169 research outputs found

    Operator-adapted wavelets for finite-element differential forms

    Get PDF
    We introduce in this paper an operator-adapted multiresolution analysis for finite-element differential forms. From a given continuous, linear, bijective, and self-adjoint positive-definite operator L, a hierarchy of basis functions and associated wavelets for discrete differential forms is constructed in a fine-to-coarse fashion and in quasilinear time. The resulting wavelets are L-orthogonal across all scales, and can be used to derive a Galerkin discretization of the operator such that its stiffness matrix becomes block-diagonal, with uniformly well-conditioned and sparse blocks. Because our approach applies to arbitrary differential p-forms, we can derive both scalar-valued and vector-valued wavelets block-diagonalizing a prescribed operator. We also discuss the generality of the construction by pointing out that it applies to various types of computational grids, offers arbitrary smoothness orders of basis functions and wavelets, and can accommodate linear differential constraints such as divergence-freeness. Finally, we demonstrate the benefits of the corresponding operator-adapted multiresolution decomposition for coarse-graining and model reduction of linear and non-linear partial differential equations

    Roving vehicle motion control Quarterly report, 1 Mar. - 31 May 1967

    Get PDF
    System and subsystem requirements for remote control of roving space vehicle motio

    Operator-adapted wavelets for finite-element differential forms

    Get PDF
    We introduce in this paper an operator-adapted multiresolution analysis for finite-element differential forms. From a given continuous, linear, bijective, and self-adjoint positive-definite operator L, a hierarchy of basis functions and associated wavelets for discrete differential forms is constructed in a fine-to-coarse fashion and in quasilinear time. The resulting wavelets are L-orthogonal across all scales, and can be used to derive a Galerkin discretization of the operator such that its stiffness matrix becomes block-diagonal, with uniformly well-conditioned and sparse blocks. Because our approach applies to arbitrary differential p-forms, we can derive both scalar-valued and vector-valued wavelets block-diagonalizing a prescribed operator. We also discuss the generality of the construction by pointing out that it applies to various types of computational grids, offers arbitrary smoothness orders of basis functions and wavelets, and can accommodate linear differential constraints such as divergence-freeness. Finally, we demonstrate the benefits of the corresponding operator-adapted multiresolution decomposition for coarse-graining and model reduction of linear and non-linear partial differential equations

    Bibliographie

    Get PDF

    Loss of regularity for Kolmogorov equations

    Get PDF
    The celebrated H\"{o}rmander condition is a sufficient (and nearly necessary) condition for a second-order linear Kolmogorov partial differential equation (PDE) with smooth coefficients to be hypoelliptic. As a consequence, the solutions of Kolmogorov PDEs are smooth at all positive times if the coefficients of the PDE are smooth and satisfy H\"{o}rmander's condition even if the initial function is only continuous but not differentiable. First-order linear Kolmogorov PDEs with smooth coefficients do not have this smoothing effect but at least preserve regularity in the sense that solutions are smooth if their initial functions are smooth. In this article, we consider the intermediate regime of nonhypoelliptic second-order Kolmogorov PDEs with smooth coefficients. The main observation of this article is that there exist counterexamples to regularity preservation in that case. More precisely, we give an example of a second-order linear Kolmogorov PDE with globally bounded and smooth coefficients and a smooth initial function with compact support such that the unique globally bounded viscosity solution of the PDE is not even locally H\"{o}lder continuous. From the perspective of probability theory, the existence of this example PDE has the consequence that there exists a stochastic differential equation (SDE) with globally bounded and smooth coefficients and a smooth function with compact support which is mapped by the corresponding transition semigroup to a function which is not locally H\"{o}lder continuous. In other words, degenerate noise can have a roughening effect. A further implication of this loss of regularity phenomenon is that numerical approximations may converge without any arbitrarily small polynomial rate of convergence to the true solution of the SDE. More precisely, we prove for an example SDE with globally bounded and smooth coefficients that the standard Euler approximations converge to the exact solution of the SDE in the strong and numerically weak sense, but at a rate that is slower then any power law.Comment: Published in at http://dx.doi.org/10.1214/13-AOP838 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Clifford Algebra: A Case for Geometric and Ontological Unification

    Get PDF
    Robert Batterman’s ontological insights (2002, 2004, 2005) are apt: Nature abhors singularities. “So should we,” responds the physicist. However, the epistemic assessments of Batterman concerning the matter prove to be less clear, for in the same vein he write that singularities play an essential role in certain classes of physical theories referring to certain types of critical phenomena. I devise a procedure (“methodological fundamentalism”) which exhibits how singularities, at least in principle, may be avoided within the same classes of formalisms discussed by Batterman. I show that we need not accept some divergence between explanation and reduction (Batterman 2002), or between epistemological and ontological fundamentalism (Batterman 2004, 2005). Though I remain sympathetic to the ‘principle of charity’ (Frisch (2005)), which appears to favor a pluralist outlook, I nevertheless call into question some of the forms such pluralist implications take in Robert Batterman’s conclusions. It is difficult to reconcile some of the pluralist assessments that he and some of his contemporaries advocate with what appears to be a countervailing trend in a burgeoning research tradition known as Clifford (or geometric) algebra. In my critical chapters (2 and 3) I use some of the demonstrated formal unity of Clifford algebra to argue that Batterman (2002) equivocates a physical theory’s ontology with its purely mathematical content. Carefully distinguishing the two, and employing Clifford algebraic methods reveals a symmetry between reduction and explanation that Batterman overlooks. I refine this point by indicating that geometric algebraic methods are an active area of research in computational fluid dynamics, and applied in modeling the behavior of droplet-formation appear to instantiate a “methodologically fundamental” approach. I argue in my introductory and concluding chapters that the model of inter-theoretic reduction and explanation offered by Fritz Rohrlich (1988, 1994) provides the best framework for accommodating the burgeoning pluralism in philosophical studies of physics, with the presumed claims of formal unification demonstrated by physicists choices of mathematical formalisms such as Clifford algebra. I show how Batterman’s insights can be reconstructed in Rohrlich’s framework, preserving Batterman’s important philosophical work, minus what I consider are his incorrect conclusions
    • 

    corecore