal to guarantee the required performance in terms of capacity. In order to maximize the data throughput under the EH constraint, we model the transmission scheme as a non-transferable coalition formation game, with characteristic function based on an approximated capacity expression. Then, we introduce a powerful mathematical tool inherent to coalitional game theory, namely: the Shapley value (Sv) to provide a reliable solution concept to the game. The selected relays will form a virtual dynamically-configuredMIMO network that is able to transmit data to destination using efficient space-time coding techniques. Numerical results, obtained by simulating the EH-powered cooperativeMIMO-OFDMtransmission with Algebraic Space-Time Coding (ASTC), prove that the proposed coalitional game-based relay selection allows to achieve performance very close to that obtained by the same system operated by guaranteed power supply. The proposed methodology is finally compared with some recent related state-of-the-art techniques showing clear advantages in terms of link performance and goodput.Peer reviewe

    Adaptive relaying protocol multiple-input multiple-output orthogonal frequency division multiplexing systems

    Get PDF
    In wireless broadband communications, orthogonal frequency division multiplexing (OFDM) has been adopted as a promising technique to mitigate multi-path fading and provide high spectral efficiency. In addition, cooperative communication can explore spatial diversity where several users or nodes share their resources and cooperate through distributed transmission. The concatenation of the OFDM technique with relaying systems can enhance the overall performance in terms of spectral efficiency and improve robustness against the detrimental effects of fading. Hybrid relay selection is proposed to overcome the drawbacks of conventional forwarding schemes. However, exciting hybrid relay protocols may suffer some limitations when used for transmission over frequency-selective channels. The combination of cooperative protocols with OFDM systems has been extensively utilized in current wireless networks, and have become a promising solution for future high data rate broadband communication systems including 3D video transmission. This thesis covers two areas of high data rate networks. In the first part, several techniques using cooperative OFDM systems are presented including relay selection, space time block codes, resource allocation and adaptive bit and power allocation to introduce diversity. Four (4) selective OFDM relaying schemes are studied over wireless networks; selective OFDM; selective OFDMA; selective block OFDM and selective unequal block OFDM. The closed-form expression of these schemes is derived. By exploiting the broadcast nature, it is demonstrated that spatial diversity can be improved. The upper bound of outage probability for the protocols is derived. A new strategy for hybrid relay selection is proposed to improve the system performance by removing the sub-carriers that experience deep fading. The per subcarrier basis selection is considered with respect to the predefined threshold signal-to-noise ratio. The closed-form expressions of the proposed protocol in terms of bit error probability and outage probability are derived and compared with conventional hybrid relay selection. Adaptive bit and power allocation is also discussed to improve the system performance. Distributed space frequency coding applied to hybrid relay selection to obtain full spatial and full data rate transmission is explored. Two strategies, single cluster and multiple clusters, are considered for the Alamouti code at the destination by using a hybrid relay protocol. The power allocation with and without sub-carrier pairing is also investigated to mitigate the effect of multipath error propagation in frequency-selective channels. The second part of this thesis investigates the application of cooperative OFDM systems to high data rate transmission. Recently, there has been growing attention paid to 3D video transmission over broadband wireless channels. Two strategies for relay selection hybrid relay selection and first best second best are proposed to implement unequal error protection in the physical layer over error prone channels. The closed-form expressions of bit error probability and outage probability for both strategies are examined. The peak signal-to-noise ratio is presented to show the quality of reconstruction of the left and right views

    Radio resource allocation in relay based OFDMA cellular networks

    Get PDF
    PhDAdding relay stations (RS) between the base station (BS) and the mobile stations (MS) in a cellular system can extend network coverage, overcome multi-path fading and increase the capacity of the system. This thesis considers the radio resource allocation scheme in relay based cellular networks to ensure high-speed and reliable communication. The goal of this research is to investigate user fairness, system throughput and power consumption in wireless relay networks through considering how best to manage the radio resource. This thesis proposes a two-hop proportional fairness (THPF) scheduling scheme fair allocation, which is considered both in the first time subslot between direct link users and relay stations, and the second time subslot among relay link users. A load based relay selection algorithm is also proposed for a fair resource allocation. The transmission mode (direct transmission mode or relay transmission mode) of each user will be adjusted based on the load of the transmission node. Power allocation is very important for resource efficiency and system performance improvement and this thesis proposes a two-hop power allocation algorithm for energy efficiency, which adjusts the transmission power of the BS and RSs to make the data rate on the two hop links of one RS match each other. The power allocation problem of multiple cells with inter-cell interference is studied. A new multi-cell power allocation scheme is proposed from non-cooperative game theory; this coordinates the inter-cell interference and operates in a distributed manner. The utility function can be designed for throughput improvement and user fairness respectively. Finally, the proposed algorithms in this thesis are combined, and the system performance is evaluated. The joint radio resource allocation algorithm can achieve a very good tradeoff between throughput and user fairness, and also can significantly improve energy efficiency

    Adaptive OFDM Cooperative Systems

    Get PDF
    Cooperative communication is a promising technique for wireless communication systems where wireless nodes cooperate together in transmitting their information. Such communication transmission technique, which realizes the multiple antenna arrays in a distributed manner over multiple wireless nodes, succeeds in extending the network coverage, increasing throughput, improving both link reliability and spectral efficiency. Available channel state information at the transmitting nodes can be used to design adaptive transmission schemes for improving the overall system performance. Throughout our work, we adaptively change loaded power and/or bit to the Orthogonal Frequency Division Multiplexing (OFDM) symbol in order to minimize bit error rate or maximize the throughput. In the first part of this dissertation, we consider single-relay OFDM system with amplify-and-forward relaying. We propose three algorithms to minimize the bit error rate under total power constraint and fixed transmission rate. These algorithms are optimal power loading, optimal bit loading and optimal bit and power loading. Through Monte Carlo simulations we study the proposed system performance and discuss the effect of relay location and channel estimation. This study shows that the proposed algorithms result in exploiting the multi-path diversity and achieving extra coding gain. In the second part, we extend the problem to a multi-relay OFDM network but with decode-and-forward relaying. We propose an adaptive power loading algorithm to minimize the bit error rate under total power constraint based on two relay selection strategies. The proposed system leads to achieve both multi-path and cooperative spatial diversity using maximal-ratio combiner for the detection. In the last part, we consider also multi-relay network but with amplify and forward relaying. We optimize the bit loading coefficients to maximize the throughput under target bit error rate constraint. The proposed algorithm is considered more practical since it takes into consideration the channel estimation quality. The considered adaptive system has less complexity compared with other adaptive systems through reducing the feedback amount. Furthermore, the full network channel state information is needed only at the destination

    Channel estimation and parameters acquisition systems employing cooperative diversity

    Get PDF
    Doutoramento em Engenharia Eletrotécnica e TelecomunicaçõesThis work investigates new channel estimation schemes for the forthcoming and future generation of cellular systems for which cooperative techniques are regarded. The studied cooperative systems are designed to re-transmit the received information to the user terminal via the relay nodes, in order to make use of benefits such as high throughput, fairness in access and extra coverage. The cooperative scenarios rely on OFDM-based systems employing classical and pilot-based channel estimators, which were originally designed to pointto-point links. The analytical studies consider two relaying protocols, namely, the Amplifyand-Forward and the Equalise-and-Forward, both for the downlink case. The relaying channels statistics show that such channels entail specific characteristics that comply to a proper filter and equalisation designs. Therefore, adjustments in the estimation process are needed in order to obtain the relay channel estimates, refine these initial estimates via iterative processing and obtain others system parameters that are required in the equalisation. The system performance is evaluated considering standardised specifications and the International Telecommunication Union multipath channel models.Este trabalho tem por objetivo o estudo de novos esquemas de estimação de canal para sistemas de comunicação móvel das próximas gerações, para os quais técnicas cooperativa são consideradas. Os sistemas cooperativos investigados neste trabalho estão projetados para fazerem uso de terminais adicionais a fim de retransmitir a informação recebida para o utilizador final. Desta forma, pode-se usurfruir de benefícios relacionados às comunicações cooperativas tais como o aumento do rendimento do sistema, fiabilidade e extra cobertura. Os cenários são basedos em sistemas OFDM que empregam estimadores de canal que fazem uso de sinais piloto e que originalmente foram projetados para ligações ponto a ponto. Os estudos analíticos consideram dois protocolos de encaminhamento, nomeadamente, Amplify-and-Forward e Equalise-and-Forward, ambos para o caso downlink. As estatísticas dos canais em estudo mostram que tais canais ocasionam características específicas para as quais o filtro do estimador e a equalisação devem ser apropridamente projetados. Estas características requerem ajustes que são necessários no processo de estimação a fim de estimar os canais, refinar as estimativas iniciais através de processos iterativos e ainda obter outros parâmetros do sistema que são necessários na equalização. O desempenho dos esquemas propostos são avaliados tendo em consideração especificações padronizadas e modelos de canal descritos na International Telecommunication Union

    Effects of channel estimation on multiuser virtual MIMO-OFDMA relay-based networks

    Get PDF
    In this paper, a practical multi-user cooperative transmission scheme denoted as Virtual Maximum Ratio Transmission (VMRT) for Multiple-Input Multiple-Output - Orthogonal Frequency Division Multiple Access (MIMO-OFDMA) Relay-based networks is proposed and evaluated in the presence of a realistic channel estimation algorithm. It is shown that this scheme is robust against channel estimation errors and offers diversity and array gain keeping the complexity low, although the multi-user and multi-antenna channel estimation algorithm is simple and efficient. Diversity gains larger than 4 can be easily obtained with reduced number of relays. Thus, this scheme can be used to extend coverage or increase system throughput by using simple cooperative OFDMA-based relays

    Data-precoded algorithm for multiple-relay-assisted systems

    Get PDF
    A data-precoded relay-assisted (RA) scheme is proposed for a system cooperating with multiple relay nodes (RNs), each equipped with either a single-antenna or a two-antenna array. The classical RA systems using distributed space-time/frequency coding algorithms, because of the half-duplex constraint at the relays, require the use of a higher order constellation than in the case of a continuous link transmission from the base station to the user terminal. This implies a penalty in the power efficiency. The proposed precoding algorithm exploits the relation between QPSK and 4 L -QAM, by alternately transmitting through L relays, achieving full diversity, while significantly reducing power penalty. This algorithm explores the situations where a direct path (DP) is not available or has poor quality, and it is a promising solution to extend coverage or increase system capacity. We present the analytical derivation of the gain obtained with the data-precoded algorithm in comparison with distributed space-frequency block code (SFBC) ones. Furthermore, analysis of the pairwise error probability of the proposed algorithm is derived and confirmed with numerical results. We evaluate the performance of the proposed scheme and compare it relatively to the equivalent distributed SFBC scheme employing 16-QAM and non-cooperative schemes, for several link quality scenarios and scheme configurations, highlighting the advantages of the proposed scheme
    • …
    corecore