2,347 research outputs found

    AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks

    Get PDF
    Segmentation of axon and myelin from microscopy images of the nervous system provides useful quantitative information about the tissue microstructure, such as axon density and myelin thickness. This could be used for instance to document cell morphometry across species, or to validate novel non-invasive quantitative magnetic resonance imaging techniques. Most currently-available segmentation algorithms are based on standard image processing and usually require multiple processing steps and/or parameter tuning by the user to adapt to different modalities. Moreover, only few methods are publicly available. We introduce AxonDeepSeg, an open-source software that performs axon and myelin segmentation of microscopic images using deep learning. AxonDeepSeg features: (i) a convolutional neural network architecture; (ii) an easy training procedure to generate new models based on manually-labelled data and (iii) two ready-to-use models trained from scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results show high pixel-wise accuracy across various species: 85% on rat SEM, 81% on human SEM, 95% on mice TEM and 84% on macaque TEM. Segmentation of a full rat spinal cord slice is computed and morphological metrics are extracted and compared against the literature. AxonDeepSeg is freely available at https://github.com/neuropoly/axondeepsegComment: 14 pages, 7 figure

    MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study

    Get PDF
    BACKGROUND: In patients with chronic spinal cord injury, imaging of the spinal cord and brain above the level of the lesion provides evidence of neural degeneration; however, the spatial and temporal patterns of progression and their relation to clinical outcomes are uncertain. New interventions targeting acute spinal cord injury have entered clinical trials but neuroimaging outcomes as responsive markers of treatment have yet to be established. We aimed to use MRI to assess neuronal degeneration above the level of the lesion after acute spinal cord injury. METHODS: In our prospective longitudinal study, we enrolled patients with acute traumatic spinal cord injury and healthy controls. We assessed patients clinically and by MRI at baseline, 2 months, 6 months, and 12 months, and controls by MRI at the same timepoints. We assessed atrophy in white matter in the cranial corticospinal tracts and grey matter in sensorimotor cortices by tensor-based analyses of T1-weighted MRI data. We used cross-sectional spinal cord area measurements to assess atrophy at cervical level C2/C3. We used myelin-sensitive magnetisation transfer (MT) and longitudinal relaxation rate (R1) maps to assess microstructural changes associated with myelin. We also assessed associations between MRI parameters and clinical improvement. All analyses of brain scans done with statistical parametric mapping were corrected for family-wise error. FINDINGS: Between Sept 17, 2010, and Dec 31, 2012, we recruited 13 patients and 18 controls. In the 12 months from baseline, patients recovered by a mean of 5·27 points per log month (95% CI 1·91–8·63) on the international standards for the neurological classification of spinal cord injury (ISNCSCI) motor score (p=0·002) and by 10·93 points per log month (6·20–15·66) on the spinal cord independence measure (SCIM) score (p<0·0001). Compared with controls, patients showed a rapid decline in cross-sectional spinal cord area (patients declined by 0·46 mm per month compared with a stable cord area in controls; p<0·0001). Patients had faster rates than controls of volume decline of white matter in the cranial corticospinal tracts at the level of the internal capsule (right Z score 5·21, p=0·0081; left Z score 4·12, p=0·0004) and right cerebral peduncle (Z score 3·89, p=0·0302) and of grey matter in the left primary motor cortex (Z score 4·23, p=0·041). Volume changes were paralleled by significant reductions of MT and R1 in the same areas and beyond. Improvements in SCIM scores at 12 months were associated with a reduced loss in cross-sectional spinal cord area over 12 months (Pearson's correlation 0·77, p=0·004) and reduced white matter volume of the corticospinal tracts at the level of the right internal capsule (Z score 4·30, p=0·0021), the left internal capsule (Z score 4·27, p=0·0278), and left cerebral peduncle (Z score 4·05, p=0·0316). Improvements in ISNCSCI motor scores were associated with less white matter volume change encompassing the corticospinal tract at the level of the right internal capsule (Z score 4·01, p<0·0001). INTERPRETATION: Extensive upstream atrophic and microstructural changes of corticospinal axons and sensorimotor cortical areas occur in the first months after spinal cord injury, with faster degenerative changes relating to poorer recovery. Structural volumetric and microstructural MRI protocols remote from the site of spinal cord injury could serve as neuroimaging biomarkers in acute spinal cord injury

    Occasional essay: upper motor neuron syndrome in amyotrophic lateral sclerosis

    Get PDF
    The diagnosis of amyotrophic lateral sclerosis (ALS) requires recognition of both lower (LMN) and upper motor neuron (UMN) dysfunction.1 However, classical UMN signs are frequently difficult to identify in ALS.2 LMN involvement is sensitively detected by electromyography (EMG)3 but, as yet, there are no generally accepted markers for monitoring UMN abnormalities,4 the neurobiology of ALS itself, and disease spread through the brain and spinal cord,.5 Full clinical assessment is therefore necessary to exclude other diagnoses and to monitor disease progression. In part, this difficulty regarding detection of UMN involvement in ALS derives from the definition of ‘the UMN syndrome’. Abnormalities of motor control in ALS require reformulation within an expanded concept of the UMN, together with the neuropathological, neuro-imaging and neurophysiological abnormalities in ALS. We review these issues here

    Compartment-dependent mitochondrial alterations in experimental als, the effects of mitophagy and mitochondriogenesis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a novel approach using [2-(3)H]-adenosine

    Axon and myelin morphology in animal and human spinal cord

    Get PDF
    Characterizing precisely the microstructure of axons, their density, size and myelination is of interest for the neuroscientific community, for example to help maximize the outcome of studies on white matter (WM) pathologies of the spinal cord (SC). The existence of a comprehensive and structured database of axonal measurements in healthy and disease models could help the validation of results obtained by different researchers. The purpose of this article is to provide such a database of healthy SC WM, to discuss the potential sources of variability and to suggest avenues for robust and accurate quantification of axon morphometry based on novel acquisition and processing techniques. The article is organized in three sections. The first section reviews morphometric results across species according to range of densities and counts of myelinated axons, axon diameter and myelin thickness, and characteristics of unmyelinated axons in different regions. The second section discusses the sources of variability across studies, such as age, sex, spinal pathways, spinal levels, statistical power and terminology in regard to tracts and protocols. The third section presents new techniques and perspectives that could benefit histology studies. For example, coherent anti-stokes Raman spectroscopy (CARS) imaging can provide sub-micrometric resolution without the need for fixation and staining, while slide scanners and stitching algorithms can provide full cross-sectional area of SC. In combination with these acquisition techniques, automatic segmentation algorithms for delineating axons and myelin sheath can help provide large-scale statistics on axon morphometry

    Distribution of choline acetyltransferase (ChAT) immunoreactivity in the brain of the teleost cyprinus carpio

    Get PDF
    Cholinergic systems play a role in basic cerebral functions and its dysfunction is associated with deficit in neurodegenerative disease. Mechanisms involved in human brain diseases, are often approached by using fish models, especially cyprinids, given basic similarities of the fish brain to that of mammals. In the present paper, the organization of central cholinergic systems have been described in the cyprinid Cyprinus carpio, the common carp, by using specific polyclonal antibodies against ChAT, the synthetic enzyme of acetylcholine, that is currently used as a specific marker for cholinergic neurons in all vertebrates. In this work, serial transverse sections of the brain and the spinal cord were immunostained for ChAT. Results showed that positive neurons are present in several nuclei of the forebrain, the midbrain, the hindbrain and the spinal cord. Moreover, ChAT-positive neurons were detected in the synencephalon and in the cerebellum. In addition to neuronal bodies, afferent varicose fibers were stained for ChAT in the ventral telencephalon, the preoptic area, the hypothalamus and the posterior tuberculum. No neuronal cell bodies were present in the telencephalon. The comparison of cholinergic distribution pattern in the Cyprinus carpio central nervous system has revealed similarities but also some interesting differences with other cyprinids. Our results provide additional information on the cholinergic system from a phylogenetic point of view and may add new perspectives to physiological roles of cholinergic system during evolution and the neuroanatomical basis of neurological diseases

    Tracking the neurodegenerative gradient after spinal cord injury

    Get PDF
    Objective To quantify neurodegenerative changes along the cervical spinal cord rostral to a spinal cord injury (SCI) by means of quantitative MRI (qMRI) and to determine its relationship with clinical impairment. Methods Thirty chronic SCI patients (15 tetraplegics and 15 paraplegics) and 23 healthy controls underwent a high-resolution T1-weighted and myelin-sensitive magnetization transfer (MT) MRI. We assessed macro- and microstructural changes along the cervical cord from levels C1 to C4, calculating cross-sectional spinal cord area, its anterior-posterior and left-right width and myelin content (i.e. MT). Regression analysis determined associations between qMRI parameters and clinical impairment. Results In SCI patients, cord area decreased by 2.67 mm2 (p=0.004) and left-right width decreased by 0.35 mm (p=0.002) per level in caudal direction when compared to the healthy controls. This gradient of neurodegeneration was greater in tetraplegic than paraplegics in the cord area (by 3.28 mm2, p=0.011), left-right width (by 0.36 mm, p=0.03), and MT (by 0.13%, p=0.04), but independant of lesion severity (p>0.05). Higher lesion level was associated with greater magnitudes of neurodegeneration. Greater loss in myelin content in the dorsal columns and spinothalamic tract was associated with worse light touch (p=0.016) and pin prick score (p=0.024), respectively. Conclusions A gradient of neurodegeneration is evident in the high cervical cord remote from a SCI. Tract-specific associations with appropriate clinical outcomes highlight that remote neurodegenerative changes are clinically eloquent. Monitoring the neurodegenerative gradient could be used to track treatment effects of regenerative and neuroprotective agents, both in trials targeting cervical and thoracic SCI patients

    Ultrahigh Voltage Electron Microscopy Links Neuroanatomy and Neuroscience/Neuroendocrinology

    Get PDF
    The three-dimensional (3D) analysis of anatomical ultrastructures is extremely important in most fields of biological research. Although it is very difficult to perform 3D image analysis on exact serial sets of ultrathin sections, 3D reconstruction from serial ultrathin sections can generally be used to obtain 3D information. However, this technique can only be applied to small areas of a specimen because of technical and physical difficulties. We used ultrahigh voltage electron microscopy (UHVEM) to overcome these difficulties and to study the chemical neuroanatomy of 3D ultrastructures. This methodology, which links UHVEM and light microscopy, is a useful and powerful tool for studying molecular and/or chemical neuroanatomy at the ultrastructural level

    Central neuropathology and clinicopathological correlates in equine grass sickness

    Get PDF
    Equine Grass Sickness has traditionally been known as a dysautonomia, principally affecting parasympathetic neurons in the enteric nervous system. Studies of central neuropathology have been cursory and conflicting, examining different and occasionally poorly defined central structures in variable numbers of cases and control animals. There was no agreement on the association or severity of clinical signs with the severity of central pathological changes.This study accurately describes the distribution of pathology in the brain of EGS cases. Chromatolytic neurons have a highly specific distribution which is unlike that reported in any other equine or human disease, but is apparently the same as in cats, dogs and hares with primary dysautonomias. The involvement of somatic efferent lower motor neurons suggests that EGS may be more correctly classified as a multisystem disease. This is a further incentive to search for a common aetiologic agent and may decrease the number of candidates under considerationThe nature of the pathological insult to the central neurons remains undetermined but, unlike peripheral neurons, central neurons do not appear to be dying; this study was unable to demonstrate evidence of neuronal apoptosis, axonal pathology or muscle fibre type grouping in muscles innervated by chromatolytic neurons. Phosphorylated neurofilament epitopes were labelled in the soma of somatic and visceral lower motor neurons indicating an axonal transport problem, but no consistent expression of the cell stress protein ubiquitin was evident. Smaller, CGRP-expressing dorsal root ganglia neurons are more likely to be chromatolytic than large neurons and may contribute to the observed rhinitis sicca. Electron microscopy revealed classical chromatolytic changes and no inclusion bodies.Electrodiagnostic examination of the blink reflex did not reveal a functional deficit of the facial nerve, and the characteristic ptosis of EGS cases was determined to be an expression of Horner's syndrome secondary to pathology to postganglionic sympathetic neurons. The response of the equine eyelid to alpha agonist eyedrops was defined and a significant difference found between control animals and EGS cases. The technique has been developed further as a useful non-invasive adjunct diagnostic test in Grass Sickness
    corecore