1,212 research outputs found

    Advances in Functional Decomposition: Theory and Applications

    Get PDF
    Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing. This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient. The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering. The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time. The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function. The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches. Finally we present two publications that resulted from the many detours we have taken along the winding path of our research

    Design Automation and Design Space Exploration for Quantum Computers

    Get PDF
    A major hurdle to the deployment of quantum linear systems algorithms and recent quantum simulation algorithms lies in the difficulty to find inexpensive reversible circuits for arithmetic using existing hand coded methods. Motivated by recent advances in reversible logic synthesis, we synthesize arithmetic circuits using classical design automation flows and tools. The combination of classical and reversible logic synthesis enables the automatic design of large components in reversible logic starting from well-known hardware description languages such as Verilog. As a prototype example for our approach we automatically generate high quality networks for the reciprocal 1/x1/x, which is necessary for quantum linear systems algorithms.Comment: 6 pages, 1 figure, in 2017 Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 201

    Path-Based Program Repair

    Full text link
    We propose a path-based approach to program repair for imperative programs. Our repair framework takes as input a faulty program, a logic specification that is refuted, and a hint where the fault may be located. An iterative abstraction refinement loop is then used to repair the program: in each iteration, the faulty program part is re-synthesized considering a symbolic counterexample, where the control-flow is kept concrete but the data-flow is symbolic. The appeal of the idea is two-fold: 1) the approach lazily considers candidate repairs and 2) the repairs are directly derived from the logic specification. In contrast to prior work, our approach is complete for programs with finitely many control-flow paths, i.e., the program is repaired if and only if it can be repaired at the specified fault location. Initial results for small programs indicate that the approach is useful for debugging programs in practice.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    AbsSynthe: abstract synthesis from succinct safety specifications

    Full text link
    In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision diagrams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers of the synthesis competition organized within the SYNT'14 workshop.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A recursive paradigm to solve Boolean relations

    Get PDF
    A Boolean relation can specify some types of flexibility of a combinational circuit that cannot be expressed with don't cares. Several problems in logic synthesis, such as Boolean decomposition or multilevel minimization, can be modeled with Boolean relations. However, solving Boolean relations is a computationally expensive task. This paper presents a novel recursive algorithm for solving Boolean relations. The algorithm has several features: efficiency, wide exploration of solutions, and customizable cost function. The experimental results show the applicability of the method in logic minimization problems and tangible improvements with regard to previous heuristic approaches
    • …
    corecore