1,065,706 research outputs found
BATCH-GE : batch analysis of next-generation sequencing data for genome editing assessment
Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome
Entrainer selection for pressure swing batch distillation
The feasibility of the separation of binary homoazeotropes with pressure swing batch
distillation by the application of an entrainer is studied. The feasibility studies are based
on the assumption of maximal separation and on the analysis of batch
distillation/stripping regions and the vessel path in the residue curve map of the ternary
mixture. The following configurations are investigated: batch rectifier, batch stripper,
double column batch rectifier and double column batch stripper. Rules for the selection
of an entrainer are suggested
Combinatorial batch codes
In this paper, we study batch codes, which were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai in [4]. A batch code specifies a method to distribute a database of [n] items among [m] devices (servers) in such a way that any [k] items can be retrieved by reading at most [t] items from each of the servers. It is of interest to devise batch codes that minimize the total storage, denoted by [N] , over all [m] servers.
We restrict out attention to batch codes in which every server stores a subset of the items. This is purely a combinatorial problem, so we call this kind of batch code a ''combinatorial batch code''. We only study the special case [t=1] , where, for various parameter situations, we are able to present batch codes that are optimal with respect to the storage requirement, [N] . We also study uniform codes, where every item is stored in precisely [c] of the [m] servers (such a code is said to have rate [1/c] ). Interesting new results are presented in the cases [c = 2, k-2] and [k-1] . In addition, we obtain improved existence results for arbitrary fixed [c] using the probabilistic method
- …
