4,396 research outputs found

    A correct, precise and efficient integration of set-sharing, freeness and linearity for the analysis of finite and rational tree languages

    Get PDF
    It is well known that freeness and linearity information positively interact with aliasing information, allowing both the precision and the efficiency of the sharing analysis of logic programs to be improved. In this paper, we present a novel combination of set-sharing with freeness and linearity information, which is characterized by an improved abstract unification operator. We provide a new abstraction function and prove the correctness of the analysis for both the finite tree and the rational tree cases. Moreover, we show that the same notion of redundant information as identified in Bagnara et al. (2000) and Zaffanella et al. (2002) also applies to this abstract domain combination: this allows for the implementation of an abstract unification operator running in polynomial time and achieving the same precision on all the considered observable properties

    Proving theorems by program transformation

    Get PDF
    In this paper we present an overview of the unfold/fold proof method, a method for proving theorems about programs, based on program transformation. As a metalanguage for specifying programs and program properties we adopt constraint logic programming (CLP), and we present a set of transformation rules (including the familiar unfolding and folding rules) which preserve the semantics of CLP programs. Then, we show how program transformation strategies can be used, similarly to theorem proving tactics, for guiding the application of the transformation rules and inferring the properties to be proved. We work out three examples: (i) the proof of predicate equivalences, applied to the verification of equality between CCS processes, (ii) the proof of first order formulas via an extension of the quantifier elimination method, and (iii) the proof of temporal properties of infinite state concurrent systems, by using a transformation strategy that performs program specialization

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    Lecture Notes on Formal Program Development

    Get PDF
    This document was originally produced as lecture notes for the MSc and PG course ``Formal Program Development'' early in 1997. After some initial general considerations on this subject the paper focusses on the way one can use Extended ML (EML) for formal program development, which features EML contains and why, and which pitfalls one has to avoid when formally developing ML programs. Usage, features, and pitfalls are all presented through examples

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    On the strength of proof-irrelevant type theories

    Full text link
    We present a type theory with some proof-irrelevance built into the conversion rule. We argue that this feature is useful when type theory is used as the logical formalism underlying a theorem prover. We also show a close relation with the subset types of the theory of PVS. We show that in these theories, because of the additional extentionality, the axiom of choice implies the decidability of equality, that is, almost classical logic. Finally we describe a simple set-theoretic semantics.Comment: 20 pages, Logical Methods in Computer Science, Long version of IJCAR 2006 pape
    corecore