56 research outputs found

    Refined estimation of time-varying baseline errors in airborne SAR interferometry

    Get PDF
    The processing of airborne synthetic aperture radar (SAR) data requires a precise compensation of the deviations of the platform movement from a straight line. This is usually carried out by recording the trajectory with a high-precision navigation system and correcting them during SAR focusing. However, due to the lack of accuracy in current navigation systems, residual motion errors persist in the images. Such residual motion errors are mainly noticeable in repeat-pass systems, where they are causing time-varying baseline errors, visible as artefacts in the derived phase maps. In this letter, a refined method for the estimation of time-varying baseline errors is presented. An improved multisquint processing approach is used for obtaining robust estimates of higher order baseline errors over the entire scene, even if parts of the scene are heavily decorrelated. In a subsequent step, the proposed method incorporates an external digital elevation model for detection of linear and constant components of the baseline error along azimuth. Calibration targets in the scene are not necessary.Peer Reviewe

    Bistatic Synthetic Aperture Radar Synchronization Processing

    Get PDF

    Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling

    Get PDF
    This paper presents an efficient phase preserving processor for the focusing of data acquired in sliding spotlight and TOPS (Terrain Observation by Progressive Scans) imaging modes. They share in common a linear variation of the Doppler centroid along the azimuth dimension, which is due to a steering of the antenna (either mechanically or electronically) throughout the data take. Existing approaches for the azimuth processing can become inefficient due to the additional processing to overcome the folding in the focused domain. In this paper a new azimuth scaling approach is presented to perform the azimuth processing, whose kernel is exactly the same for sliding spotlight and TOPS modes. The possibility to use the proposed approach to process ScanSAR data, as well as a discussion concerning staring spotlight, are also included. Simulations with point-targets and real data acquired by TerraSAR-X in sliding spotlight and TOPS modes are used to validate the developed algorithm

    Phase Error Calculation for Fast Time-Domain Bistatic SAR Algorithms

    Full text link

    Research progress on geosynchronous synthetic aperture radar

    Get PDF
    Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Time domain based image generation for synthetic aperture radar on field programmable gate arrays

    Get PDF
    Aerial images are important in different scenarios including surface cartography, surveillance, disaster control, height map generation, etc. Synthetic Aperture Radar (SAR) is one way to generate these images even through clouds and in the absence of daylight. For a wide and easy usage of this technology, SAR systems should be small, mounted to Unmanned Aerial Vehicles (UAVs) and process images in real-time. Since UAVs are small and lightweight, more robust (but also more complex) time-domain algorithms are required for good image quality in case of heavy turbulence. Typically the SAR data set size does not allow for ground transmission and processing, while the UAV size does not allow for huge systems and high power consumption to process the data. A small and energy-efficient signal processing system is therefore required. To fill the gap between existing systems that are capable of either high-speed processing or low power consumption, the focus of this thesis is the analysis, design, and implementation of such a system. A survey shows that most architectures either have to high power budgets or too few processing capabilities to match real-time requirements for time-domain-based processing. Therefore, a Field Programmable Gate Array (FPGA) based system is designed, as it allows for high performance and low-power consumption. The Global Backprojection (GBP) is implemented, as it is the standard time-domain-based algorithm which allows for highest image quality at arbitrary trajectories at the complexity of O(N3). To satisfy real-time requirements under all circumstances, the accelerated Fast Factorized Backprojection (FFBP) algorithm with a complexity of O(N2logN) is implemented as well, to allow for a trade-off between image quality and processing time. Additionally, algorithm and design are enhanced to correct the failing assumptions for Frequency Modulated Continuous Wave (FMCW) Radio Detection And Ranging (Radar) data at high velocities. Such sensors offer high-resolution data at considerably low transmit power which is especially interesting for UAVs. A full analysis of all algorithms is carried out, to design a highly utilized architecture for maximum throughput. The process covers the analysis of mathematical steps and approximations for hardware speedup, the analysis of code dependencies for instruction parallelism and the analysis of streaming capabilities, including memory access and caching strategies, as well as parallelization considerations and pipeline analysis. Each architecture is described in all details with its surrounding control structure. As proof of concepts, the architectures are mapped on a Virtex 6 FPGA and results on resource utilization, runtime and image quality are presented and discussed. A special framework allows to scale and port the design to other FPGAs easily and to enable for maximum resource utilization and speedup. The result is streaming architectures that are capable of massive parallelization with a minimum in system stalls. It is shown that real-time processing on FPGAs with strict power budgets in time-domain is possible with the GBP (mid-sized images) and the FFBP (any image size with a trade-off in quality), allowing for a UAV scenario

    SAR Image Formation via Subapertures and 2D Backprojection

    Get PDF
    Radar imaging requires the use of wide bandwidth and a long coherent processing interval, resulting in range and Doppler migration throughout the observation period. This migration must be compensated in order to properly image a scene of interest at full resolution and there are many available algorithms having various strengths and weaknesses. Here, a subaperture-based imaging algorithm is proposed, which first forms range-Doppler (RD) images from slow-time sub-intervals, and then coherently integrates over the resulting coarse-resolution RD maps to produce a full resolution SAR image. A two-dimensional backprojection-style approach is used to perform distortion-free integration of these RD maps. This technique benefits from many of the same benefits as traditional backprojection; however, the architecture of the algorithm is chosen such that several steps are shared with typical target detection algorithms. These steps are chosen such that no compromises need to be made to data quality, allowing for high quality imaging while also preserving data for implementation of detection algorithms. Additionally, the algorithm benefits from computational savings that make it an excellent imaging algorithm for implementation in a simultaneous SAR-GMTI architecture

    Improvement of Continuous Wave Radar Measurements in a Partially Controlled Environment

    Get PDF
    A continuous wave (CW) radar system within a partially controlled environment measures scale model aircraft for mono-static and fully polarimetric radar imaging. Due to a pseudo-far-field setup, wavefront curvature manifests primarily as geometric distortion. Recently proposed phase error models show induced geometric distortion to be independent of aperture size which are verified via measurement for Sensors and Signals Exploitation Laboratory (SSEL) collections. The partially controlled nature of the SSEL introduces stray infrastructural reflections into the measured data. Three methods to reduce stray signals are explored namely: true background subtraction (TBS), running average (RA), and spatial filtering (SF). Of the three methods, SF provides 15 dB improvement in dynamic range revealing underlying SSEL structure. Defocus due to quadratic phase error (QPE) is considered, but shown to be negligible for typical aperture sizes of 20 degrees
    • …
    corecore