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The celebrated Hörmander condition is a sufficient (and nearly
necessary) condition for a second-order linear Kolmogorov partial dif-
ferential equation (PDE) with smooth coefficients to be hypoelliptic.
As a consequence, the solutions of Kolmogorov PDEs are smooth at
all positive times if the coefficients of the PDE are smooth and satisfy
Hörmander’s condition even if the initial function is only continu-
ous but not differentiable. First-order linear Kolmogorov PDEs with
smooth coefficients do not have this smoothing effect but at least
preserve regularity in the sense that solutions are smooth if their
initial functions are smooth. In this article, we consider the interme-
diate regime of nonhypoelliptic second-order Kolmogorov PDEs with
smooth coefficients. The main observation of this article is that there
exist counterexamples to regularity preservation in that case. More
precisely, we give an example of a second-order linear Kolmogorov
PDE with globally bounded and smooth coefficients and a smooth
initial function with compact support such that the unique globally
bounded viscosity solution of the PDE is not even locally Hölder con-
tinuous. From the perspective of probability theory, the existence of
this example PDE has the consequence that there exists a stochastic
differential equation (SDE) with globally bounded and smooth coeffi-
cients and a smooth function with compact support which is mapped
by the corresponding transition semigroup to a function which is not
locally Hölder continuous. In other words, degenerate noise can have
a roughening effect. A further implication of this loss of regularity
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2 M. HAIRER, M. HUTZENTHALER AND A. JENTZEN

phenomenon is that numerical approximations may converge with-
out any arbitrarily small polynomial rate of convergence to the true
solution of the SDE. More precisely, we prove for an example SDE
with globally bounded and smooth coefficients that the standard Eu-
ler approximations converge to the exact solution of the SDE in the
strong and numerically weak sense, but at a rate that is slower then
any power law.

1. Introduction and main results. The key observation of this article is
to reveal the phenomenon of loss of regularity in Kolmogorov partial differ-
ential equations (PDEs). This observation has a direct consequence on the
literature on regularity analysis of linear PDEs, on the literature on regular-
ity analysis of stochastic differential equations (SDEs) and on the literature
on numerical approximations of SDEs. We will illustrate the implications
for each field separately.

Regularity analysis of linear partial differential equations. For some d,m ∈
N, let µ :Rd →Rd and σ :Rd →Rd×m be smooth functions such that there ex-
ists a real number ρ > 0 such that 〈x,µ(x)〉 ≤ ρ(1 + ‖x‖2) and
‖σ(x)‖2

L(Rm ,Rd)
≤ ρ(1 + ‖x‖2) for all x ∈Rd. (Here and below, we write 〈·, ·〉

and ‖ · ‖ for the Euclidean scalar product and norm on Rn.) Let furthermore
ϕ :Rd →R be a globally bounded and continuous function and consider the
second-order PDE

∂

∂t
u(t, x) =

1

2

d∑

i,j=1

m∑

k=1

σi,k(x) · σj,k(x) ·
∂2

∂xi ∂xj
u(t, x)

(1.1)

+

d∑

i=1

µi(x) ·
∂

∂xi
u(t, x), u(0, x) = ϕ(x)

for (t, x) ∈ (0,∞)×Rd. The PDE (1.1) is referred to as Kolmogorov equation
in the literature (see, e.g., Cerrai [5], Da Prato [11], Röckner [64] and Röckner
and Sobol [65]; it is also referred to as Kolmogorov backward equation or
Kolmogorov PDE, see, e.g., Da Prato and Zabczyk [12], Øksendal [59]). It
has a strong link to probability theory and appeared first (in a slightly
different form; see display (125) in [44]) in Kolmogorov’s celebrated pa-
per [44]. Corollary 4.17 in Section 4 below implies that the PDE (1.1) ad-
mits a unique globally bounded viscosity solution. More precisely, Corol-
lary 4.17 proves that there exists a unique globally bounded continuous
function u : [0,∞)× Rd → R such that u|(0,∞)×Rd is a viscosity solution of

(1.1) and such that u(0, x) = ϕ(x) for all x ∈ Rd. In this article, we are in-
terested to know whether solutions u of the PDE (1.1) preserve regularity
in the sense that u|(0,∞)×Rd is smooth if the initial function u(0, ·) = ϕ(·) is
smooth. In particular, we will answer the question whether smoothness and
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global boundedness of the initial function ϕ :Rd → R implies the existence
of a classical solution of the PDE (1.1).

In the case of first-order Kolmogorov PDEs with smooth coefficients,
that is, σ ≡ 0 in (1.1), regularity preservation of solutions of (1.1) is well
known. More precisely, if σ(x) = 0 for all x ∈ Rd and if the initial func-
tion ϕ :Rd → Rd in (1.1) is smooth, then it is well known that there exists
a unique smooth classical solution of (1.1). In this sense, the PDE (1.1)
is regularity preserving in the purely first-order case σ ≡ 0. In the second-
order case σ 6≡ 0, the situation may be even better in the sense that the
PDE (1.1) often has a smoothing effect. More precisely, if the PDE (1.1)
is hypoelliptic, then by definition solutions u of the PDE (1.1) are smooth
in the sense that u|(0,∞)×Rd is infinitely often differentiable even if the ini-
tial function u(0, ·) = ϕ(·) is only continuous but not differentiable. In the
seminal paper [31], Hörmander gave a sufficient (and also nearly necessary;
see the discussion before Theorem 1.1 in [31] and Section 2 in Hairer [26])
condition for (1.1) to be hypoelliptic; see Theorem 1.1 in [31]. To formulate
Hörmander’s condition, set σ0(x) = µ(x)− 1

2

∑m
k=1 σ

′
k(x)σk(x) for all x ∈Rd.

Then the Hörmander condition is fulfilled if

span{σi0(x), [σi0 , σi1 ](x), [[σi0 , σi1 ], σi2 ](x), . . . ∈Rd :
(1.2)

i0, i1, i2, . . . ∈ {0,1, . . . ,m}, i0 6= 0}=Rd

for all x ∈ Rd where [f, g] denotes the Lie bracket of two smooth vector
fields f, g :Rd → Rd. Consequently, if Hörmander’s condition (1.2) is satis-
fied, then the PDE (1.1) admits a unique globally bounded smooth classical
solution even if the initial function ϕ :Rd → R is assumed to be continu-
ous and globally bounded only. Clearly, there are many cases where the
Hörmander condition (1.2) fails to be fulfilled and where (1.1) is not hypoel-
liptic, for example, if σ ≡ 0. Next, we point out that if all derivatives of the
drift coefficient µ, of the diffusion coefficient σ and of the initial function
ϕ are globally bounded (µ and σ are then, in particular, globally Lipschitz
continuous), then smoothness of the solution of the PDE (1.1) is known
even in the nonhypoelliptic case (see, e.g., Theorem 4.32 in Krylov [47] for
twice differentiability of the solution; infinitely often differentiability of the
solution follows analogously as in the proof of Theorem 4.32 in Krylov [47]).
Obviously, there are many cases where µ and σ are not both globally Lips-
chitz continuous, for example, when µ is a polynomial with a degree greater
or equal 2 (see, e.g., Section 4 in [34] for a list of examples). To the best
of our knowledge, regularity of solutions of the PDE (1.1) is in general un-
known in the nonhypoelliptic case if σ 6≡ 0 and if µ and σ are not both
globally Lipschitz continuous.

In this article, we address the question whether second-order linear PDEs
with smooth coefficients of the form (1.1) at least preserve regularity in the
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nonhypoelliptic case. The following Theorem 1.1 answers this question to
the negative. More precisely, the key observation of this article is to reveal
the phenomenon of loss of regularity in the sense that the solution u of the
PDE (1.1) starting with a smooth compactly supported function u(0, ·) ∈
C∞
cpt(R

d,R) may turn into a nondifferentiable function u(t, ·) /∈ C1(Rd,R)
for every positive time t ∈ (0,∞). In analogy to the well-known “smoothing
effect” in the hypoelliptic case, we will say in the case of loss of regularity
that the PDE (1.1) has a roughening effect. Here is a simple two-dimensional
example with polynomial µ and linear σ which has this roughening effect.
In the special case d= 2,m= 1 and µ(x) = (x1 · x2,−x21) and σ(x) = (0, x2)
for all x= (x1, x2) ∈R2, the PDE (1.1) reads as

∂

∂t
u(t, x) =

x22
2

∂2

∂x22
u(t, x) + x1x2

∂

∂x1
u(t, x)− x21

∂

∂x2
u(t, x)(1.3)

for (t, x) ∈ (0,∞)× R2. Theorem 2.1 and Corollary 4.17 below imply that
there exists an infinitely often differentiable function ϕ ∈ C∞

cpt(R
d,R) with

compact support such that the unique globally bounded viscosity solu-
tion u : [0,∞) × R2 → R to (1.3) with u(0, ·) = ϕ(·) has the property that
u|(0,∞)×Rd is not differentiable and not locally Lipschitz continuous. In par-
ticular, we thereby disprove the existence of a globally bounded classical
solution of the PDE (1.3) with u(0, ·) = ϕ(·). Note that the drift coefficient
µ of the PDE (1.3) grows superlinearly. One could wonder whether the
roughening effect of example (1.3) is due to this superlinear growth of µ. To
exclude this possibility, we prove for an example PDE with globally bounded
and smooth coefficients that there exists a smooth initial function with com-
pact support such that the solution u is not even locally Hölder continuous;
see Theorem 1.1 below. In particular, Theorem 1.1 implies that, in general,
the PDE (1.1) does not have a classical solution even if the coefficients and
the initial function are globally bounded and infinitely often differentiable.

Theorem 1.1 (Disprove of the existence of classical solutions of the Kol-
mogorov PDE with smooth and globally bounded coefficients and initial
function). There exists a natural number d ∈ N, a globally bounded and
infinitely often differentiable function µ :Rd → Rd, a symmetric nonnega-
tive matrix A= (Ai,j)i,j∈{1,2,...,d} ∈Rd×d and an infinitely often differentiable

function ϕ ∈C∞
cpt(R

d,R) with compact support such that there exists no glob-
ally bounded classical solution of the PDE

∂

∂t
u(t, x) =

d∑

i,j=1

Ai,j ·
∂2

∂xi ∂xj
u(t, x) +

d∑

i=1

µi(x) ·
∂

∂xi
u(t, x),

(1.4)
u(0, x) = ϕ(x)



LOSS OF REGULARITY FOR KOLMOGOROV EQUATIONS 5

for (t, x) ∈ (0,∞)× Rd. In addition, there exists a unique globally bounded
viscosity solution u : [0,∞) × Rd → R of (1.4) and this function fails to be
locally Hölder continuous.

Theorem 1.1 follows immediately from Corollary 4.17 in Section 4 and
from Theorem 3.1 in Section 3. More precisely, Corollary 4.17 and The-
orem 3.1 imply that there exists an infinitely differentiable function ϕ ∈
C∞
cpt(R

3,R) with compact support such that the unique globally bounded

viscosity solution u : [0,∞)×R3 →R of the PDE

∂

∂t
u(t, x) =

∂2

∂x22
u(t, x) + cos(x3 exp(x

3
2)) ·

∂

∂x1
u(t, x)(1.5)

with initial condition u(0, x) = ϕ(x) for (t, x) = (t, x1, x2, x3) ∈ (0,∞)×R3 is
not locally Hölder continuous. In particular, the PDE (1.5) with u(0, ·) = ϕ(·)
has no globally bounded classical solution. The PDE (1.5) has a globally
bounded and highly oscillating drift coefficient and a constant diffusion co-
efficient and serves as a counterexample to regularity preservation for Kol-
mogorov PDEs. An SDE with a globally bounded and highly oscillating
diffusion coefficient and a vanishing drift coefficient has been presented in
Li and Scheutzow [49] as a counterexample for strong completeness of SDEs.
Another interesting observation is that the PDE (1.5) without the second-
order term on the right-hand side of (1.5) preserves regularity and has a
smooth classical solution and that the PDE (1.5) without the first-order
term on the right-hand side of (1.5) also preserves regularity and has a
smooth classical solution. Thus, the roughening effect of the PDE (1.5) is
a consequence of the interplay between the first-order and the second-order
term in (1.5). We add that Theorem 3.4 in Section 3 is a stronger version
of Theorem 1.1 in which the roughening effect appears on every arbitrarily
small open subset of the state space; see Section 3 and also Theorem 1.2
below for more details. Note that in both counterexamples to regularity
preservation [PDE (1.5) and PDE (1.3)] it does not hold that all derivatives
of µ and σ are globally bounded. Indeed, in both counterexamples the drift
coefficient µ is not globally Lipschitz continuous. As observed above, regular-
ity preservation is known if all derivatives of µ and σ are globally bounded.
Moreover, note that the coefficients in our counterexample PDE (1.5) are
analytic functions and that the initial function ϕ :Rd →R may be chosen to
be analytic (see Theorem 3.1 for details). We emphasize that this does not
contradict the classical Cauchy–Kovalevskaya theorem (e.g., Theorem 4.6.2
in Evans [18]) proving existence, uniqueness and analyticity of solutions of
PDEs with analytic coefficients as the Cauchy–Kovalevskaya theorem ap-
plies to (1.4) in the case A= 0 only. Moreover, we would like to point out
that Theorem 1.1 does not contradict to Theorems 7.1.3, 7.1.4 and 7.1.7 in



6 M. HAIRER, M. HUTZENTHALER AND A. JENTZEN

Evans [18], which show the existence of a unique classical solution of (1.4)
if A is strictly positive [note that A in (1.5) is nonnegative but not strictly
positive].

Theorem 1.1 shows that a general existence theorem for globally bounded
classical solutions of the PDE (1.1) cannot be established. However, it is
possible to ensure the existence of a viscosity solution of the PDE (1.1) un-
der rather general assumptions on the coefficients. More precisely, one of
our main results, Theorem 4.16 below, establishes the existence of a within
a certain class unique viscosity solution for every second-order linear Kol-
mogorov PDE whose coefficients are locally Lipschitz continuous and satisfy
the Lyapunov-type inequality (4.74). To the best of our knowledge, this is
the first result in the literature proving existence and uniqueness of solutions
of the Kolmogorov PDE (1.1) in the above generality; see also the discussion
after Theorem 4.16 for a short review of existence and uniqueness results
for Kolmogorov PDEs. A crucial result on the route to Theorem 4.16 is
the uniqueness result of Corollary 4.14 for viscosity solutions of degenerate
parabolic second-order linear PDEs.

The roughening effect of the PDE (1.1) revealed in this first paragraph
of this Introduction has a direct consequence on the literature on regularity
analysis of SDEs. This is the subject of the next paragraph.

Regularity analysis of stochastic differential equations. For the rest of
this Introduction, we use the following notation. Let (Ω,F ,P) be an ar-
bitrary probability space with a normal filtration (Ft)t∈[0,∞) which supports
a standard (Ft)t∈[0,∞)-Brownian motion W : [0,∞)× Ω→ Rm with contin-
uous sample paths. It is a classical result that the above assumptions on µ
and σ ensure the existence of a family Xx = (Xx

1 , . . . ,X
x
d ) : [0,∞)×Ω→Rd,

x ∈ Rd, of up to indistinguishability unique solution processes (see, e.g.,
Theorem 3.1.1 in [63]) with continuous sample paths of the SDE

dXx(t) = µ(Xx(t))dt+ σ(Xx(t))dW (t)(1.6)

for t ∈ (0,∞) and x ∈Rd and with Xx(0) = x for all x ∈Rd (see, e.g., The-
orem 1 in Krylov [46]). Here, the function µ :Rd → Rd is the infinitesimal
mean and the function σ · σ∗ :Rd →Rd×d is the infinitesimal covariance ma-
trix of the SDE (1.6). It is also well known that the coercivity assumption
on µ and the linear growth bound on σ additionally imply moment bounds
supx∈{y∈Rd : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p] <∞ for all p ∈ [0,∞) for the solu-

tion processes of the SDE (1.6). The transition semigroup Pt :Cb(Rd,R)→
Cb(Rd,R), t ∈ [0,∞) of the SDE (1.6) is defined by (Ptϕ)(x) := E[ϕ(Xx(t))]
for all t ∈ [0,∞), x ∈ Rd and all ϕ ∈ Cb(Rd,R) where Cb(Rd,R) is as usual
the space of globally bounded and continuous functions from Rd to R.
Note for every ϕ ∈ Cb(Rd,R) that the function Rd ∋ x 7→ E[ϕ(Xx(t))] ∈
R is continuous (see, e.g., Theorem 1.7 in Krylov [47]) and hence, the
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semigroup (Pt)t∈[0,∞) is well defined. Observe also that the function Rd ∋
x 7→ E[ϕ(Xx(t))] ∈ R is continuous for every ϕ ∈ Cb(Rd,R) although the
SDE (1.6) is, in general, not strongly complete; see Li and Scheutzow [49]
and see, for example, also Elworthy [15], Kunita [48] and Fang, Imkeller and
Zhang [19] for further results on strong completeness of SDEs.

Theorem 1.1 in Hörmander [31] and Proposition 4.18 below imply that if
the Hörmander condition (1.2) is fulfilled, then the semigroup is smoothing
in the sense that Pt(Cb(Rd,R))⊆ C∞

b (Rd,R) for all t ∈ (0,∞). To the best
of our knowledge, it remained an open question in the nonhypoelliptic case
whether SDEs with infinitely often differentiable coefficients such as (1.6)
in general preserve regularity in the sense that Pt(C

∞
b (Rd,R))⊆C∞

b (Rd,R)
for all t ∈ (0,∞). This article answers this question to the negative. More
precisely, the following theorem reveals that smooth functions with compact
support may be mapped to nonsmooth functions by the transition semi-
group of the SDE (1.6). In analogy to the well-known “smoothing effect” of
many SDEs, we will say that the semigroup has a roughening effect in that
case. Here is a simple two-dimensional example SDE with polynomial drift
coefficient and linear diffusion coefficient which has this roughening effect.
In the special case d= 2, m= 1 and µ(x) = (x1 · x2,−x21) and σ(x) = (0, x2)
for all x= (x1, x2) ∈R2, the SDE (1.6) reads as

dXx
1 (t) =Xx

1 (t) ·Xx
2 (t)dt,

(1.7)
dXx

2 (t) =−Xx
1 (t)

2 dt+Xx
2 (t)dW (t)

for t ∈ (0,∞) and x ∈R2. Observe that (1.3) is the Kolmogorov PDE of (1.7);
see Corollary 4.17 for details. Moreover, note that 〈x,µ(x)〉= 0 for all x∈R2

in this example. Thus, the solution process of the associated ordinary differ-
ential equation stays on the circle centered at (0,0) ∈R2 going through the
starting point. Theorem 2.1 in Section 2 shows for the SDE (1.7) that there
exists an infinitely often differentiable function ϕ ∈C∞

cpt(R
d,R) with compact

support such for every t ∈ (0,∞) the functions R2 ∋ x 7→ E[ϕ(Xx(t))] ∈ R
and R2 ∋ x 7→ E[Xx(t)] ∈ R2 are continuous but not differentiable and not
locally Lipschitz continuous. For every t ∈ (0,∞), we hence have the rough-
ening effect Pt(C

∞
cpt(R

d,R))* C1(Rd,R) in the case of the SDE (1.7). The
drift coefficient µ of the SDE (1.7) grows superlinearly. As above, the super-
linear growth of µ is not necessary for the transition semigroup of the SDE
to be roughening. This is subject of the next main result of this article.

Theorem 1.2 (A counterexample to regularity preservation with de-
generate additive noise). There exists a natural number d ∈ N, a globally
bounded and infinitely often differentiable function µ :Rd → Rd and a con-
stant function σ :Rd →Rd×d, that is σ(x) = σ(0) for all x ∈Rd, with the fol-
lowing properties. For every t ∈ (0,∞) the function Rd ∋ x 7→ E[Xx(t)] ∈Rd
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is continuous but nowhere locally Hölder continuous and for every nonempty
open set O ⊂ Rd there exists an infinitely often differentiable function ϕ ∈
C∞
cpt(R

d,R) with compact support such that the function O ∋ x 7→
E[ϕ(Xx(t))] ∈ R is continuous but not locally Hölder continuous. In par-
ticular, for every t ∈ (0,∞) we have Pt(C

∞
cpt(R

d,R))*
⋃

α∈(0,∞)C
α(Rd,R).

Theorem 1.2 follows immediately from Theorem 3.4 in Section 3. The
roughening effect of some SDEs with smooth coefficients revealed through
example (1.7) and Theorem 1.2 above, has a direct consequence on the
literature on numerical approximations of SDEs. This is the subject of the
next paragraph.

Numerical approximations of stochastic differential equations. Starting
with Maruyama’s adaptation of Euler’s method to SDEs in 1955 (see [51]),
an extensive literature on the numerical approximation of solutions of SDEs
has been published in the last six decades; see, for example, the books and
overview articles [3, 23, 38, 41–43, 52, 53, 57] for extensive lists of references.
A key objective in this field of research is to prove convergence of suitable
numerical approximation processes to the solution process of the SDE and
to establish a rate of convergence for the considered approximation scheme
in the strong, in the almost sure or in the numerically weak sense.

Almost sure convergence rates of many numerical schemes such as the
standard Euler method or the higher-order Milstein method are well known
for the SDE (1.6) and even for a much larger class of nonlinear SDEs; see
Gyöngy [22] and Jentzen, Kloeden and Neuenkirch [39]. Many applications,
however, require the numerical approximation of moments or other function-
als of the solution process, for instance, the expected pay-off of an option
in computational finance; see, for example, Glasserman [21] for details. For
this reason, applications are particularly interested in strong and numerically
weak convergence rates. The vast majority of research results establishing
strong and numerically weak convergence rates assume that the coefficients
of the SDE are globally Lipschitz continuous or at least that they satisfy
the global monotonicity condition that there exists a real number ρ ∈ R
such that 〈x − y,µ(x) − µ(y)〉 + 1

2

∑m
k=1 ‖σk(x) − σk(y)‖2 ≤ ρ‖x − y‖2 for

all x, y ∈ Rd (see, e.g., Theorem 2.4 in Hu [33], Theorem 5.3 in Higham,
Mao and Stuart [28], Schurz [67], Theorems 2 and 3 in Higham and Kloe-
den [27], Theorem 6.3 in Mao and Szpruch [50], Theorem 1.1 in Hutzenthaler,
Jentzen and Kloeden [36], Theorem 3.2 in Wang and Gan [68]). Strong and
numerically weak convergence rates without assuming global monotonicity
are established in Gyöngy and Rásonyi [25] in the case of a class of scalar
SDEs with globally Hölder continuous coefficients, in Dörsek [14] in the case
of the two-dimensional stochastic Navier–Stokes equations and in Dereich,
Neuenkirch and Szpruch [13], Alfonsi [1], Neuenkirch and Szpruch [58] in
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the case of a class of scalar SDEs (including, e.g., the Cox–Ingersoll–Ross
process) that can be transformed in a suitable sense to SDEs that satisfy
the global monotonicity assumption. The global monotonicity assumption is
a serious restriction on the coefficients of the SDE and excludes many inter-
esting SDEs in the literature (e.g., stochastic Lorenz equations, stochastic
Duffing–van der Pol oscillators and the stochastic SIR model; see Section 4
in [34] for details and further examples). It remains an open problem to es-
tablish strong and numerically weak convergence rates in the general setting
of the SDE (1.6).

In this article, we establish in the setting (1.6) the existence of an SDE
with globally bounded and infinitely often differentiable coefficients for which
the Euler approximations converge in the strong and in the numerically weak
sense without any arbitrarily small polynomial rate of convergence. More
precisely, our main result for the literature on the numerical approximation
of SDEs is the following theorem.

Theorem 1.3 (A counterexample to the rate of convergence in the numer-
ical approximation of nonlinear SDEs with additive noise). Let T ∈ (0,∞)
and x0 ∈R4 be arbitrary. Then there exists a globally bounded and infinitely
often differentiable function µ :R4 → R4 and a symmetric nonnegative ma-
trix B ∈R4×4 such that the stochastic process X : [0, T ]×Ω→R4 with contin-

uous sample paths satisfying X(t) = x0 +
∫ t
0 µ(X(s))ds+BW (t) for all t ∈

[0, T ] and its Euler–Maruyama approximations Y N :{0, TN , 2TN , . . . , T}×Ω→
R4, N ∈ N, satisfying Y N (0) = x0 and Y N ( (n+1)T

N ) = Y N (nTN ) +

µ(Y N (nTN )) TN +B(W(n+1)T/N −WnT/N ) for all n ∈ {0,1, . . . ,N −1}, N ∈N,
fulfill that

lim
N→∞

(Nα ·E[‖X(T )− Y N (T )‖])

= lim
N→∞

(Nα · ‖E[X(T )]−E[Y N (T )]‖)(1.8)

=

{
0, α= 0,

∞, α > 0,

for all α ∈ [0,∞). In particular, for every α ∈ (0,∞) there exists no real
number cα ∈ (0,∞) such that ‖E[X(T )]−E[Y N (T )]‖ ≤ cα ·N−α for all N ∈
N.

Theorem 1.3 follows immediately from Theorem 5.1 in Section 5. In the
deterministic case σ ≡ 0, it is well known that the Euler approximations
converge to the solution process of (1.6) with the rate 1. In the stochastic
case σ 6≡ 0, this rate of convergence can often not be achieved. In particular,
Clark and Cameron [6] proved for an SDE in the setting of (1.6) that a
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class of Euler-type schemes cannot, in general, converge strongly with a
higher-order than 1

2 . Since then, there have been many results on lower
bounds of strong and numerically weak approximation errors for numerical
approximation schemes of SDEs; see, for example, [4, 10, 29, 30, 35, 45, 55–
57, 66] and the references therein. Now the observation of Theorem 1.3 is that
there exist SDEs with smooth and globally bounded coefficients for which
the standard Euler approximations converge in the strong and numerically
weak sense without any arbitrarily small polynomial rate of convergence. To
the best of our knowledge, Theorem 1.3 is the first result in the literature in
which it has been established that Euler’s method converges to the solution
of an SDE with smooth coefficients in the strong and numerical weak sense
without any arbitrarily small polynomial rate of convergence. Clearly, this
lack of a rate of convergence is not a special property of the Euler scheme and
holds for other schemes such as the Milstein scheme, too. It is based on the
fact that our counterexample SDE for Theorem 1.3 [see (5.3)] suffers under
the roughening effect revealed in Theorems 1.1 and 1.2 (see Corollary 5.2
and Theorem 5.1 in Section 5 for details).

Comparing Theorem 5.1 with Theorem 2.4 in Gyöngy [22] reveals the
remarkable difference that the Euler approximations for some SDEs have
almost sure convergence rate 1

2− but no strong and no numerically weak
rate of convergence. More formally, Theorem 2.4 in [22] shows in the set-
ting of Theorem 1.3 that there exist finite random variables Cε :Ω→ [0,∞),
ε ∈ (0, 12), such that ‖X(T ) − Y N (T )‖ ≤ Cε ·N (ε−1/2), P-a.s. for all N ∈ N
and all ε ∈ (0, 12). Taking expectation then results in E[‖X(T )− Y N (T )‖]≤
E[Cε] · N (ε−1/2) for all N ∈ N and all ε ∈ (0, 12 ) and from Theorem 1.3
we hence get that the error constants have infinite expectations, that is,
E[Cε] = ∞ for all ε ∈ (0, 12). In addition, we refer to Theorem 2.3 in Mil-
stein and Tretyakov [54] for a weak convergence result restricted to certain
subevents of the probability space. Finally, we emphasize that Monte Carlo
simulations confirm the slow strong and numerically weak convergence phe-
nomenon of Euler’s method revealed in Theorem 1.3. For details, the reader
is referred to Figure 1 in Section 5 below.

2. Counterexamples to regularity preservation with linear multiplicative

noise. In this section, we establish the phenomenon of loss of regularity of
the simple example SDE (1.7) with polynomial drift coefficient and linear
diffusion coefficient. For this, we consider the following setting. Let (Ω,F ,P)
be a probability space with a normal filtration (Ft)t∈[0,∞), let W : [0,∞)×
Ω → R be a one-dimensional standard (Ft)t∈[0,∞)-Brownian motion with

continuous sample paths and let Xx = (Xx
1 ,X

x
2 ) : [0,∞)× Ω→ R2, x ∈ R2,

be the up to indistinguishability unique solution processes with continuous
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sample paths of the SDE

dXx
1 (t) =Xx

1 (t) ·Xx
2 (t)dt,

(2.1)
dXx

2 (t) =−(Xx
1 (t))

2 dt+Xx
2 (t)dW (t)

for t ∈ (0,∞) and x ∈ R2 satisfying Xx(0) = x for all x ∈ R2. Corollary 2.6
in Gyöngy and Krylov [24] ensures that the processes Xx : [0,∞)×Ω→R2,
x ∈R2, do indeed exist. The following Theorem 2.1 shows that the semigroup
associated with the SDE (2.1) loses regularity in the sense that there exists
an infinitely often differentiable function with compact support, which is
mapped to a nonsmooth function by the semigroup.

Theorem 2.1 (A counterexample to regularity preservation with linear
multiplicative noise). Let Xx : [0,∞) × Ω → R2, x ∈ R2, be solution pro-
cesses of the SDE (2.1) with continuous sample paths and with Xx(0) = x
for all x ∈ R2. Then supx∈{y∈R2 : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p] < ∞ for all
p ∈ [0,∞) and there exists an infinitely often differentiable function ϕ ∈
C∞
cpt(R

2,R) with compact support such that for every t, p ∈ (0,∞) the map-

pings R2 ∋ x 7→ E[Xx(t)] ∈ R2, R2 ∋ x 7→ E[ϕ(Xx(t))] ∈ R and R2 ∋ x 7→
Xx(t) ∈ Lp(Ω;R2) are continuous but not locally Lipschitz continuous and
not differentiable.

The proof of Theorem 2.1 is deferred to the end of this section. The proof
of Theorem 2.1 uses the following simple lemma.

Lemma 2.2 (Restricted exponential integrals of a geometric Brownian
motion). Let (Ω,F ,P) be a probability space and let W : [0,∞)×Ω→R be
a one-dimensional standard Brownian motion with continuous sample paths.
Then

E

[

1{a≤eW (t)≤b} exp

(

c ·
∫ t

0
eW (s) ds

)]

=∞(2.2)

for all t, a, b, c ∈ (0,∞) with a < b.

Proof. Independence of W (t) from (W (s) − s
tW (t))s∈[0,t] for all t ∈

(0,∞) implies

E

[

1{a≤eW (t)≤b} exp

(

c ·
∫ t

0
eW (s) ds

)]

≥ E

[

1{a≤eW (t)≤b} exp

(

c ·
∫ t

0
e(W (s)−(s/t)W (t))as/t ds

)]

≥ P[a≤ eW (t) ≤ b] ·E
[

exp

(

tc ·min(a,1) · 1
t

∫ t

0
e(W (s)−(s/t)W (t)) ds

)]

(2.3)
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≥ P[a≤ eW (t) ≤ b]

×E

[

exp

(

tc ·min(a,1) · exp
(
1

t

∫ t

0
W (s)− s

t
W (t)ds

))]

for all t, a, b, c ∈ (0,∞) with a < b where we used Jensen’s inequality and
convexity of the exponential function in the last step. The time integrated
Brownian bridge

∫ t
0 W (s)− s

tW (t)ds on the right-hand side of (2.3) is nor-
mally distributed with mean 0 and variance

E

[(∫ t

0
W (s)− s

t
W (t)ds

)2]

= E

[∫ t

0

∫ t

0

(

W (s)− s

t
W (t)

)(

W (r)− r

t
W (t)

)

dr ds

]

=

∫ t

0

∫ t

0
E

[

W (s)W (r)− r

t
W (s)W (t)− s

t
W (r)W (t)

(2.4)

+
sr

t2
(W (t))2

]

dr ds

=

∫ t

0

∫ t

0

(

min(r, s)− rs

t
− sr

t
+
sr

t

)

dr ds

= 2

∫ t

0

∫ s

0

(

r− rs

t

)

dr ds=

∫ t

0

(

s2 − s3

t

)

ds=
t3

12
∈ (0,∞)

for every t ∈ (0,∞). As the double exponential normal distribution has in-
finite mean, we conclude that the right-hand side of (2.3) is infinite for all
t, a, b, c ∈ (0,∞). This finishes the proof Lemma 2.2. �

The proof of the following Lemma 2.3 makes use of Lemma 2.2. Using
Lemma 2.3, the proof of Theorem 2.1 is then completed at the end of this
section.

Lemma 2.3. Let Xx : [0,∞)×Ω→ R2, x ∈ R2, be solution processes of
the SDE (2.1) with continuous sample paths and with Xx(0) = x for all
x ∈R2. Then supx∈{y∈R2 : ‖y‖≤p}E[supt∈[0,p] ‖Xx(t)‖p]<∞ for all p ∈ [0,∞)
and

lim
06=x1→0

(
1

x1
·E[X(x1,x2)

1 (t)−X
(0,x2)
1 (t)]

)

(2.5)

=∞= lim
06=x1→0

(
1

|x1|
· ‖X(x1,x2)

1 (t)−X
(0,x2)
1 (t)‖Lp(Ω;R)

)

for all t, x2, p ∈ (0,∞) and there exists an infinitely often differentiable func-
tion ϕ ∈ C∞

cpt(R
2,R) with compact support such that lim06=x1→0(

1
x1

×
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E[ϕ(X(x1,x2)(t))− ϕ(X(0,x2)(t))]) =∞ for all t, x2 ∈ (0,∞).

Proof. The global Lipschitz continuity of σ, the local Lipschitz conti-
nuity of µ and 〈x,µ(x)〉= 0 for all x ∈R2 imply that

sup
x∈{y∈R2 : ‖y‖≤p}

E
[

sup
t∈[0,p]

‖Xx(t)‖p
]

<∞

for all p ∈ [0,∞). Next, we disprove local Lipschitz continuity of the map-
ping R2 ∋ x 7→Xx

1 (t) ∈ Lp(Ω;R) for every t, p ∈ (0,∞). More precisely, aim-
ing at a contradiction, we assume that the second equality in (2.5) is false.
Then there exist positive real numbers t, x2, p ∈ (0,∞) and a sequence of
real numbers hn ∈ R \ {0}, n ∈ N, such that limn→∞ hn = 0 and such that

lim supn→∞
1

|hn|‖X
(hn,x2)
1 (t)−X(0,x2)

1 (t)‖Lp(Ω;R) <∞. Theorem 1.7 in Krylov

[47] (see also Proposition 3.2.1 in Prévôt and Röckner [63]) yields that
sups∈[0,t] ‖X(hn,x2)(s) − X(0,x2)(s)‖ → 0 in probability as n → ∞. Hence,

there exists a strictly increasing sequence nk ∈ N, k ∈ N, of natural num-
bers such that limk→∞ sups∈[0,t] ‖X(hnk

,x2)(s)−X(0,x2)(s)‖ = 0, P-a.s.; see,
for example, Corollary 6.13 in Klenke [40]. Applying this, Fatou’s lemma
and Lemma 2.2 implies

∞> lim sup
k→∞

(
1

|hnk
| ‖X

(hnk
,x2)

1 (t)−X
(0,x2)
1 (t)‖Lp(Ω;R)

)

= limsup
k→∞

(
1

|hnk
| ‖X

(hnk
,x2)

1 (t)‖Lp(Ω;R)

)

= limsup
k→∞

∥
∥
∥
∥
exp

(∫ t

0
X

(hnk
,x2)

2 (s)ds

)∥
∥
∥
∥
Lp(Ω;R)

≥
∥
∥
∥
∥
lim inf
k→∞

{

exp

(∫ t

0
X

(hnk
,x2)

2 (s)ds

)}∥
∥
∥
∥
Lp(Ω;R)

=

∥
∥
∥
∥
exp

(∫ t

0
X

(0,x2)
2 (s)ds

)∥
∥
∥
∥
Lp(Ω;R)

=

∥
∥
∥
∥
exp

(∫ t

0
e(W (s)−s/2) ds · x2

)∥
∥
∥
∥
Lp(Ω;R)

(2.6)

≥
(

E

[

exp

(∫ t

0
eW (s) ds · px2

et/2

)

· 1{1≤eW (t)≤2}

])1/p

=∞.

This contradiction implies that the second equality in (2.5) is true. The first

equality in (2.5) follows from the second equality in (2.5) as 1
x1
(X

(x1,x2)
1 (t)−
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X
(0,x2)
1 (t)) ∈ [0,∞) for all x1 ∈R \ {0} and all x2 ∈ (0,∞). In the next step,

let c ∈ (0,∞) be an arbitrary fixed real number and let ψ1 :R → R and
ψ2 :R→ [0,∞) be two infinitely often differentiable functions with x ·ψ1(x)≥
0 for all x ∈ R, with ψ1(x) = ψ2(x) = 0 for all x ∈ R \ [−c − 1, c + 1] and
with ψ1(x) = x and ψ2(x) = 1 for all x ∈ [−c, c]. Due to partition of unity,
such functions indeed exist. Next, let ϕ :R2 → R be given by ϕ(x1, x2) =
ψ1(x1) · ψ2(x2) for all x = (x1, x2) ∈ R2. Note that ϕ ∈ C∞

cpt(R
2,R) is an

infinitely often differentiable function with compact support. We now show
that lim06=x1→0(

1
x1

·E[ϕ(X(x1,x2)(t))−ϕ(X(0,x2)(t))]) =∞ for all t, x2 ∈ (0,∞).
Aiming at a contradiction, assume that there exist positive real numbers
t, x2 ∈ (0,∞) and a sequence hn ∈ R \ {0}, n ∈ N, such that limn→∞ hn = 0
and such that

lim sup
n→∞

(
1

hn
·E[ϕ(X(hn,x2)

1 (t))− ϕ(X
(0,x2)
1 (t))]

)

<∞.(2.7)

Theorem 1.7 in Krylov [47] yields that sups∈[0,t] ‖X(hn,x2)(s)−X(0,x2)(s)‖→
0 in probability as n→∞. Hence, there exists a strictly increasing sequence

nk ∈N, k ∈N, of natural numbers such that limk→∞ sups∈[0,t] ‖X(hnk
,x2)(s)−

X(0,x2)(s)‖= 0, P-a.s.; see, for example, Corollary 6.13 in Klenke [40]. Ap-
plying this, the fact 1

x1
(ϕ(x1, x2)−ϕ(0, x2)) ∈ [0,∞) for all x1 ∈R \ {0} and

all x2 ∈ (0,∞), Fatou’s lemma and Lemma 2.2 then results in

∞> lim sup
k→∞

(
1

hnk

E[ϕ(X(hnk
,x2)(t))− ϕ(X(0,x2)(t))]

)

= limsup
k→∞

E

[∣
∣
∣
∣

ϕ(X(hnk
,x2)(t))−ϕ(X(0,x2)(t))

hnk

∣
∣
∣
∣

]

≥ E

[

lim inf
k→∞

∣
∣
∣
∣

ϕ(X(hnk
,x2)(t))−ϕ(X(0,x2)(t))

hnk

∣
∣
∣
∣

]

= E

[

lim inf
k→∞

(
ϕ(X(hnk

,x2)(t))− ϕ(X(0,x2)(t))

hnk

)]

= E

[

ψ2(X
(0,x2)
2 (t))

(

lim inf
k→∞

X
(hnk

,x2)
1 (t)

hnk

)]

= E

[

ψ2(X
(0,x2)
2 (t)) · exp

(∫ t

0
e(W (s)−s/2) ds · x2

)]

(2.8)

≥ E

[

1{c/2≤x2·exp(W (t)−t/2)≤c} · exp
(∫ t

0
e(W (s)−s/2) ds · x2

)]

=∞.
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This contradiction implies that lim06=x1→0(
1
x1

· E[ϕ(X(x1,x2)(t)) −
ϕ(X(0,x2)(t))]) = ∞ for all t, x2 ∈ (0,∞). The proof of Lemma 2.3 is thus
completed. �

Proof of Theorem 2.1. Theorem 1.7 in Krylov [47] (see also Propo-
sition 3.2.1 in Prévôt and Röckner [63]), in particular, shows for every
t ∈ [0,∞) that the mapping

R2 ∋ x 7→Xx(t) ∈ L0(Ω;R2)(2.9)

is continuous. This implies for every ϕ ∈C∞
cpt(R

2,R) and every t ∈ [0,∞) that

the mapping R2 ∋ x 7→ E[ϕ(Xx(t))] ∈R is continuous. Moreover, Lemma 2.3
proves that supx∈{y∈R2 : ‖y‖≤p} E[supt∈[0,p] ‖Xx(t)‖p] <∞ for all p ∈ [0,∞).
Combining this, (2.9), Corollary 6.21 in Klenke [40] and Theorem 6.25
in Klenke [40] shows for every t, p ∈ [0,∞) that the mappings R2 ∋ x 7→
Xx(t) ∈ Lp(Ω;R2) and R2 ∋ x 7→ E[Xx(t)] ∈R2 are continuous. Furthermore,
Lemma 2.3 implies that there exists an infinitely often differentiable func-
tion ϕ ∈C∞

cpt(R
2,R) with compact support such that for every t, p ∈ (0,∞)

the mappings R2 ∋ x 7→ E[Xx(t)] ∈ R2, R2 ∋ x 7→ E[ϕ(Xx(t))] ∈R and R2 ∋
x 7→Xx(t) ∈ Lp(Ω;R2) are not locally Lipschitz continuous and not differ-
entiable. The proof of Theorem 2.1 is thus completed. �

In the remainder of this section, we briefly consider slightly modified ver-
sions of the SDE (2.1). The generator of the SDE (2.1) is nowhere elliptic. We
remark that the phenomenon of loss of regularity may also appear for an SDE
whose generator is in many points of the state space elliptic. For example,
let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,∞), let

W = (W1,W2) : [0,∞)×Ω→R2 be a two-dimensional standard (Ft)t∈[0,∞)-

Brownian motion and let Xx = (Xx
1 ,X

x
2 ) : [0,∞)×Ω→ R2, x ∈ R2, be the

up to indistinguishability unique solution processes with continuous sample
paths of the SDE

dXx
1 (t) =Xx

1 (t) ·Xx
2 (t)dt+Xx

1 (t)dW1(t),
(2.10)

dXx
2 (t) =−(Xx

1 (t))
2 dt+Xx

2 (t)dW2(t)

for t ∈ (0,∞) and x ∈R2 satisfying Xx(0) = x for all x∈R2. The generator
of the SDE (2.10) is in every point x= (x1, x2) ∈R2 with x1 · x2 6= 0 elliptic
but there exists a function ϕ ∈ C∞

cpt(R
d,R) such that for every t ∈ (0,∞)

the functions R2 ∋ x 7→ E[Xx(t)] ∈ R2 and R2 ∋ x 7→ E[ϕ(Xx(t))] ∈ R are
not locally Lipschitz continuous. The proof of this statement is completely
analogous as in the case of the SDE (2.1). Furthermore, the same state-
ment holds if the two independent standard Brownian motion in (2.10) are
replaced by one and the same standard Brownian motion. More precisely,
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if (Ω,F ,P) is a probability space with a normal filtration (Ft)t∈[0,∞) and
if W : [0,∞) × Ω → R is a one-dimensional standard (Ft)t∈[0,∞)-Brownian
motion, then the up to indistinguishability unique solution processes Xx =
(Xx

1 ,X
x
2 ) : [0,∞)×Ω→R2, x ∈R2, of the SDE

dXx(t) =

(
Xx

1 (t) ·Xx
2 (t)

−(Xx
1 (t))

2

)

dt+Xx(t)dW (t)(2.11)

for t ∈ (0,∞) and x ∈R2 with continuous sample paths and with Xx(0) = x
for all x ∈ R2 fulfill that there exists a function ϕ ∈ C∞

cpt(R
2,R) such that

for every t ∈ (0,∞) the functions R2 ∋ x 7→ E[Xx(t)] ∈ R2 and R2 ∋ x 7→
E[ϕ(Xx(t))] ∈R are not locally Lipschitz continuous.

3. Counterexamples to regularity preservation with degenerate additive

noise. In this section, we show the roughening effect for an example SDE
with globally bounded and infinitely often differentiable coefficients. For this,
it suffices to consider the following counterexample to regularity preserva-
tion. Let (Ω,F ,P) be a probability space, let W : [0,∞)×Ω→ R be a one-
dimensional standard Brownian motion and let Xx = (Xx

1 ,X
x
2 ,X

x
3 ) : [0,∞)×

Ω→R3, x ∈R3, be the up to indistinguishability unique solution processes
with continuous sample paths of the SDE

dXx
1 (t) = cos(Xx

3 (t) · exp(Xx
2 (t)

3))dt,

dXx
2 (t) =

√
2dW (t),(3.1)

dXx
3 (t) = 0dt

for t ∈ [0,∞) and x ∈R3 satisfying Xx(0) = x for all x ∈R3. Observe that

Xx
1 (t) = x1 +

∫ t

0
cos(x3 · exp([x2 +

√
2W (s)]3))ds,(3.2)

P-a.s. for all t ∈ [0,∞) and all x= (x1, x2, x3) ∈R3.

Theorem 3.1 (A counterexample to regularity preservation with degen-
erate additive noise). Let T ∈ (0,∞) and let Xx : [0,∞)×Ω→R3, x ∈R3,
be solution processes of the SDE (3.1) satisfying Xx(0) = x for all x ∈ R3.
Then there exists an infinitely often differentiable function ϕ ∈ C∞

cpt(R
3,R)

with compact support such that for every t ∈ (0, T ] the functions R3 ∋ x 7→
E[Xx(t)] ∈R3 and R3 ∋ x 7→ E[ϕ(Xx(t))] ∈R are continuous but not locally
Hölder continuous.

In the following, regularity properties of the solution processes Xx =
(Xx

1 ,X
x
2 ,X

x
3 ) : [0,∞) × Ω → R3, x ∈ R3, of the SDE (3.1) are investigated

in order to prove Theorem 3.1. To do so, we first establish a few auxiliary
results. We begin with a simple lemma on trigonometric integrals.
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Lemma 3.2. Let a, b ∈R be real numbers with a < b, let ψ : [a, b]→ [0,∞)
be a continuously differentiable function and let ϕ : [a, b]→R be a twice con-
tinuously differentiable function with ei·ϕ(a) = i and with ϕ′(x)≥ 0, ϕ′′(x)≥
0 and ψ′(x)≤ 0 for all x ∈ [a, b]. Then

∫ b
a cos(ϕ(x))ψ(x)dx ≤ 0.

Proof. First, assume w.l.o.g. that ϕ(b)≥ ϕ(a) + π (otherwise we have

cos(ϕ(x)) ≤ 0 for all x ∈ [a, b], and hence
∫ b
a cos(ϕ(x))ψ(x)dx ≤ 0). More-

over, assume w.l.o.g. that ϕ′(x) > 0 for all x ∈ (a, b] (otherwise consider
ϕ|[ã,b] : [ã, b] → R where ã := inf({x ∈ [a, b] :ϕ′(x) > 0} ∪ {b}) and observe

that
∫ b
a cos(ϕ(x))ψ(x)dx=

∫ b
ã cos(ϕ(x))ψ(x)dx). In particular, ϕ : [a, b]→R

is strictly increasing and there exists a unique strictly increasing continuous
function ϕ−1 : [ϕ(a), ϕ(b)] → [a, b] with ϕ−1(ϕ(x)) = x for all x ∈ [a, b] and
with ϕ(ϕ−1(x)) = x and (ϕ−1)′(x) = 1

ϕ′(ϕ−1(x))
> 0 for all x ∈ (ϕ(a), ϕ(b)).

Integration by substitution and integration by parts therefore imply

∫ b

a
cos(ϕ(x))ψ(x)dx

=

∫ ϕ(b)

ϕ(a)
cos(x) · ψ(ϕ−1(x)) · (ϕ−1)′(x)dx

=

∫ ϕ(b)

ϕ(a)

cos(x) · ψ(ϕ−1(x))

ϕ′(ϕ−1(x))
dx

(3.3)

=
[sin(ϕ(b))− 1]ψ(ϕ−1(ϕ(b)))

ϕ′(ϕ−1(ϕ(b)))

−
∫ ϕ(b)

ϕ(a)
[sin(x)− 1]

[
ψ′(ϕ−1(x))

[ϕ′(ϕ−1(x))]2
− ψ(ϕ−1(x))ϕ′′(ϕ−1(x))

[ϕ′(ϕ−1(x))]3

]

dx

≤ 0.

This completes the proof of Lemma 3.2. �

The next lemma analyzes suitable regularity properties of the solution
processes Xx = (Xx

1 ,X
x
2 ,X

x
3 ) : [0,∞)×Ω→R3, x ∈R3, of the SDE (3.1). Its

proof is based on Lemma 3.2.

Lemma 3.3 (A lower bound). Let (Ω,F ,P) be a probability space and let
W : [0,∞)×Ω→R be a one-dimensional standard Brownian motion. Then

1−E[cos(h · exp([x+W (t)]3))]≥ exp

(−8

t

[∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

+ x2
])

(3.4)
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for all h ∈ (0, π2 exp(−|[
√
t+ x]∨ 0|3)], t ∈ (0,∞) and all x ∈R and

∫ t

0
E[1{W (t)∈A}(1− cos(h · e[x+W (s)]3))]ds

(3.5)

≥ t

3
·E[1{W (t)∈A}e

−64|W (t)|2/t] · exp
(−64

t

[∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

+ x2
])

for all h ∈ (0, π2 exp(−[
√
t + |x| + supa∈A |a|]3)], x ∈ R, t ∈ (0,∞) and all

bounded and Borel measurable sets A⊂R.

Proof. First of all, define a family ϕt,x,h : [
[ln(π/(2h))]1/3−x√

t
,∞) → R,

(t, x, h) ∈ {(0,∞)×R× (0,∞) :h≤ π
2 exp(−|x∨ 0|3)}, of functions by

ϕt,x,h(y) := h · exp([x+
√
ty]3)(3.6)

for all y ∈ [ [ln(π/(2h))]
1/3−x√

t
,∞), t ∈ (0,∞), h ∈ (0, π2 exp(−|x ∨ 0|3)] and all

x ∈R. Observe that

ϕ′
t,x,h(y) = 3

√
t[x+

√
ty]2ϕt,x,h(y)≥ 0(3.7)

and

ϕ′′
t,x,h(y) = 6t[x+

√
ty]ϕt,x,h(y) + 9t[x+

√
ty]4ϕt,x,h(y)≥ 0(3.8)

for all y ∈ [ [ln(π/(2h))]
1/3−x√

t
,∞), t ∈ (0,∞), h ∈ (0, π2 exp(−|x ∨ 0|3)] and all

x ∈ R. In addition, note that ϕt,x,h(
[ln(π/(2h))]1/3−x√

t
) = π

2 for all t ∈ (0,∞),

h ∈ (0, π2 exp(−|x ∨ 0|3)] and all x ∈ R. We can thus apply Lemma 3.2 to
obtain that

1√
2π

∫ ∞

([ln(π/(2h))]1/3−x)/
√
t
cos(h · exp([x+

√
ty]3))e−y2/2 dy ≤ 0(3.9)

for all t ∈ (0,∞), h ∈ (0, π2 exp(−|x∨ 0|3)] and all x ∈R. This implies

E[cos(h · exp([x+W (t)]3))]

=
1√
2π

∫ ∞

−∞
cos(h · exp([x+

√
ty]3))e−y2/2 dy

≤ 1√
2π

∫ ([ln(π/(2h))]1/3−x)/
√
t

−∞
cos(h · exp([x+

√
ty]3))e−y2/2 dy(3.10)

≤ P

[

W1 ≤
[ln(π/(2h))]1/3 − x√

t

]

= 1− P

[

W1 >
[ln(π/(2h))]1/3 − x√

t

]



LOSS OF REGULARITY FOR KOLMOGOROV EQUATIONS 19

for all t ∈ (0,∞), h ∈ (0, π2 exp(−|x∨0|3)] and all x ∈R. Moreover, Lemma 22.2
in Klenke [40] yields

P[W1 > y]≥ e−y2/2

y
√
2π(1 + y−2)

≥ e−y2/2

y
√
8π

≥ e−4y2(3.11)

for all y ∈ [1,∞). Combining this and inequality (3.10) then shows

1− E[cos(h · exp([x+W (t)]3))]≥ P

[

W1 >
[ln(π/(2h))]1/3 − x√

t

]

(3.12)

≥ exp

(−4|[ln(π/(2h))]1/3 − x|2
t

)

for all h ∈ (0, π2 exp(−|[
√
t+ x] ∨ 0|3)], t ∈ (0,∞) and all x ∈ R and the es-

timate −|a + b|2 ≥ −2a2 − 2b2 for all a, b ∈ R therefore results in the first
inequality in (3.4). Next, the first inequality in (3.4) implies

E[1{W (t)∈A}|1− cos(h · exp([x+W (s)]3))|]

= E

[

1{W (t)∈A}E

[

1− cos

(

h · exp
([

x+
s

t
W (t) +W (s)

(3.13)

− s

t
W (t)

]3))∣
∣
∣W (t)

]]

≥ E

[

1{W (t)∈A} exp

( −8t

s(t− s)

[∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

+

[

x+
s

t
W (t)

]2])]

for all h ∈ (0, π2 exp(−[
√
t+ |x|+supa∈A |a|]3)], x ∈R, s, t ∈ (0,∞) with s < t

and all bounded and Borel measurable sets A⊂R. Hence, we get
∫ t

0
E[1{W (t)∈A}|1− cos(h · exp([x+W (s)]3))|]ds

≥
∫ 2t/3

t/3
E[1{W (t)∈A}|1− cos(h · exp([x+W (s)]3))|]ds

≥
∫ 2t/3

t/3
E

[

1{W (t)∈A} exp

( −8t

s(t− s)

[∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

(3.14)

+

[

x+
s

t
W (t)

]2])]

ds

≥ t

3
·E
[

1{W (t)∈A} exp

(−64

t

[∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

+ x2 + |W (t)|2
])]
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for all h ∈ (0, π2 exp(−[
√
t + |x| + supa∈A |a|]3)], x ∈ R, t ∈ (0,∞) and all

bounded and Borel measurable sets A ⊂ R. This completes the proof of
Lemma 3.3. �

We are now ready to prove Theorem 3.1 stated at the beginning of this
section. Its proof uses the lower bound established in Lemma 3.3 above.

Proof of Theorem 3.1. First of all, note that (3.2) and Lemma 3.3
imply that

lim
hց0

(
E[X(0,0,0)

1 (t)−X
(0,0,h)
1 (t)]

hε

)

= lim
hց0

(
E[
∫ t
0 1− cos(h · exp([

√
2W (s)]3))ds]

hε

)

= lim
hց0

(∫ t
0 1−E[cos(h · exp([W (2s)]3))]ds

hε

)

= lim
hց0

(∫ 2t
0 1−E[cos(h · exp([W (s)]3))]ds

2hε

)

(3.15)

≥ lim
hց0

(∫ 2t
t 1−E[cos(h · exp([W (s)]3))]ds

2hε

)

≥ lim
hց0

(∫ 2t
t exp((−8/t)| ln(π/(2h))|2/3)ds

2hε

)

= lim
hց0

(
t

2
· exp

(−8

t

∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

+ ln(h−ε)

))

=
t

2
· lim
hց0

(

exp

(−8

t

∣
∣
∣
∣
ln

(
π

2h

)∣
∣
∣
∣

2/3

− ε · ln(h)
))

=∞

for all ε, t ∈ (0,∞). We hence get for every t ∈ (0,∞) that the function R3 ∋
x 7→ E[Xx(t)] ∈ R3 is not locally Hölder continuous. Moreover, let ψ :R→
[0,1] be an infinitely often differentiable function with compact support and
with ψ(x) = 1 for all x ∈ [−T,T ] and let ϕ :R3 → R be a function given
by ϕ(x1, x2, x3) = x1ψ(x1)ψ(x2)ψ(x3) for all x1, x2, x3 ∈ R. Again (3.2) and
Lemma 3.3 then show

lim
hց0

(h−ε ·E[ϕ(X(0,0,0)(t))− ϕ(X(0,0,h)(t))])

= lim
hց0

(h−ε ·E[(X(0,0,0)
1 (t)−X

(0,0,h)
1 (t))ψ(

√
2W (t))])
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≥ lim
hց0

(h−ε ·E[1{|
√
2W (t)|≤T}(X

(0,0,0)
1 (t)−X

(0,0,h)
1 (t))])(3.16)

= lim
hց0

(

h−ε ·E
[∫ t

0
1{|

√
2W (t)|≤T}(1− cos(h · exp([

√
2W (s)]3)))ds

])

= lim
hց0

(
1

2hε
·E
[∫ 2t

0
1{|W (2t)|≤T}(1− cos(h · exp([W (s)]3)))ds

])

=∞

for all t ∈ (0, T ]. The proof of Theorem 3.1 is thus completed. �

In the remainder of this section, we briefly consider a slightly modified
version of the SDE (3.1). More formally, let (Zn)n∈N0 be a family of sets
defined by Z0 := Z := {. . . ,−2,−1,0,1,2, . . .} and by Zn := {z ∈ Z : z2 /∈ Z}
= {. . . ,−3,−1,1,3, . . .} for all n ∈N. Then let µ= (µ1, µ2, µ3) :R3 →R3 and
B ∈R3 be given by

µ(x) =








∞∑

n=0

∑

m∈Zn

1

4(n+|m|) cos

((

x3 −
m

2n

)

exp([x2]
3)

)

0

0








and

(3.17)

B =





0

1

0





for all x= (x1, x2, x3) ∈ R3. Note that µ :R3 → R3 is infinitely often differ-
entiable and globally bounded by 2. Moreover, let (Ω,F ,P) be a probability
space, let W : [0,∞)×Ω→R be a one-dimensional standard Brownian mo-
tion and let Xx : [0,∞)×Ω→ R3, x ∈ R3, be the up to indistinguishability
unique solution processes with continuous sample paths of the SDE

dXx(t) = µ(Xx(t))dt+BdW (t)(3.18)

for t ∈ [0,∞) and x ∈ R3 satisfying Xx(0) = x for all x ∈ R3. The follow-
ing Theorem 3.4 establishes that the function [0,∞)×R3 → E[Xx(t)] ∈ R3

is nowhere locally Hölder continuous. Its proof is a straightforward conse-
quence of Lemma 3.3 and, therefore, omitted.

Theorem 3.4 (A further counterexample to regularity preservation with
degenerate additive noise). Let c, T ∈ (0,∞) and let Xx : [0,∞)×Ω→R3,
x ∈R3, be solution processes of the SDE (3.18) with continuous sample paths
and with Xx(0) = x for all x ∈ R3. Then for every t ∈ (0,∞) and every
nonempty open set O ⊂ R3, the function O ∋ x 7→ E[Xx(t)] ∈ R3 is contin-
uous but not locally Hölder continuous. Moreover, there exists an infinitely
often differentiable function ϕ ∈C∞

cpt(R
3,R) with compact support such that
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for every t ∈ (0, T ] and every nonempty open set O ⊂ (−c, c)3 the function
O ∋ x 7→E[ϕ(Xx(t))] ∈R is continuous but not locally Hölder continuous.

4. Solutions of Kolmogorov equations. If the transition semigroup as-
sociated with an SDE is smooth, then it satisfies the Kolmogorov equa-
tion (which is a second-order linear PDE) corresponding to the SDE in
the classical sense. The transition semigroups in our counterexamples are,
however, not locally Lipschitz continuous and are therefore no classical solu-
tions of the Kolmogorov equations of the corresponding SDEs. The purpose
of this section is to verify that the nonsmooth transition semigroup asso-
ciated with such an SDE still satisfies the Kolmogorov equation but in a
certain weak sense. More precisely, in Section 4.4, we show that the tran-
sition semigroups in our counterexamples are viscosity solutions of the as-
sociated Kolmogorov equations. Moreover, in Section 4.5, we show that the
transition semigroups in our counterexamples are solutions of the associated
Kolmogorov equations in the distributional sense. Throughout this section,
the notation sup(∅) :=−∞ and inf(∅) :=∞ is used.

4.1. Definition and basic properties of viscosity solutions. Viscosity so-
lutions were first introduced in Crandall and Lions [9] (see also [8, 16, 17]).
The name viscosity solution is due to the method of vanishing viscosity;
see the discussion in Section 10.1 in Evans [18]. For a review of the theory
and for more references, we refer the reader to the well-known users’s guide
Crandall, Ishii and Lions [7].

For d ∈N, we denote by Sd = {A ∈Rd×d :A=A∗} the set of all symmetric
d × d-matrices. Moreover, for d ∈ N and A,B ∈ Sd we write A ≤ B in the
following if 〈x,Ax〉 ≤ 〈x,Bx〉 for all x ∈Rd. Furthermore, for d ∈N and an
open set O ⊂Rd we call a function F :O×R×Rd×Sd →R degenerate elliptic
(see, e.g., (0.3) in Crandall, Ishii and Lions [7]) if F (x, r, p,A)≤ F (x, r, p,B)
for all x ∈O, r ∈R, p ∈Rd and all A,B ∈ Sd with A≥B. For convenience of
the reader, we recall the definition of a viscosity solution (see, e.g., Section 2
in Crandall, Ishii and Lions [7] and also Definition 1.2 in Appendix C in
Peng [61]).

Definition 4.1 (Viscosity solution). Let d ∈N, let O ⊂Rd be an open
set and let F :O×R×Rd×Sd →R be a degenerate elliptic function. A func-
tion u :O→R is said to be a viscosity subsolution of F = 0 (or, equivalently,
a viscosity solution of F ≤ 0) if u is upper semicontinuous and if it holds for
all x ∈O and all φ ∈C2(O,R) with φ≥ u and φ(x) = u(x) that

F (x,φ(x), (∇φ)(x), (Hessφ)(x))≤ 0.(4.1)

Similarly, a function u :O→R is said to be a viscosity supersolution of F = 0
(or, equivalently, a viscosity solution of F ≥ 0) if u is lower semicontinuous
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and if it holds for all x ∈O and all φ ∈C2(O,R) with φ≤ u and φ(x) = u(x)
that

F (x,φ(x), (∇φ)(x), (Hessφ)(x))≥ 0.(4.2)

Finally, a function u :O→ R is said to be a viscosity solution of F = 0 if u
is both a viscosity subsolution and a viscosity supersolution of F = 0.

In the proof of Corollary 4.11 below, the following elementary lemma
(Lemma 4.2) is used. The proof of Lemma 4.2 is clear and, therefore, omitted.

Lemma 4.2 (Sign changes of viscosity solutions). Let d ∈ N, let O ⊂
Rd be an open set, let F :O × R × Rd × Sd → R be a degenerate elliptic
function and let u :O→R be a viscosity solution of F ≥ 0. Then the function
F̃ :O×R×Rd×Sd →R defined by F̃ (x, r, p,A) :=−F (x,−r,−p,−A) for all
(x, r, p,A) ∈O×R×Rd×Sd is degenerate elliptic and the function O ∋ x 7→
−u(x) ∈ R is a viscosity solution of F̃ ≤ 0. The corresponding statement
holds for viscosity solutions of F ≤ 0 and F = 0, respectively.

Above in Definition 4.1, the concept of viscosity solutions is presented via
suitable test functions. An alternative instrument to characterize viscosity
solutions are so-called semijets (see, e.g., Definition 2.2 in Crandall, Ishii
and Lions [7]). They are recalled in the next definition.

Definition 4.3 (Second-order semijets). Let d ∈ N, let O ⊂ Rd be an
open set and let u :O→R be a function. Then we define functions J2

+u :O→
P(Rd × Sd), J2

−u :O → P(Rd × Sd), Ĵ2
+u :O → P(Rd × Sd) and Ĵ2

−u :O →
P(Rd × Sd) by

(J2
+u)(x)

:=

{

(p,A) ∈Rd × Sd :

lim sup
O\{x}∋y→x

(
u(y)− u(x)− 〈p,x− y〉 − (1/2)〈x− y,A(x− y)〉

‖x− y‖2
)

≤ 0

}

,

(Ĵ2
+u)(x)

:=

{

(p,A) ∈Rd × Sd :

(

∃(xn, pn,An)n∈N ⊂O×Rd × Sd : (∀n ∈N : (pn,An) ∈ (J2
+u)(xn))

and lim
n→∞

(xn, u(xn), pn,An) = (x,u(x), p,A)

)}

,
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(J2
−u)(x)

:=

{

(p,A) ∈Rd × Sd :

lim inf
O\{x}∋y→x

(
u(y)− u(x)− 〈p,x− y〉 − (1/2)〈x− y,A(x− y)〉

‖x− y‖2
)

≥ 0

}

and

(Ĵ2
−u)(x)

:=

{

(p,A) ∈Rd × Sd :

(

∃(xn, pn,An)n∈N ⊂O×Rd × Sd : (∀n ∈N : (pn,An) ∈ (J2
−u)(xn))

and lim
n→∞

(xn, u(xn), pn,An) = (x,u(x), p,A)

)}

for all x∈O.

The next lemma (Lemma 4.4), which is essentially one of the statements
in Remark 2.3 in Crandall, Ishii and Lions [7], illustrates the relationship
between semijets in the sense of Definition 4.3 and suitable test functions in
the sense of Definition 4.1.

Lemma 4.4 (Properties of semijets). Let d ∈ N, let O ⊂ Rd be an open
set and let u :O→R be a function. Then

(J2
+u)(x) = {((∇φ)(x), (Hessφ)(x)) ∈Rd × Sd :

(φ ∈C2(O,R) with u(x) = φ(x) and u≤ φ)}
(4.3)

= {((∇φ)(x), (Hessφ)(x)) ∈Rd × Sd :

(φ ∈C2(O,R) and u− φ has a local maximum at x)}
and

(J2
−u)(x) = {((∇φ)(x), (Hessφ)(x)) ∈Rd × Sd :

(φ ∈C2(O,R) with u(x) = φ(x) and u≥ φ)}
(4.4)

= {((∇φ)(x), (Hessφ)(x)) ∈Rd × Sd :

(φ ∈C2(O,R) and u− φ has a local minimum at x)}
for all x ∈O.

The next corollary, which is essentially one of the statements in Re-
mark 2.3 in Crandall, Ishii and Lions [7], is an immediate consequence of
Lemma 4.4 above.
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Corollary 4.5 (Characterizations of viscosity solutions). Let d ∈N, let
O ⊂ Rd be an open set, let F :O×R×Rd × Sd →R be a degenerate elliptic
function and let u :O→ R be an upper semicontinuous function. Then the
following three assertions are equivalent:

• u is a viscosity subsolution of F = 0 (u is a viscosity solution of F ≤ 0),
• for every x ∈O and every φ ∈ {ψ ∈C2(O,R) :x is a local maximum of (u−
ψ) :O→R} it holds that F (x,u(x), (∇φ)(x), (Hessφ)(x))≤ 0,

• for every x ∈O and every (p,A) ∈ (J2
+u)(x) it holds that F (x,u(x), p,A)≤

0.

The corresponding statement holds for viscosity supersolutions and viscosity
solutions.

The next corollary, which is Remark 2.4 in Crandall, Ishii and Lions [7],
illustrates a further characterization of viscosity solutions under the assump-
tion that F is continuous. It follows immediately from Corollary 4.5 and from
the semicontinuity of F .

Corollary 4.6 (Characterizations of viscosity solutions for semicontin-
uous left-hand sides). Let d ∈ N, let O ⊂ Rd be an open set, let F :O ×
R × Rd × Sd → R be a degenerate elliptic and lower semicontinuous func-
tion and let u :O→ R be an upper semicontinuous function. Then u is a
viscosity solution of F ≤ 0 if and only if it holds for every x ∈ O and ev-
ery (p,A) ∈ (Ĵ2

+u)(x) that F (x,u(x), p,A)≤ 0. The corresponding statement
holds for viscosity solutions of F ≥ 0 and F = 0, respectively.

The next well-known remark (see, e.g., Section 2 in Crandall, Ishii and
Lions [7]) illustrates that classical solutions are viscosity solutions. We will
use it in the proof of Lemma 4.15 below.

Remark 4.1 (Classical solutions are viscosity solutions). Let d ∈N, let
O ⊂Rd be an open set, let F :O×R×Rd × Sd →R be a degenerate elliptic
function and let u ∈ C2(O,R) be a classical subsolution of F = 0, that is,
suppose that

F (x,u(x), (∇u)(x), (Hessu)(x))≤ 0(4.5)

for all x ∈O. Then u is also a viscosity subsolution of F = 0. Indeed, for every
x ∈ O and every φ ∈ {ψ ∈ C2(O,R) :x is a local maximum of (u− ψ) :O→
R} it holds that (∇(u− φ))(x) = 0 and (Hess(u− φ))(x)≤ 0 and, therefore,

F (x,u(x), (∇φ)(x), (Hessφ)(x)) = F (x,u(x), (∇u)(x), (Hessφ)(x))
≤ F (x,u(x), (∇u)(x), (Hessu)(x))(4.6)

≤ 0
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due to (4.5) and due to the degenerate ellipticity assumption on F . The
corresponding statement holds for classical supersolutions and classical so-
lutions of F = 0.

For the convenience of the reader, we also state a special case of Theorem
3.2 in Crandall, Ishii and Lions [7] in the next lemma. It will be used in the
proof of Lemma 4.10 below.

Lemma 4.7 (Construction of suitable semijets). Let d, k ∈N, ε ∈ (0,∞),
let O⊂Rd be an open set, let Φ ∈C2(Ok,R), let ui :O→R, i ∈ {1, . . . , k}, be
upper semicontinuous functions and let x̂= (x̂1, . . . , x̂k) ∈Ok be a local maxi-

mum point of the function Ok ∋ (x1, . . . , xk) 7→ (
∑k

i=1 ui(xi))−Φ(x1, . . . , xk) ∈
R. Then there exist matrices A1 ∈ Sd, . . . ,Ak ∈ Sd such that for all i ∈
{1, . . . , k} it holds that ((∇xiΦ)(x̂),Ai) ∈ (Ĵ2

+ui)(x̂i) and such that

−
(
1

ε
+ ‖(HessΦ)(x̂)‖L(Rkd)

)

I ≤






A1 · · · 0
...

. . .
...

0 · · · Ak






(4.7)
≤ (HessΦ)(x̂) + ε[(HessΦ)(x̂)]2.

4.2. An approximation result for viscosity solutions. The following ap-
proximation result for viscosity solutions is essentially well known (see Propo-
sition 1.2 in Ishii [37] which refers to the first-order case in Theorem A.2
in Barles and Perthame [2]; see also Lemma 6.1 in Crandall, Ishii and Li-
ons [7] and the remarks thereafter). For completeness, we give the proof here
following the line of arguments for the first-order case in Theorem A.2 in
Barles and Perthame [2]. In the remainder of this article, we use the notation
dist(x,A) := inf({‖x− y‖ ∈ [0,∞) :y ∈A} ∪ {∞}) ∈ [0,∞] for all x ∈Rd, all
A⊂Rd and all d ∈N.

Lemma 4.8. Let d ∈N, let O⊂Rd be an open set, let un :O→R, n ∈N0,
be functions and let Fn :O×R×Rd× Sd →R, n ∈N0, be degenerate elliptic
functions such that F0 is continuous. Moreover, assume that

lim sup
n→∞

sup
(x,r,p,A)∈K

|Fn(x, r, p,A)−F0(x, r, p,A)|
(4.8)

= 0 = limsup
n→∞

sup
x∈K̄

|un(x)− u0(x)|

for all nonempty compact sets K ⊂O×R×Rd × Sd and all nonempty com-
pact sets K̄ ⊂O and assume for every n ∈N that un is a viscosity solution
of Fn = 0. Then u0 is a viscosity solution of F0 = 0.
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Proof. The proof is divided into two steps.
Step 1: Let x0 ∈O and let φ ∈ C2(O,R) be a function such that x0 is a

strict maximum of u0 − φ, that is,

u0(x)− φ(x)< u0(x0)− φ(x0)(4.9)

for all x ∈ O \ {x0}. Then we define r := min(1, 12 dist(x0,R
d \ O)) ∈ [0,1].

Since O ⊂ Rd is an open set, we obtain that r ∈ (0,1]. Furthermore, con-
tinuity of the function φ and of the functions un, n ∈ N, together with
compactness of the set {y ∈ Rd :‖y − x0‖ ≤ r} ⊂O proves that there exists
a sequence xn ∈ {y ∈Rd :‖y− x0‖ ≤ r} ⊂O, n ∈N, of vectors such that

un(x)− φ(x)≤ un(xn)− φ(xn)(4.10)

for all x ∈ {y ∈ Rd :‖y − x0‖ ≤ r} and all n ∈ N. We now prove that the
sequence (xn)n∈N converges to x0. Aiming at a contraction, we assume that
the sequence (xn)n∈N does not converge to x0. Due to compactness of {y ∈
Rd :‖y − x0‖ ≤ r}, there exists a vector x̄0 ∈ {y ∈Rd : 0< ‖y − x0‖ ≤ r} ⊂O
and an increasing sequence nk ∈ N, k ∈ N, such that limk→∞xnk

= x̄0. In
particular, we obtain that the set {x̄0} ∪ (

⋃

k∈N{xnk
}) is compact. Assump-

tion (4.8), inequality (4.10) and inequality (4.9) hence imply that

u0(x0)− φ(x0) = lim
k→∞

(unk
(x0)− φ(x0))≤ lim sup

k→∞
(unk

(xnk
)− φ(xnk

))

= u0(x̄0)− φ(x̄0)< u0(x0)− φ(x0).

From this contradiction, we infer that limn→∞ xn = x0. Assumption (4.8)
and continuity of ∇φ :O→Rd and of Hessφ :O→ Sd hence imply that

lim
n→∞

(xn, un(xn), (∇φ)(xn), (Hessφ)(xn))
(4.11)

= (x0, u0(x0), (∇φ)(x0), (Hessφ)(x0)).
In addition, limn→∞ xn = x0 and (4.10) show that there exists a natural
number n0 ∈N such that we have for all n ∈ {n0, n0+1, . . .} that ‖xn−x0‖<
r and that xn ∈ O is a local maximum of the function (un − φ) :O → R.
Hence, Corollary 4.5 and the assumption that un is a viscosity solution of
Fn = 0 show that

Fn(xn, un(xn), (∇φ)(xn), (Hessφ)(xn))≤ 0(4.12)

for all n ∈ {n0, n0+1, . . .}. Continuity of F0, equation (4.11), assumption (4.8),
inequality (4.12) and compactness of the set

⋃

n∈N0
{(xn, un(xn), (∇φ)(xn),

(Hessφ)(xn))} therefore yield that

F0(x0, u0(x0), (∇φ)(x0), (Hessφ)(x0))
= lim

n→∞
F0(xn, un(xn), (∇φ)(xn), (Hessφ)(xn))(4.13)

= lim
n→∞

Fn(xn, un(xn), (∇φ)(xn), (Hessφ)(xn))≤ 0.
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We thus have proved that F0(x,u0(x), (∇φ)(x), (Hessφ)(x)) ≤ 0 for all φ ∈
{ψ ∈C2(O,R) :x is a strict maximum of (u0 −ψ) :O→R} and all x ∈O.

Step 2: Let x0 ∈O and let φ ∈ C2(O,R) be a function such that φ(x0) =
u0(x0) and φ≥ u0. Next define functions φε :O→ R, ε ∈ (0,1), by φε(x) =
φ(x) + ε‖x − x0‖2 for all x ∈ O and all ε ∈ (0,1). Note for every ε ∈ (0,1)
that x0 is a strict maximum of the function (u0 − φε) :O→ R. Step 1 can
thus be applied to obtain

F0(x0, u0(x0), (∇φε)(x0), (Hessφε)(x0))≤ 0(4.14)

for all ε ∈ (0,1). Moreover, observe that (∇φε)(x0) = (∇φ)(x0) and that
(Hessφε)(x0) = (Hessφ)(x0) + 2εId for all ε ∈ (0,1) where Id ∈ Sd is the
d× d-unit matrix. Consequently, we see that limεց0(∇φε)(x0) = (∇φ)(x0)
and that limεց0(Hessφε)(x0) = (Hessφ)(x0). Continuity of F0 and inequal-
ity (4.14) hence yield

F0(x0, u0(x0), (∇φ)(x0), (Hessφ)(x0))
(4.15)

= lim
εց0

F0(x0, u0(x0), (∇φε)(x0), (Hessφε)(x0))≤ 0.

We thus have proved that F0(x,u0(x), (∇φ)(x), (Hessφ)(x)) ≤ 0 for all φ ∈
C2(O,R) with φ(x) = u0(x) and φ≥ u0 and all x ∈O. This shows that u0
is a viscosity subsolution of F0 = 0. In the same way, it can be shown that
u0 is a viscosity supersolution of F0 = 0 and we thereby obtain that u0 is a
viscosity solution of F0 = 0. The proof of Lemma 4.8 is thus completed. �

4.3. Uniqueness of viscosity solutions of Kolmogorov equations. A key
result of this subsection (Corollary 4.14) establishes uniqueness of viscosity
solutions of a second-order linear PDE within a certain class of functions
and is apparently new. This uniqueness result is based on the well-known
concept of superharmonic functions or—in the PDE language—on the idea
of dominating supersolutions. More precisely, let d ∈N and let (Ω,F ,P) be a
probability space with a normal filtration (Ft)t∈[0,∞). For solution processes

Xx : [0,∞) × Ω → Rd, x ∈ Rd, of many SDEs, there exists a function V ∈
C2(Rd, (0,∞)) [often Rd ∋ x 7→ 1 + ‖x‖2 ∈ (0,∞)] and a real number ρ ∈ R
such that the stochastic processes [0,∞)×Ω ∋ (t,ω)→ e−ρt ·V (Xx(t)(ω)) ∈
(0,∞), x ∈ Rd, are nonnegative supermartingales (so that E[V (Xx(t))] ≤
eρt · V (x) for all (t, x) ∈ [0,∞) × Rd); see, for example, the examples in
Section 4 in [34]. For these stochastic processes to be supermartingales, it
suffices that the Lyapunov function V satisfies

LV (x)≤ ρV (x)(4.16)

for all x ∈Rd, where L is the generator of the SDE under consideration. In
other words, it suffices that the map (0,∞)×Rd ∋ (t, x)→ eρt ·V (x) ∈ (0,∞)
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is a classical supersolution of the Kolmogorov equation. For T ∈ (0,∞), d ∈N
and an open set O ⊂Rd, a function G : (0, T )×O×R×Rd× Sd →R is here
called degenerate elliptic if G(t, x, r, p,A) ≤G(t, x, r, p,B) for all t ∈ (0, T ),
x ∈O, r ∈R, p ∈Rd and all A,B ∈ Sd with A≤B (see, e.g., inequality (1.2)
in Appendix C in Peng [61] and compare also with Section 4.1 above). To
establish Corollary 4.14, we first state a few auxiliary results. For the con-
venience of the reader, we first state Proposition 3.7 from Crandall, Ishii
and Lions [7] in the next lemma.

Lemma 4.9. Let d ∈ N, let O ⊂ Rd be a set, let η :O→ R be an upper
semicontinuous function, let φ :O→ [0,∞) be a lower semicontinuous func-
tion satisfying limα→∞ supy∈O(η(y)−α ·φ(y)) ∈R and let x : (0,∞)→O be
a function satisfying

lim
α→∞

(

sup
y∈O

(η(y)−α · φ(y))− (η(x(α))−α · φ(x(α)))
)

= 0.(4.17)

Then limα→∞α · φ(x(α)) = 0 and for all αn ∈ (0,∞), n ∈ N, with
limn→∞αn = ∞ and limn→∞x(αn) =: x0 ∈ O it holds that φ(x0) = 0 and
η(x0) = limα→∞ supy∈O(η(y)−α · φ(y)) = supy∈φ−1(0) η(y).

The next lemma essentially generalizes Theorem 2.2 in Appendix C in
Peng [61] (which assumes the functions G1, . . . ,Gk to be uniformly con-
tinuous in the second argument uniformly in the last argument) and is a
generalized analog of Theorem 8.2 in Crandall, Ishii and Lions [7] for un-
bounded domains. Given an open set O ⊂Rd, we define a sequence On ⊂O,
n ∈N, of compact sets by

On :=

{

x ∈O : dist(x,Rd \O)≥ 1

n
and ‖x‖ ≤ n

}

(4.18)

for all n ∈N. We also write Oc
n :=O \On for the complement of On in O.

Lemma 4.10 (A domination result for viscosity subsolutions). Let T ∈
(0,∞), d, k ∈N, let O ⊂Rd be an open set, let G1, . . . ,Gk : (0, T )×O×R×
Rd × Sd →R be degenerate elliptic and upper semicontinuous functions and
let u1, . . . , uk : [0, T ] × O → R be upper semicontinuous functions such that
for every i ∈ {1, . . . , k} it holds that ui|(0,T )×O is a viscosity subsolution of

∂

∂t
ui(t, x)−Gi(t, x, ui(t, x), (∇xui)(t, x), (Hessx ui)(t, x)) = 0(4.19)

for (t, x) ∈ (0, T )×O. Moreover, assume that

lim sup
n→∞

[
k∑

i=1

Gi(t
(n)
i , x

(n)
i , r

(n)
i ,
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n(1[2,k](i) · [x(n)i − x
(n)
i−1] + 1[1,k−1](i) · [x(n)i − x

(n)
i+1]), nA

(n)
i )

]

(4.20)

≤ 0

for all (t
(n)
i , x

(n)
i , r

(n)
i ,A

(n)
i ) ∈ (0, T )×O×R×Sd, n ∈N, i ∈ {1, . . . , k}, satis-

fying that limn→∞(t
(n)
1 , x

(n)
1 ) ∈ (0, T )×O, that limn→∞(

√
n
∑k

i=2 ‖(t
(n)
i , x

(n)
i )−

(t
(n)
i−1, x

(n)
i−1)‖) = 0, that limn→∞

∑k
i=1 r

(n)
i > 0, that supn∈N

∑k
i=1 |r

(n)
i | <∞

and that ∀n ∈ N :∀z1, . . . , zk ∈ Rd :−5
∑k

i=1 ‖zi‖2 ≤ ∑k
i=1〈zi,A

(n)
i zi〉 ≤

5
∑k

i=2 ‖zi−zi−1‖2. Furthermore, assume that
∑k

i=1 ui(0, x)≤ 0 for all x ∈O
and that

lim
n→∞

sup
(t,x)∈(0,T )×Oc

n

k∑

i=1

ui(t, x)≤ 0.(4.21)

Then
∑k

i=1 ui(t, x)≤ 0 for all (t, x) ∈ [0, T )×O.

Proof. If O = ∅, then the assertion is trivial. So for the rest of the
proof, we assume that O 6= ∅. We will show that

∑k
i=1 ui(t, x) ≤ kδ

(T−t) for

all (t, x) ∈ [0, T ) × O and all δ ∈ (0,1]. Letting δ → 0 will then yield that
∑k

i=1 ui(t, x)≤ 0 for all (t, x) ∈ [0, T )×O. In the following, we thus fix δ ∈
(0,1]. In a first step of this proof, we modify the problem. More precisely,
define functions ũ1, . . . , ũk : [0, T ) × O → [−∞,∞) by ũi(t, x) := ui(t, x) −

δ
(T−t) and functions G̃1, . . . , G̃k : (0, T )×O×R×Rd × Sd →R by

G̃i(t, x, r, p,A) :=Gi

(

t, x, r+
δ

(T − t)
, p,A

)

− ∂

∂t

(
δ

(T − t)

)

(4.22)

= Gi

(

t, x, r+
δ

(T − t)
, p,A

)

− δ

(T − t)2
.

Then it holds for every i ∈ {1, . . . , k} that ũi|(0,T )×O is a viscosity subsolution
of

∂

∂t
ũi(t, x)− G̃i(t, x, ũi(t, x), (∇xũi)(t, x), (Hessx ũi)(t, x)) = 0(4.23)

for (t, x) ∈ (0, T ) × O. It remains to prove that
∑k

i=1 ũi(z) ≤ 0 for all z ∈
[0, T ) × O. Aiming at a contradiction, we assume that the extended real

number S0 := supz∈[0,T )×O

∑k
i=1 ũi(z) ∈ (−∞,∞] satisfies that S0 ∈ (0,∞].

Assumption (4.21) then implies that there exists a natural number n0 ∈ N
such that K := On0 is nonempty and such that

∑k
i=1 ũi(z) ≤

∑k
i=1 ui(z) ≤

min(1, S0
2 ) for all z ∈ (0, T ) × Kc. This, together with

∑k
i=1 ũi(0, x) ≤
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∑k
i=1 ui(0, x)≤ 0 and

∑k
i=1 ũi(T,x) =−∞ for all x ∈O implies that

sup
z∈[0,T ]×Kc

k∑

i=1

ũi(z)≤min

(

1,
S0
2

)

≤ S0
2
.(4.24)

Moreover, the function
∑k

i=1 ũi : [0, T ]×O→ [−∞,∞) is upper semicontinu-
ous and is hence bounded from above on the compact set [0, T ]×K. Combin-
ing this with (4.24) proves that S0 <∞ and we thus get S0 ∈ (0,∞). In the
next step, we define a function φ : ([0, T ]×O)k → [0,∞) by φ(z1, . . . , zk) =
1
2

∑k
i=2 ‖zi − zi−1‖2 for all z1, . . . , zk ∈ [0, T ]×O. For several n ∈N, we will

apply Lemma 4.7 with O = (0, T )×O, ε= 1
n and with Φ = n ·φ|((0,T )×O)k be-

low. For this, we now check the assumptions of Lemma 4.7. Define a function
η : ([0, T ]×K)k → [−∞,∞) by η(z1, . . . , zk) =

∑k
i=1 ũi(zi) for all z1, . . . , zk ∈

[0, T ]×K. Note for every α ∈ (0,∞) that the function ([0, T ]×K)k ∋ z 7→
η(z)−α ·φ(z) ∈ [−∞,∞) is upper semicontinuous with a compact domain of
definition and therefore, attains its maximum Sα := supz∈([0,T ]×K)k(η(z)−
α · φ(z)) <∞ in a point z(α) = ((t

(α)
1 , x

(α)
1 ), . . . , (t

(α)
k , x

(α)
k )) ∈ ([0, T ] ×K)k.

Next observe that

∞> Sα ≥ sup
z∈[0,T )×K

η(z, z, . . . , z) = sup
z∈[0,T )×K

k∑

i=1

ũi(z) = S0 > 0(4.25)

for all α ∈ (0,∞). This together with monotonicity of the function (0,∞) ∋
α 7→ Sα ∈ (0,∞) implies that the limit limα→∞Sα exists in (0,∞), that is,
it holds that limα→∞Sα ∈ (0,∞). The set {z(n) :n ∈ N} ⊂ ([0, T ] ×K)k is
relatively compact and, therefore, there exists a limit point ẑ = ((t̂1, x̂1), . . . ,
(t̂k, x̂k)) ∈ ([0, T ]×K)k of this set. Let nj ∈N, j ∈N, be a strictly increasing

sequence such that limj→∞ z(nj) = ẑ. Clearly, ũi(T,x) = −∞ for all x ∈K
and all i ∈ {1, . . . , k} implies that t

(α)
1 , . . . , t

(α)
k ∈ [0, T ) for all α ∈ (0,∞). In

addition, observe that if (t̂1, . . . , t̂k) ∈ [0, T ]k \ [0, T )k , then (4.25) implies that

0< lim
j→∞

Snj = lim
j→∞

(η(z(nj))− nj · φ(z(nj)))≤ lim
j→∞

η(z(nj))

(4.26)

≤
(

k∑

i=1

[

sup
z∈[0,T ]×K

ui(z)
]
)

−∞=−∞

and this contradiction shows that (t̂1, . . . , t̂k) ∈ [0, T )k. Next observe that

lim
α→∞

[

sup
z∈([0,T )×K)k

(η(z)− α · φ(z))− (η(z(α))−α · φ(z(α)))
]

(4.27)
= lim

α→∞
[Sα − Sα] = 0.
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Hence, Lemma 4.9 applied to η|([0,T )×K)k and to φ|([0,T )×K)k yields that

0 = lim
α→∞

[α · φ(z(α))] = lim
α→∞

[

α

2

k∑

i=2

‖(t(α)i , x
(α)
i )− (t

(α)
i−1, x

(α)
i−1)‖

2

]

(4.28)

and that φ(ẑ) = 0. The definition of φ therefore ensures that (t̂i, x̂i) = (t̂j, x̂j)
for all i, j ∈ {1, . . . , k}. Furthermore, observe that if t̂1 = 0, then (4.25) and
the upper semicontinuity of η show that

0< S0 ≤ lim
j→∞

Snj ≤ lim sup
j→∞

η(z(nj))≤ η(ẑ) =
k∑

i=1

ũi(t̂1, x̂1)

(4.29)

=

k∑

i=1

ui(0, x̂1)−
kδ

T
≤ 0

and this contradiction implies that t̂1 = t̂2 = · · ·= t̂k ∈ (0, T ). Consequently,
there exists a natural number j0 ∈N such that for every j ∈ {j0, j0+1, . . .} it

holds that t
(nj)
1 , . . . , t

(nj)
k ∈ (0, T ). Next, for every n ∈N := {m ∈N : t

(m)
1 , . . . ,

t
(m)
k ∈ (0, T )}, we apply Lemma 4.7 with O = (0, T )×O, with ε = 1

n , with
the functions ũ1|(0,T )×O, . . . , ũk|(0,T )×O and Φ = n ·φ|((0,T )×O)k and with the

local maximum point z(n) ∈ ((0, T ) × O)k to obtain the existence of ma-

trices (A
(n)
1 , . . . ,A

(n)
k ) = ((an,1i,j )i,j∈{1,...,d+1}, . . . , (a

n,k
i,j )i,j∈{1,...,d+1}) ∈ (Sd+1)

k,

n ∈N , such that for every n ∈N and every i ∈ {1, . . . , k} it holds that

(n(∇(ti,xi)φ)((t
(n)
1 , x

(n)
1 ), . . . , (t

(n)
k , x

(n)
k )), nA

(n)
i ) ∈ (Ĵ2

+ũi)(t
(n)
i , x

(n)
i )(4.30)

and

−[n+ n‖(Hessφ)(z(n))‖L(R(d+1)k)]I ≤






nA
(n)
1 · · · 0
...

. . .
...

0 · · · nA
(n)
k






≤ n(Hessφ)(z(n)) +
1

n
[n(Hessφ)(z(n))]2.

Combining this with the identity (Hessφ)(z) = (Hessφ)(0) for all z ∈ ((0, T )×
O)k then implies that

− [1 + ‖(Hessφ)(0)‖L(R(d+1)k)]I ≤






A
(n)
1 · · · 0
...

. . .
...

0 · · · A
(n)
k






(4.31)
≤ (Hessφ)(0) + [(Hessφ)(0)]2
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for all n ∈ N . To simplify the notation we define matrices B
(n)
l ∈ Sd, l ∈

{1, . . . , k}, n ∈N , by B
(n)
l := (an,li+1,j+1)i,j∈{1,...,d} for all l ∈ {1, . . . , k} and all

n ∈N . Corollary 4.6 together with (4.30) and the fact that it holds for every
i ∈ {1, . . . , k} that ũi|(0,T )×O is a viscosity subsolution (4.23) then proves that

n

(
∂

∂ti
φ

)

(z(n))− G̃i(t
(n)
i , x

(n)
i , ũi(t

(n)
i , x

(n)
i ), n(∇xiφ)(z

(n)), nB
(n)
i )

(4.32)
≤ 0

for all i ∈ {1, . . . , k} and all n ∈N . Summing over i ∈ {1, . . . , k} hence results
in

n

k∑

i=1

(
∂

∂ti
φ

)

(z(n))

(4.33)

≤
k∑

i=1

G̃i(t
(n)
i , x

(n)
i , ũi(t

(n)
i , x

(n)
i ), n(∇xiφ)(z

(n)), nB
(n)
i )

for all n ∈ N . Next note that the definition of φ ensures in the case k ≥ 2
that

(
∂

∂ti
φ

)

((t1, x1), . . . , (tk, xk)) =
1

2

k∑

j=2

∂

∂ti
(tj − tj−1)

2

(4.34)

=







t1 − t2, i= 1,

2ti − ti−1 − ti+1, 1< i < k,

tk − tk−1, i= k,

for all i ∈ {1, . . . , k} and all (t1, x1), . . . , (tk, xk) ∈ (0, T )×O and, therefore,
we obtain that in the case k ≥ 2 it holds that

k∑

i=1

(
∂

∂ti
φ

)

((t1, x1), . . . , (tk, xk))

= t1 − t2 + tk − tk−1 +

k−1∑

i=2

(2ti − ti−1 − ti+1)

= t1 − t2 + tk − tk−1 +

(
k−1∑

i=2

ti − ti−1

)

+

(
k−1∑

i=2

ti − ti+1

)

(4.35)

=

(

t1 − tk−1 +

k−1∑

i=2

ti − ti−1

)

+

(

tk − t2 +

k−1∑

i=2

ti − ti+1

)

= 0
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for all (t1, x1), . . . , (tk, xk) ∈ (0, T )×O. Combining this with (4.33) results in

0≤
k∑

i=1

G̃i(t
(n)
i , x

(n)
i , ũi(t

(n)
i , x

(n)
i ), n(∇xiφ)(z

(n)), nB
(n)
i )(4.36)

for all n ∈N . Therefore, we obtain from (4.22) and from t̂1 = · · ·= t̂k ∈ (0, T )

and t
(nj)
1 , . . . , t

(nj)
k ∈ (0, T ) for all j ∈ {j0, j0 + 1, . . .} that

k∑

i=1

δ

(T − t
(nj)
i )2

≤
k∑

i=1

Gi

(

t
(nj)
i , x

(nj)
i , ũi(t

(nj)
i , x

(nj)
i )(4.37)

+
δ

(T − t
(nj)
i )

, nj(∇xiφ)(z
(nj)), njB

(nj)
i

)

for all j ∈ {j0, j0, . . .}. In the next step, we define (t
(n)
i ,x

(n)
i ,r

(n)
i ,A

(n)
i ) ∈

(0, T )×O×R× Sd, i ∈ {1, . . . , k}, n ∈N, by

(t
(n)
i ,x

(n)
i ,r

(n)
i ,A

(n)
i )

(4.38)

:=







(

t
(n)
i , x

(n)
i , ũi(t

(n)
i , x

(n)
i ) +

δ

(T − t
(n)
i )

,B
(n)
i

)

,

n ∈ {nj ∈N : j ∈ {j0, j0 + 1, . . .}},
(

t̂1, x̂1,
limα→∞Sα

k
+

δ

(T − t̂1)
,0

)

,

else,

for all i ∈ {1, . . . , k} and all n ∈N. Moreover, observe that in the case k ≥ 2
it holds that

(∇xiφ)((t1, x1), . . . , (tk, xk)) =
1

2

k∑

j=2

∇xi(‖xj − xj−1‖2)

(4.39)

=







x1 − x2, i= 1,

2xi − xi−1 − xi+1, 1< i < k,

xk − xk−1, i= k

for all i ∈ {1, . . . , k} and all (t1, x1), . . . , (tk, xk) ∈ (0, T ) × O. Then (4.37)
ensures that

kδ

(T − t̂1)2
≤ lim sup

n→∞

[
k∑

i=1

Gi(t
(n)
i ,x

(n)
i ,r

(n)
i ,
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n(1[2,k](i) · [x(n)
i − x

(n)
i−1](4.40)

+ 1[1,k−1](i) · [x(n)
i − x

(n)
i+1]), nA

(n)
i )

]

.

Next, we observe that the Taylor expansion φ(z) = φ(0) + 〈(∇φ)(0), z〉 +
1
2 〈z, (Hessφ)(0)z〉 = 1

2〈z, (Hessφ)(0)z〉 for all z ∈ R(d+1)k implies that

(∇φ)(z) = (Hessφ)(0)z for all z ∈R(d+1)k . This together with (4.34), (4.39)
and the estimate (a+ b)2 ≤ 2a2 +2b2 for all a, b ∈R results in

〈z, ((Hessφ)(0))2z〉= 〈(Hessφ)(0)z, (Hessφ)(0)z〉= ‖(Hessφ)(0)z‖2

= ‖(∇φ)(z)‖2

= ‖z1 − z2‖2 +
[
k−1∑

i=2

‖2zi − zi−1 − zi+1‖2
]

+ ‖zk − zk−1‖2(4.41)

≤ 2‖z1 − z2‖2 +
[
k−1∑

i=2

2(‖zi − zi−1‖2 + ‖zi − zi+1‖2)
]

+2‖zk − zk−1‖2

= 4

[
k∑

i=2

‖zi − zi−1‖2
]

≤ 8

[
k∑

i=2

‖zi‖2
]

+8

[
k∑

i=2

‖zi−1‖2
]

≤ 16‖z‖2

for all z = (z1, . . . , zk) ∈ R(d+1)k . Inequality (4.41) implies that
‖(Hessφ)(0)‖L(R(d+1)×k) ≤ 4. Consequently, (4.31), (4.41) and 〈z,
(Hessφ)(0)z〉= 2φ(z) for all z ∈R(d+1)k yield that

− 5‖z‖2 ≤
k∑

i=1

〈zi,A(n)
i zi〉 ≤ 2φ(z) + 〈z, ((Hessφ)(0))2z〉

(4.42)

≤ 5

k∑

i=2

‖zi − zi−1‖2

for all z = (z1, . . . , zk) ∈ R(d+1)k and all n ∈ N . Inequality (4.42), in partic-

ular, implies −5‖z‖2 ≤∑k
i=1〈zi, B

(n)
i zi〉 =

∑k
i=1〈zi,A

(n)
i zi〉 ≤ 5

∑k
i=2 ‖zi −

zi−1‖2 for all z = (z1, . . . , zk) ∈Rdk and all n ∈N. Combining this, the iden-
tities

lim
j→∞

[
k∑

i=1

(

ũi(t
(nj)
i , x

(nj)
i ) +

δ

(T − t
(nj)
i )

)]

=
(

lim
j→∞

Snj

)

+
kδ

(T − t̂1)
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(4.43)

= lim
n→∞

[
k∑

i=1

r
(n)
i

]

> 0,

limn→∞ n
∑k

i=2 ‖(t
(n)
i ,x

(n)
i )− (t

(n)
i−1,x

(n)
i−1)‖2 = 0 [see (4.28)] and the estimate

supn∈Nmaxi∈{1,...,k} |r(n)i |<∞ with assumption (4.20) and with (4.40) shows
that

0<
kδ

(T − t̂1)2

≤ lim sup
n→∞

[
k∑

i=1

Gi(t
(n)
i ,x

(n)
i ,r

(n)
i , n(1[2,∞)(i) · [x(n)

i − x
(n)
i−1]

+ 1[0,k−1](i) · [x(n)
i − x

(n)
i+1]), nA

(n)
i )

]

≤ 0.

This contradiction implies that S0 ≤ 0. As δ ∈ (0,1] was arbitrary, we con-

clude that
∑k

i=1 ui(t, x)≤ 0 for all (t, x) ∈ [0, T )×O. This finishes the proof
of Lemma 4.10. �

The next result, Corollary 4.11, establishes a comparison result for certain
viscosity subsolutions and certain viscosity supersolutions of a PDE. It is a
direct consequence of Lemma 4.10 above in the case k = 2. Corollary 4.11
essentially generalizes Theorem 2.4 in Appendix C in Peng [61] (which as-
sumes the function G to be globally Lipschitz continuous in the third and
last argument uniformly in the remaining arguments) and essentially gener-
alizes Theorem 8.2 in Crandall, Ishii and Lions [7] (which assumes a bounded
domain and a globally uniform estimate on the function G). Corollary 4.11
is an immediate consequence of Lemma 4.2 and Lemma 4.10 with k = 2. Its
proof is therefore omitted.

Corollary 4.11 (A comparison result for viscosity subsolutions and
viscosity supersolutions). Let T ∈ (0,∞), d ∈ N, let O ⊂ Rd be an open
set, let u1, u2 ∈ C([0, T ]×O,R), let G : (0, T ) ×O × R× Rd × Sd → R be a
degenerate elliptic and continuous function and assume that u1|(0,T )×O is a
viscosity subsolution of

∂

∂t
u(t, x)−G(t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)) = 0(4.44)
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for (t, x) ∈ (0, T ) × O and that u2|(0,T )×O is a viscosity supersolution of
(4.44). Moreover, assume that

lim sup
n→∞

[G(tn, xn, rn, n(xn − x̂n), nAn)

(4.45)
−G(t̂n, x̂n, r̂n, n(xn − x̂n), nÂn)]≤ 0

for all (tn, xn, rn,An), (t̂n, x̂n, r̂n, Ân) ∈ (0, T )×O×R×Sd, n ∈N, satisfying
that limn→∞(tn, xn) ∈ (0, T )×O, that limn→∞(

√
n‖(tn, xn)− (t̂n, x̂n)‖) = 0,

that 0< limn→∞(rn − r̂n)≤ supn∈N(|rn|+ |r̂n|)<∞ and that ∀n ∈ N, z, ẑ ∈
Rd : 〈z,Anz〉 − 〈ẑ, Ânẑ〉 ≤ 5‖z − ẑ‖2. Furthermore, assume that u1(0, x) ≤
u2(0, x) for all x ∈O and that

lim
n→∞

[

sup
(t,x)∈(0,T )×Oc

n

(u1(t, x)− u2(t, x))
]

≤ 0.(4.46)

Then u1 ≤ u2, that is, it holds that u1(t, x)≤ u2(t, x) for all (t, x) ∈ [0, T ]×O.

Assumption (4.46) in Corollary 4.11 is in several cases difficult to verify.
Lemma 4.13 below gives an extension of Corollary 4.11 which postulates
a less restrictive condition than (4.46) by using a suitable Lyapunov type
function [cf. (4.53) in Lemma 4.13 and (4.46) in Corollary 4.11]. In the proof
of Lemma 4.13, the following elementary lemma is used.

Lemma 4.12 (Scaling of viscosity subsolutions and viscosity supersolu-
tions). Let T ∈ (0,∞), d ∈N, let O ⊂Rd be an open set, let V ∈C2((0, T )×
O, (0,∞)), let G : (0, T )×O×R×Rd×Sd →R be a degenerate elliptic func-
tion, let u : (0, T )×O→R be a viscosity subsolution (supersolution) of (4.44)
and let G̃ : (0, T )×O×R×Rd × Sd →R be a function defined by

G̃(t, x, r, p,A)

:=
1

V (t, x)
G(t, x, rV (t, x), pV (t, x) + r(∇xV )(t, x),AV (t, x)

+ p[(∇xV )(t, x)]∗ + (∇xV )(t, x)p∗(4.47)

+ r(Hessx V )(t, x))

− r
(∂/∂t)V (t, x)

V (t, x)

for all (t, x, r, p,A) ∈ (0, T )×O×R×Rd× Sd. Then G̃ is degenerate elliptic

and the function ũ : (0, T )×O→R defined by ũ(t, x) = u(t,x)
V (t,x) for all (t, x) ∈

(0, T )×O is a viscosity subsolution (supersolution) of

∂

∂t
ũ(t, x)− G̃(t, x, ũ(t, x), (∇xũ)(t, x), (Hessx ũ)(t, x)) = 0(4.48)

for (t, x) ∈ (0, T )×O.
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Proof. We proof Lemma 4.12 in the case where u is a viscosity sub-
solution of (4.44). The case where u is a viscosity supersolution of (4.44)
follows analogously. We thus assume in the following that u is a viscosity
subsolution of (4.44). First, observe that ũ is upper semicontinuous and that
G̃ is degenerate elliptic. In the next step assume that there exist a vector
(t, x) ∈ (0, T )×O and a function φ ∈ C2((0, T )×O,R) satisfying φ(t, x) =
ũ(t, x) and φ≥ ũ. Then the function (0, T )×O ∋ (s, y) 7→ φ(s, y)V (s, y) ∈R
is in C2((0, T ) × O,R) and satisfies φ(t, x)V (t, x) = ũ(t, x)V (t, x) = u(t, x)
and φ · V ≥ ũ · V = u. As u is a viscosity subsolution of (4.44), we get

V (t, x) · ∂
∂t
φ(t, x) + φ(t, x) · ∂

∂t
V (t, x)

(4.49)
≤G(t, x,φ(t, x)V (t, x), (∇x(φV ))(t, x), (Hessx(φV ))(t, x)).

Rearranging this inequality results in

∂

∂t
φ(t, x)≤ 1

V (t, x)
G(t, x,φ(t, x)V (t, x), (∇x(φV ))(t, x),

(Hessx(φV ))(t, x))

− φ(t, x)
(∂/∂t)V (t, x)

V (t, x)
(4.50)

=
1

V (t, x)
G(t, x,φ(t, x)V (t, x), (∇xφ)(t, x)V (t, x)

+ φ(t, x)(∇xV )(t, x), (Hessx φ)(t, x)V (t, x)

+ (∇xφ)(t, x)[(∇xV )(t, x)]∗

+ (∇xV )(t, x)[(∇xφ)(t, x)]
∗

+ φ(t, x)(Hessx V )(t, x))

− φ(t, x)
(∂/∂t)V (t, x)

V (t, x)

= G̃(t, x,φ(t, x), (∇xφ)(t, x), (Hessx φ)(t, x)).

This proves inequality (4.50) for all φ ∈ {ψ ∈ C2((0, T ) × O,R) :ψ(t, x) =
ũ(t, x) and ψ ≥ ũ} and all (t, x) ∈ (0, T ) × O. Therefore, ũ is a viscosity
subsolution of (4.48) and the proof of Lemma 4.12 is completed. �

Lemma 4.13 (A further comparison result for viscosity subsolutions and
viscosity supersolutions). Let T ∈ (0,∞), d ∈N, let O ⊂Rd be an open set,
let u1, u2 ∈C([0, T ]×O,R), V ∈C([0, T ]×O, (0,∞)), let G : (0, T )×O×R×
Rd × Sd → R be a degenerate elliptic and continuous function and assume
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that u1|(0,T )×O is a viscosity subsolution of

∂

∂t
u(t, x)−G(t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)) = 0(4.51)

for (t, x) ∈ (0, T )×O, that u2|(0,T )×O is a viscosity supersolution of (4.51)

and that for every r ∈ (0,∞) it holds that rV |(0,T )×O ∈C2((0, T )×O, (0,∞))
is a classical supersolution of (4.51). Moreover, assume that

lim sup
n→∞

(
G(tn, xn, rn, pn,An + nBnV (tn, xn))

V (tn, xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

V (t̂n, x̂n)

)

(4.52)

≤ G(t0, x0, r0, p0,A0)

V (t0, x0)

for all (tn, xn, rn, pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T )×O×R×Rd ×
Sd × Sd, n ∈ N0, satisfying that limn→∞(tn, xn) = (t0, x0), that
limn→∞(

√
n‖(tn, xn) − (t̂n, x̂n)‖) = 0, that 0 < r0 = limn→∞(rn − r̂n) ≤

supn∈N(|rn| + |r̂n|) < ∞, that limn→∞(pn − p̂n) = p0, that limn→∞(An −
Ân) =A0, that limn→∞(n−1/2[‖p̂n‖+‖Ân‖L(Rd)]) = 0 and that ∀n ∈N, z, ẑ ∈
Rd : 〈z,Bnz〉 − 〈ẑ, B̂nẑ〉 ≤ 5‖z − ẑ‖2. Furthermore, assume that u1(0, x) ≤
u2(0, x) for all x ∈O and that

lim
n→∞

[

sup
x∈Oc

n

sup
t∈(0,T )

(u1(t, x)− u2(t, x))

V (t, x)

]

≤ 0.(4.53)

Then u1 ≤ u2, that is, it holds that u1(t, x)≤ u2(t, x) for all (t, x) ∈ [0, T ]×O.

Proof. Define functions ũ1, ũ2 : [0, T ]×O→R and G̃ : (0, T )×O×R×
Rd×Sd →R by ũ1(t, x) =

u1(t,x)
V (t,x) and ũ2(t, x) =

u2(t,x)
V (t,x) for all (t, x) ∈ [0, T ]×O

and by

G̃(t, x, r, p,A)

:=
1

V (t, x)
G(t, x, rV (t, x), pV (t, x) + r(∇xV )(t, x),AV (t, x)

+ p[(∇xV )(t, x)]∗ + (∇xV )(t, x)p∗(4.54)

+ r(Hessx V )(t, x))

− r
(∂/∂t)V (t, x)

V (t, x)
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for all (t, x, r, p,A) ∈ (0, T )×O×R×Rd×Sd. Lemma 4.12 then ensures that
G̃ is degenerate elliptic, that ũ1|(0,T )×O is a viscosity subsolution of

∂

∂t
u(t, x)− G̃(t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)) = 0(4.55)

for (t, x) ∈ (0, T )×O and that ũ2|(0,T )×O is viscosity supersolution of (4.55).
Below we will finish this proof by an application of Corollary 4.11 with
ũ1, ũ2 and G̃. For this, we now check the assumptions of Corollary 4.11.
First, observe that assumption (4.53) ensures that (4.46) is fulfilled. In ad-
dition, observe that the assumption u1(0, x)≤ u2(0, x) for all x ∈O ensures
that ũ1(0, x)≤ ũ2(0, x) for all x ∈O. In the next step, we verify (4.45). For

this, let (tn, xn, rn,An), (t̂n, x̂n, r̂n, Ân) ∈ (0, T )×O ×R× Sd, n ∈N0, be se-
quences satisfying that limn→∞(tn, xn) = (t0, x0) = (t̂0, x̂0) ∈ (0, T )×O, that
limn→∞(

√
n‖(tn, xn)− (t̂n, x̂n)‖) = 0, that 0< r0 = r̂0 = limn→∞(rn − r̂n)≤

supn∈N(|rn| + |r̂n|) < ∞ and that ∀n ∈ N, z, ẑ ∈ Rd : 〈z,Anz〉 − 〈ẑ, Ânẑ〉 ≤
5‖z − ẑ‖2. To verify (4.45), we will apply assumption (4.52). For this, we

define Ṽ : [0, T ]×O→ (0,∞) and (tn,xn,rn,pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân,

B̂n) ∈ (0, T ) × O × R × Rd × Sd, n ∈ N0, by Ṽ (t, x) = r0 · V (t, x) for all
(t, x) ∈ [0, T ] × O and by (tn,xn,rn) := (tn, xn, rnV (tn, xn)), (t̂n, x̂n, r̂n) :=

(t̂n, x̂n, r̂nV (t̂n, x̂n)), Bn :=An, B̂n := Ân,

pn := n(xn − x̂n)V (tn, xn) + rn(∇xV )(tn, xn),(4.56)

p̂n := n(xn − x̂n)V (t̂n, x̂n) + r̂n(∇xV )(t̂n, x̂n),(4.57)

An := n(xn − x̂n)[(∇xV )(tn, xn)]
∗ + (∇xV )(tn, xn)n(xn − x̂n)

∗

(4.58)
+ rn(Hessx V )(tn, xn),

Ân := n(xn − x̂n)[(∇xV )(t̂n, x̂n)]
∗ + (∇xV )(t̂n, x̂n)n(xn − x̂n)

∗

(4.59)
+ r̂n(Hessx V )(t̂n, x̂n)

for all n ∈N0. Continuity of V and 0< r0 = limn→∞(rn− r̂n)≤ supn∈N(|rn|+
|r̂n|)<∞ then imply that

0< r0 = r0V (t0, x0) = lim
n→∞

(rnV (tn, xn)− r̂nV (t̂n, x̂n))

= lim
n→∞

(rn − r̂n)(4.60)

≤ sup
n∈N

(|rn|+ |r̂n|)<∞.

Moreover, note that the local Lipschitz continuity of V and ∇xV and the
continuity of Hessx V together with the assumptions limn→∞(

√
n‖(tn, xn)−

(t̂n, x̂n)‖) = limn→∞(
√
n‖xn − x̂n‖) = 0, limn→∞(rn − r̂n) = r0 and
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supn∈N |r̂n|<∞ imply that

lim
n→∞

(pn − p̂n) = lim
n→∞

[n(xn − x̂n)(V (tn, xn)− V (t̂n, x̂n))]

+ lim
n→∞

[(rn − r̂n)(∇xV )(tn, xn)]

(4.61)
+ lim

n→∞
[r̂n((∇xV )(tn, xn)− (∇xV )(t̂n, x̂n))]

= r0(∇xV )(t0, x0) = p0,

lim
n→∞

(An − Ân) = lim
n→∞

(n(xn − x̂n)([(∇xV )(tn, xn)]
∗ − [(∇xV )(t̂n, x̂n)]

∗))

+ lim
n→∞

([(∇xV )(tn, xn)− (∇xV )(t̂n, x̂n)]n(xn − x̂n)
∗)

+ lim
n→∞

([rn − r̂n](Hessx V )(tn, xn))(4.62)

+ lim
n→∞

(r̂n[(Hessx V )(tn, xn)− (Hessx V )(t̂n, x̂n)])

= r0(Hessx v)(t0, x0) =A0

and limn→∞(n−1/2[‖p̂n‖+ ‖Ân‖L(Rd)]) = 0. Combining this and (4.60) with
assumption (4.52) shows that

lim sup
n→∞

(
G(tn,xn,rn,pn,An + nBnV (tn,xn))

V (tn,xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

V (t̂n, x̂n)

)

(4.63)

≤ G(t0,x0,r0,p0,A0)

V (t0,x0)
.

The definition of G̃ hence implies that

lim sup
n→∞

(G̃(tn, xn, rn, n(xn − x̂n), nAn)− G̃(t̂n, x̂n, r̂n, n(xn − x̂n), nÂn))

= limsup
n→∞

(
G(tn, xn,rn,pn,An + nBnV (tn, xn))− rn(∂/∂t)V (tn, xn)

V (tn, xn)

− G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))− r̂n(∂/∂t)V (t̂n, x̂n)

V (t̂n, x̂n)

)

≤ G(t0, x0,r0,p0,A0)

V (t0, x0)
− r0(∂/∂t)V (t0, x0)

V (t0, x0)
(4.64)

= (−[(∂/∂t)Ṽ (t0, x0)

−G(t0, x0, Ṽ (t0, x0), (∇xṼ )(t0, x0), (Hessx Ṽ )(t0, x0))])



42 M. HAIRER, M. HUTZENTHALER AND A. JENTZEN

/(V (t0, x0))

≤ 0

as Ṽ is by assumption a classical supersolution of (4.51). We can thus ap-

ply Corollary 4.11 to obtain that ũ1(t, x) =
u1(t,x)
V (t,x) ≤ u2(t,x)

V (t,x) = ũ2(t, x) for all

(t, x) ∈ [0, T ]×O. This finishes the proof of Lemma 4.13. �

The next result, Corollary 4.14, asserts uniqueness of the solution of
a linear second-order PDE. We assume that the Lyapunov-type function
V : [0, T ]×O→ (0,∞) in Lemma 4.13 is of the form V (t, x) = eρt · Ṽ (x) for
all (t, x) ∈ [0, T ]×O where ρ ∈R is a real number and where Ṽ :O→ (0,∞)
is a twice continuously differentiable function.

Corollary 4.14 (Uniqueness of viscosity solutions of Kolmogorov type
equations). Let T ∈ (0,∞), d,m ∈N, ρ ∈R, let O ⊂Rd be an open set, let
ϕ ∈C(O,R), v ∈C((0, T )×O,R), let µ : (0, T )×O→Rd and σ : (0, T )×O→
Rd×m be locally Lipschitz continuous functions and let V ∈ C2(O, (0,∞))
satisfy

v(t, x)V (x) + 〈µ(t, x), (∇V )(x)〉+ tr(σ(t, x)[σ(t, x)]∗(HessV )(x))
(4.65)

≤ ρ · V (x)

for all (t, x) ∈ (0, T )×O. Then there exists at most one continuous function
u : [0, T ] × O → R which fulfills u(0, x) = ϕ(x) for all x ∈ O, which fulfills

limn→∞ sup(t,x)∈(0,T )×Oc
n

|u(t,x)|
V (x) = 0 and which fulfills that u|(0,T )×O is a vis-

cosity solution of

∂

∂t
u(t, x)− v(t, x)u(t, x)− 〈µ(t, x), (∇xu)(t, x)〉

− tr(σ(t, x)[σ(t, x)]∗(Hessx u)(t, x))(4.66)

= 0

for (t, x) ∈ (0, T )×O.

Proof. Let u1, u2 : [0, T ]×O→R be two continuous functions such that
u1(0, x) = ϕ(x) = u2(0, x) for all x ∈O, such that

lim
n→∞

sup
(t,x)∈(0,T )×Oc

n

|u1(t, x)|+ |u2(t, x)|
V (x)

= 0

and such that u1|(0,T )×O and u2|(0,T )×O are viscosity solutions of (4.66).

Then define a function G : (0, T )×O×R×Rd × Sd →R by G(t, x, r, p,A) =
v(t, x)r + 〈µ(t, x), p〉+ tr(σ(t, x)[σ(t, x)]∗A). We show Corollary 4.14 by ap-
plying Lemma 4.13. To this end we now verify (4.52). For this, let (tn, xn, rn,
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pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T ) ×O × R× Rd × Sd × Sd, n ∈ N0,

satisfy that limn→∞(tn, xn) = (t0, x0), that limn→∞(
√
n‖(tn, xn)−(t̂n, x̂n)‖) =

0, that 0< r0 = limn→∞(rn− r̂n)≤ supn∈N(|rn|+ |r̂n|)<∞, that limn→∞(pn−
p̂n) = p0, that limn→∞(An − Ân) = A0, that limn→∞(n−1/2[‖p̂n‖ +

‖Ân‖L(Rd)]) = 0 and that ∀n ∈ N, z, ẑ ∈ Rd : 〈z,Bnz〉 − 〈ẑ, B̂nẑ〉 ≤ 5‖z − ẑ‖2.
Then it holds that

lim sup
n→∞

(
1

V (tn, xn)
G(tn, xn, rn, pn,An + nBnV (tn, xn))

− 1

V (t̂n, x̂n)
G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

)

≤ lim sup
n→∞

(
v(tn, xn)rn
V (tn, xn)

− v(t̂n, x̂n)r̂n

V (t̂n, x̂n)

)

+ limsup
n→∞

(〈µ(tn, xn), pn〉
V (tn, xn)

− 〈µ(t̂n, x̂n), p̂n〉
V (t̂n, x̂n)

)

+ limsup
n→∞

(
tr(σ(tn, xn)[σ(tn, xn)]

∗An)

V (tn, xn)

− tr(σ(t̂n, x̂n)[σ(t̂n, x̂n)]
∗Ân)

V (t̂n, x̂n)

)

+ limsup
n→∞

(n[tr([σ(tn, xn)]
∗Bnσ(tn, xn))

− tr([σ(t̂n, x̂n)]
∗B̂nσ(t̂n, x̂n))])(4.67)

≤ lim sup
n→∞

(
v(tn, xn)(rn − r̂n)

V (tn, xn)

)

+ limsup
n→∞

([
v(tn, xn)

V (tn, xn)
− v(t̂n, x̂n)

V (t̂n, x̂n)

]

r̂n

)

+ limsup
n→∞

(〈µ(tn, xn), pn − p̂n〉
V (tn, xn)

)

+ limsup
n→∞

(〈√
n

[
µ(tn, xn)

V (tn, xn)
− µ(t̂n, x̂n)

V (t̂n, x̂n)

]

,
p̂n√
n

〉)

+ limsup
n→∞

(

tr

(
σ(tn, xn)[σ(tn, xn)]

∗

V (tn, xn)
(An − Ân)

))

+ limsup
n→∞

(

tr

(√
n

[
σ(tn, xn)[σ(tn, xn)]

∗

V (tn, xn)
− σ(t̂n, x̂n)[σ(t̂n, x̂n)]

∗

V (t̂n, x̂n)

]
Ân√
n

))
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+ limsup
n→∞

(

n

m∑

i=1

[〈σ(tn, xn)e(m)
i ,Bnσ(tn, xn)e

(m)
i 〉

− 〈σ(t̂n, x̂n)e(m)
i , B̂nσ(t̂n, x̂n)e

(m)
i 〉]

)

.

Hence, the local Lipschitz continuity of the functions µ
V and A

V together with

the properties of (tn, xn, rn, pn,An,Bn), (t̂n, x̂n, r̂n, p̂n, Ân, B̂n) ∈ (0, T )×O×
R×Rd × Sd × Sd, n ∈N0, implies that

lim sup
n→∞

(
1

V (tn, xn)
G(tn, xn, rn, pn,An + nBnV (tn, xn))

− 1

V (t̂n, x̂n)
G(t̂n, x̂n, r̂n, p̂n, Ân + nB̂nV (t̂n, x̂n))

)

≤ v(t0, x0)r0
V (t0, x0)

+
〈µ(t0, x0), p0〉
V (t0, x0)

+ tr

(
σ(t0, x0)[σ(t0, x0)]

∗

V (t0, x0)
A0

)

+ limsup
n→∞

(

d

[√
n

∥
∥
∥
∥

σ(tn, xn)[σ(tn, xn)]
∗

V (tn, xn)

− σ(t̂n, x̂n)[σ(t̂n, x̂n)]
∗

V (t̂n, x̂n)

∥
∥
∥
∥
L(Rd)

]‖Ân‖L(Rd)√
n

)

+ limsup
n→∞

(

n
m∑

i=1

5‖σ(tn, xn)e(m)
i − σ(t̂n, x̂n)e

(m)
i ‖2

)

=
G(t0, x0, r0, p0,A0)

V (t0, x0)
(4.68)

+ 5 limsup
n→∞

(n‖σ(tn, xn)− σ(t̂n, x̂n)‖2HS(Rm,Rd))

=
G(t0, x0, r0, p0,A0)

V (t0, x0)
.

This shows assumption (4.52). Moreover, by assumption, u1|(0,T )×O is a
viscosity subsolution of (4.66) and u2|(0,T )×O is a viscosity supersolution
of (4.66). Furthermore, (4.65) shows for every r ∈ (0,∞) that the function
(0, T )×O ∋ (t, x) 7→ r ·eρt ·V (x) ∈ (0,∞) is a classical supersolution of (4.66).
In addition, observe that (4.53) follows from limn→∞ sup(t,x)∈(0,T )×Oc

n
×

|u1(t,x)|+|u2(t,x)|
V (x) = 0. Consequently, Lemma 4.13 implies that u1 ≤ u2. Re-

peating these arguments with u1 and u2 interchanged finally shows that
u2 ≤ u1 so that u1 = u2. This proves uniqueness and finishes the proof of
Corollary 4.14. �
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4.4. Viscosity solutions of Kolmogorov equations. The main result of this
subsection, Theorem 4.16 below, establishes that the transition semigroup
associated with a suitable SDE with locally Lipschitz continuous coefficients
is within a certain class of functions the unique viscosity solution of the
Kolmogorov equation of the SDE. To establish this result, we first prove an
auxiliary result.

Lemma 4.15 (Existence of viscosity solutions of Kolmogorov equations
with globally Lipschitz continuous coefficients with compact support). Let
d,m ∈ N, let (Ω,F ,P) be a probability space with a normal filtration
(Ft)t∈[0,∞), let W : [0,∞)×Ω→Rm be a standard (Ft)t∈[0,∞)-Brownian mo-

tion, let O ⊂Rd be an open set, let ϕ :O→R be a continuous function and let
µ :O→ Rd and σ :O→ Rd×m be locally Lipschitz continuous functions with
compact support. Then there exists a family Xx : [0,∞)×Ω→O, x ∈O, of
up to indistinguishability unique adapted stochastic processes with continu-
ous sample paths satisfying

Xx(t) = x+

∫ t

0
µ(Xx(s))ds+

∫ t

0
σ(Xx(s))dW (s)(4.69)

for all t ∈ [0,∞), P-a.s. and all x ∈O and the function u : (0,∞)×O→ R
given by u(t, x) = E[ϕ(Xx(t))] is a viscosity solution of

∂

∂t
u(t, x)− 〈(∇xu)(t, x), µ(x)〉 −

1

2
tr(σ(x)[σ(x)]∗(Hessx u)(t, x))

(4.70)
= 0

for (t, x) ∈ (0,∞)×O.

Proof. First of all, observe that since µ and σ have compact supports,
they are globally Lipschitz continuous, so that (4.69) has unique solutions.
It thus remains to show that the function u : (0,∞) × O → R introduced
above is a viscosity solution of (4.70). Let U ⊂ O be a relatively compact
open set in O with the property that supp(µ)∪ supp(σ)⊂ U . By assumption
supp(µ) and supp(σ) are compact sets, and hence such a set U does indeed
exist. Next, let µ(n) ∈ C∞

cpt(O,R
d), n ∈ N, and σ(n) ∈ C∞

cpt(O,R), n ∈ N, be

sequences of smooth functions satisfying limn→∞ supx∈U ‖µ(x)−µ(n)(x)‖=
limn→∞ supx∈U ‖σ(x)− σ(n)(x)‖L(Rm,Rd) = 0 and supp(µ(n)) ∪ supp(σ(n))⊂
U for all n ∈ N and denote by Xx,n : [0,∞) × Ω → O, x ∈ O, n ∈ N, the
solutions to the corresponding SDEs. Moreover, let ϕk ∈ C∞(O,R), k ∈ N,
be a sequence of smooth functions satisfying supx∈Ok

|ϕ(x) − ϕk(x)| < 1
k

for each k ∈ N. Now we define functions un,k : (0,∞) × O → R, n,k ∈ N,
and u(k) : (0,∞) × O→ R, by un,k(t, x) := E[ϕk(X

x,n(t))] and u(k)(t, x) :=
E[ϕk(X

x(t))]. For any fixed n and k, the function un,k : (0,∞) × O → R,
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is smooth and globally Lipschitz continuous (see, e.g., Corollary 2.8.1 and
Theorem 2.8.1 in [20]). Theorem 4.3 in [60] then shows that

(
∂

∂t
un,k

)

(t, x)− 〈(∇xu
n,k)(t, x), µ(n)(x)〉

− 1

2
tr(σ(n)(x)[σ(n)(x)]∗(Hessx u

n,k)(t, x))(4.71)

= 0

for all (t, x) ∈ (0,∞)×O, n,k ∈N. Remark 4.1 hence shows that the func-
tions un,k, n,k ∈N, are also viscosity solutions to these equations. Further-
more, observe that the smoothness of the functions ϕk ∈ C∞(O,R), k ∈ N,
and the global Lipschitz continuity of the functions (µ(n))n∈N, (σ(n))n∈N, µ
and σ imply that

lim
n→∞

sup
t∈(0,T ]

sup
x∈O

|u(k)(t, x)− un,k(t, x)|

= lim
n→∞

sup
t∈(0,T ]

sup
x∈Ū

|E[ϕk(X
x,n(t))]− E[ϕk(X

x(t))]|
(4.72)

≤ lim
n→∞

sup
t∈(0,T ]

sup
x∈Ū

E[|ϕk(X
x,n(t))−ϕk(X

x(t))|]

≤
(

sup
x∈Ū

‖ϕ′
k(x)‖L(Rd,R)

)

·
(

lim
n→∞

sup
t∈(0,T ]

sup
x∈Ū

E[|Xx,n(t)−Xx(t)|]
)

= 0

for all T ∈ (0,∞) and all k ∈N. Combining this with Lemma 4.8 shows that
for every k ∈N it holds that u(k) is a viscosity solution of (4.70) with initial
condition ϕk. In addition, note that

lim
k→∞

sup
(t,x)∈(0,∞)×K

|u(t, x)− u(k)(t, x)|

≤ lim
k→∞

sup
(t,x)∈(0,∞)×K

E[|ϕ(Xx(t))−ϕk(X
x(t))|](4.73)

≤ lim
k→∞

sup
y∈U∪K

|ϕ(y)− ϕk(y)|= 0

for all compact sets K ⊂ O. Combining this with Lemma 4.8 eventually
shows that u is indeed a viscosity solution of (4.70) as claimed. �

The next result is a generalization and a consequence of Lemma 4.15
above and constitutes the main result of this section.

Theorem 4.16 (Existence and uniqueness of viscosity solutions of Kol-
mogorov equations). Let d,m ∈ N, ρ ∈ R, let O ⊂ Rd be an open set, let
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ϕ :O→R be a continuous function, let µ :O→ Rd and σ :O→ Rd×m be lo-
cally Lipschitz continuous functions and let V ∈ C2(O, (0,∞)) be such that

limn→∞ supx∈Oc
n

|ϕ(x)|
1+V (x) = 0, such that

〈(∇V )(x), µ(x)〉+ 1
2 tr(σ(x)[σ(x)]

∗(HessV )(x))≤ ρ · V (x)(4.74)

for all x ∈ O and such that limn→∞ inf{V (x) :x ∈ Oc
n} = ∞. Then there

exists a unique continuous function u : [0,∞)×O→R which fulfills u(0, x) =

ϕ(x) for all x ∈ O, which fulfills limn→∞ sup(t,x)∈[0,T ]×Oc
n

|u(t,x)|
V (x) = 0 for all

T ∈ (0,∞) and which is a viscosity solution of

∂

∂t
u(t, x)− 〈(∇xu)(t, x), µ(x)〉 −

1

2
tr(σ(x)[σ(x)]∗(Hessx u)(t, x))

(4.75)
= 0

for (t, x) ∈ (0,∞) × O. Moreover, if (Ω,F ,P) is a probability space with
a normal filtration (Ft)t∈[0,∞) and if W : [0,∞) × Ω → Rm is a standard
(Ft)t∈[0,∞)-Brownian motion, then there exist up to indistinguishability unique
global solutions Xx : [0,∞)×Ω→O, x ∈O, to

Xx(t) = x+

∫ t

0
µ(Xx(s))ds+

∫ t

0
σ(Xx(s))dW (s),(4.76)

P-a.s. for all t ∈ [0,∞) and all x ∈ O. In that case, u has the probabilistic
representation u(t, x) = E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞)×O.

Proof. W.l.o.g. we assume throughout this proof that (Ω,F ,P) is a
probability space with a normal filtration (Ft)t∈[0,∞) and that W : [0,∞)×
Ω→Rm is a standard (Ft)t∈[0,∞)-Brownian motion. Then, since V is a Lya-
punov function, (4.76) does have global solutions which furthermore (assum-
ing without loss of generality that ρ≥ 0) have the property that

E[V (Xx(t ∧ τ))]≤ eρtV (x)(4.77)

for any stopping time τ :Ω → [0,∞). As a consequence, for every (t, x) ∈
[0,∞)×O it holds that E[|ϕ(Xx(t))|] is finite so that we can define u : [0,∞)×
O→ R by u(t, x) := E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞)× O. Note that as a
consequence of our assumption on ϕ, for every δ ∈ (0,∞) there exists a
constant Cδ ∈ (0,∞) such that

|ϕ(x)| ≤Cδ + δV (x)(4.78)

holds for all x ∈O. The bound (4.77) immediately implies a similar bound on
u(t, ·), so that u has the required behaviour at infinity. It therefore remains
to show that u is indeed a viscosity solution of (4.75), as uniqueness of
such a solution follows from Corollary 4.14. The proof for this goes again
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by approximation. Let µ(n) and σ(n) for n ∈N be any sequence of Lipschitz
continuous functions such that for all x∈O it holds that

V (x)≤ n ⇒ µ(n)(x) = µ(x), σ(n)(x) = σ(x)(4.79)

and

V (x)≥ n+1 ⇒ µ(n)(x) = 0, σ(n)(x) = 0.(4.80)

Denoting by Xx,n, x ∈O, n ∈N, the solutions to the corresponding SDEs, we
set un(t, x) = E[ϕ(Xx,n(t))] for all (t, x) ∈ [0,∞)×O, n ∈N. It then follows
from Lemma 4.15 that un|(0,∞)×On

is a viscosity solution to the equation
analogous to (4.75). As a consequence of Lemma 4.8, it remains to show that
un → u, uniformly on compact subsets of (0,∞)×O. For this, we introduce
the stopping times τxn := inf({t ∈ (0,∞) :V (Xx(t))≥ n} ∪ {∞}), x ∈O, n ∈
N. As a consequence of (4.78), the fact that Xx,n and Xx coincide until time
τxn , and the fact that V (Xx,n(t))≤ n+1, P-a.s. provided that V (x)≤ n+1,
we have for all n ∈N and all (t, x) ∈ [0,∞)×O with V (x)≤ n+1 that

|u(t, x)− un(t, x)|
≤ E[1{τxn≤t}|ϕ(Xx(t))|] +E[1{τxn≤t}|ϕ(Xx,n(t))|](4.81)

≤ 2CδP[τ
x
n ≤ t] + δeρtV (x) + δ(n+1)P[τxn ≤ t].

Using (4.77), we obtain from Chebychev’s inequality that for all (t, x) ∈
[0,∞)×O it holds that

P[τxn ≤ t] = P[V (Xx(t∧ τxn))≥ n]≤ E[V (Xx(t ∧ τxn ))]
n

≤ eρtV (x)

n
.(4.82)

Inserting this into (4.81), the required locally uniform convergence follows
at once. �

In the literature, there are many results proving an assertion similar to
Theorem 4.16 and Corollary 4.14, respectively, under various assumptions
on the functions µ and σ. Theorem 4.3 in Pardoux and Peng [60] implies
that the transition semigroup associated with the SDE (4.76) is a viscos-
ity solution of (4.75) if µ and σ are globally Lipschitz continuous; see also
Peng [62]. Theorem C.2.4 in Peng [61] can be applied if µ is locally Hölder
continuous and if σ is constant and then proves uniqueness of an at most
polynomially growing viscosity solution of (4.75). Uniqueness of the viscos-
ity solution of (4.75) with given initial function follows from Theorem 8.2
in the User’s guide Crandall, Ishii and Lions [7] if µ is globally one-sided
Lipschitz continuous, that is, if there exists a constant c ∈ R such that
〈x − y,µ(x) − µ(y)〉 ≤ c‖x − y‖2 for all x, y ∈ Rd, and if σ is globally Lip-
schitz continuous. Moreover, Theorem 5.13 in Krylov [47] implies that the
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transition semigroup solves the Kolmogorov equation (4.75) in the sense of
distributions if µ and σ are globally Lipschitz continuous. In addition, The-
orems 7.1.3 and 7.1.4 in Evans [18] show that there exists a unique weak
solution of the PDE (4.75) if the coefficients µ and σ are bounded and if the
PDE (4.75) is uniformly parabolic.

In many situations, the open set O⊂Rd and the Lyapunov-type function
V :O→ R in Theorem 4.16 satisfy O = Rd and V (x) = (1 + ‖x‖2)p for all
x ∈ Rd where p ∈ [1,∞) is an arbitrary real number. This is subject of the
following Corollary 4.17. It is a direct consequence of Theorem 4.16 and its
proof is therefore omitted.

Corollary 4.17 (Existence and uniqueness of at most polynomially
growing viscosity solutions of Kolmogorov equations). Let d,m ∈ N, let
ϕ :Rd → R be a continuous and at most polynomially growing function,
let µ :Rd → Rd and σ :Rd → Rd×m be locally Lipschitz continuous func-

tions with supx∈Rd
〈x,µ(x)〉
(1+‖x‖2) <∞ and supx∈Rd

‖σ(x)‖
(1+‖x‖) <∞. Then there exists

a unique continuous function u : [0,∞) × Rd → R which fulfills

lim supp→∞ sup(t,x)∈[0,T ]×Rd
|u(t,x)|
1+‖x‖p < ∞ for all T ∈ (0,∞), which fulfills

u(0, x) = ϕ(x) for all x∈Rd, and which is a viscosity solution of

∂

∂t
u(t, x)− 〈(∇xu)(t, x), µ(x)〉 −

1

2
tr(σ(x)[σ(x)]∗(Hessx u)(t, x))

(4.83)
= 0

for (t, x) ∈ (0,∞) × Rd. Moreover, if (Ω,F ,P) is a probability space with
a normal filtration (Ft)t∈[0,∞) and if W : [0,∞) × Ω → Rm is a standard
(Ft)t∈[0,∞)-Brownian motion, then u has the probabilistic representation

u(t, x) = E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞) × Rd, where the stochastic pro-
cesses Xx : [0,∞)×Ω→Rd, x ∈Rd, are as before.

Note that all examples in this article fulfill the assumptions of Corol-
lary 4.17. In particular, observe that µ and σ from the SDE (2.1) in Section 2,
µ and σ from the SDE (2.10) in Section 2, µ and σ from the SDE (2.11)
in Section 2, µ and σ from the SDE (3.1) in Section 3, µ and σ from the
SDE (3.18) in Section 3 as well as µ and σ from the SDE (5.3) in Section 5
all fulfill the assumptions of Corollary 4.17.

4.5. Distributional solutions of Kolmogorov equations. In this section,
we formulate a slight extension to Theorem 5.13 in Krylov [47], which states
that the semigroup associated to an SDE with smooth coefficients solves
the corresponding Kolmogorov equation in the distributional sense, even
if the coefficients are badly behaved near the boundary of the domain of
definition O.
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Proposition 4.18. Let d,m ∈ N, let O ⊂ Rd be an open set, let µ =
(µ1, . . . , µd) ∈C∞(O,Rd), σ = (σi,j)i∈{1,...,d},j∈{1,...,m} ∈C∞(O,Rd×m), let ϕ ∈
Cb(O,R), let (Ω,F ,P) be a probability space with a normal filitration (Ft)t∈[0,∞),
let W : [0,∞)×Ω→Rm be a standard (Ft)t∈[0,∞)-Brownian motion and let
Xx : [0,∞)×Ω→O, x ∈O, be solutions to

Xx(t) = x+

∫ t

0
µ(Xx(s))ds+

∫ t

0
σ(Xx(s))dW (s),(4.84)

P-a.s. for all (t, x) ∈ [0,∞)×Ω. Then the function u : (0,∞)×O→R given
by u(t, x) = E[ϕ(Xx(t))] for all (t, x) ∈ [0,∞) × O solves the Kolmogorov
equation

∂u

∂t
=

d∑

i=1

µi
∂u

∂xi
+

1

2

m∑

l=1

d∑

i,j=1

σi,lσj,l
∂2u

∂xi ∂xj
(4.85)

in the distributional sense.

Proof. Let On be as above, consider for every n ∈ N smooth and
globally Lipschitz continuous functions µ(n) and σ(n) which agree with µ
and σ on On, and denote by Xx,n, x ∈ O, solutions of the correspond-
ing SDE. Fix some final time T ∈ (0,∞), denote by Px the law of Xx on
C([0, T ],O) and for every n ∈ N by Pn

x the law of Xx,n on C([0, T ],O).
It then follows from the smoothness of the coefficients µ and σ that O ∋
x 7→ Px is weakly continuous; see Theorem 1.7 in Krylov [47]. In partic-
ular, this implies that u is continuous and that, for every compact K ⊂
O, the set {Px :x ∈ K} is tight. Let now un(x, t) = E[ϕn(X

x,n(t))] for all
(t, x) ∈ (0,∞)×O, n ∈N, where ϕn :O→R, n ∈N, are smooth approxima-
tions of ϕ such that supx∈On

|ϕn(x) − ϕ(x)| ≤ 1/n and supp(ϕn) ⊂ On+1

for all n ∈ N and such that supn∈N supx∈O |ϕn(x)| < ∞. Note now that
Px|B(C([0,T ],On)) = Pn

x |B(C([0,T ],On)) and that, locally uniformly in x, the Px-
measure of the set C([0, T ],On) converges to 1 as n→ ∞. In particular,
there exists a real number C ∈ [0,∞) such that for all (t, x) ∈ (0, T ]×O it
holds that

|un(x, t)− u(x, t)| ≤ 1

n
+C[1− Px(C([0, T ],On))].(4.86)

As a consequence, one has un → u, locally uniformly in x and t. The claim
now follows at once from the fact that, by Theorem 5.13 in Krylov [47], each
of the un solves the Kolmogorov equation with µ(n) and σ(n). �

5. A counterexample to the rate of convergence of the Euler–Maruyama

method. In this section, we use the results of Section 3 to establish the exis-
tence of an SDE with smooth and globally bounded coefficients for which the
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Euler–Maruyama method convergences without any arbitrarily small polyno-
mial rate of convergence, thereby proving Theorem 1.3 of the Introduction.
Denote by Ĉ the constant

Ĉ =

∫ 1

0
e−1/(1−u2) du,(5.1)

and set

µ(x) =











1(1,∞)(x4) · exp
(

− 1

x24 − 1

)

· cos((x3 − Ĉ) · exp(x32))
0

1(−1,1)(x4) · exp
(

− 1

1− x24

)

1











,

(5.2)

B =







0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0







for all x= (x1, x2, x3, x4) ∈R4. The function R ∋ x 7→ 1(−1,1)(x) ·exp(−1/(1−
x2)) ∈ [0,1] that appears in µ has been used as a mollifier function in
Lemma 1.2.3 in Hörmander [32]. Note that µ :R4 →R4 is infinitely often dif-
ferentiable and globally bounded. Moreover, let (Ω,F ,P) be any probability
space supporting a four-dimensional standard Brownian motion W : [0,∞)×
Ω→R4 with continuous sample paths. Then there exists a unique stochas-
tic process X : [0,∞) × Ω → R4 with continuous sample paths which ful-

fills X(t) =
∫ t
0 µ(X(s))ds+BW (t) for all t ∈ [0,∞). The stochastic process

X = (X1,X2,X3,X4) : [0,∞)×Ω→R4 is thus a solution process of the SDE

dX1(t) = 1(1,∞)(X4(t)) · exp
(

− 1

X4(t)2 − 1

)

× cos((X3(t)− Ĉ) · exp(X2(t)
3))dt,

dX2(t) = dW2(t),(5.3)

dX3(t) = 1(−1,1)(X4(t)) · exp
(

− 1

1−X4(t)2

)

dt,

dX4(t) = 1dt

for t ∈ [0,∞) satisfying X(0) = 0. In the next step, we define the Euler–
Maruyama approximations for the SDE (5.3) using the following notation.
Let ⌊·⌋h : [0,∞)→ [0,∞), h ∈ (0,∞), be a family of mappings defined by

⌊t⌋h := max{s ∈ {0, h,2h, . . .} : s≤ t}(5.4)
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for all t ∈ [0,∞) and all h ∈ (0,∞). Then let Y h = (Y h
1 , Y

h
2 , Y

h
3 , Y

h
4 ) : [0,∞)×

Ω→ R4, h ∈ (0,∞), be Euler–Maruyama approximation processes defined
recursively by

Y h(0) := 0 and
(5.5)

Y h(t) := Y h(⌊t⌋h) + µ(Y h(⌊t⌋h)) · (t− ⌊t⌋h) +B(W (t)−W (⌊t⌋h))
for all t ∈ (nh, (n+1)h], n ∈ {0,1, . . .} and all h ∈ (0,∞). Observe that this
definition ensures that

Y h
1 (t) =

∫ t

1
1(1,∞)(⌊s⌋h)e−1/(⌊s⌋2h−1)

(5.6)

× cos

((∫ ∞

0
1[0,1)(⌊u⌋h)e−1/(1−⌊u⌋2h) du− Ĉ

)

eW2(⌊s⌋h)3
)

ds

for all t ∈ [1,∞) and all h ∈ (0,∞). The following Theorem 5.1 proves that
the Euler–Maruyama method (5.5) for the SDE (5.3) convergences without
any arbitrarily small polynomial rate of convergence. Theorem 5.1 together
with an elementary transformation argument [dealing with general x0 ∈R4

and general T ∈ (0,∞)] then implies Theorem 1.3.

Theorem 5.1 (A counterexample to the rate of convergence of the Euler–
Maruyama method). Let X = (X1,X2,X3,X4) : [0,∞) × Ω→ R4 be a so-
lution process of the SDE (5.3) with continuous sample paths and with
X(0) = 0. Then

E[X1(t)]− E[Y h
1 (t)]≥ exp(−14|ln(h)|2/3)(5.7)

for all h ∈ (0, 1
22 ] and all t ∈ [2,∞) and, therefore, we obtain

lim
hց0

(
E[‖X(t)− Y h(t)‖]

hα

)

= lim
hց0

(‖E[X(t)]− E[Y h(t)]‖
hα

)

(5.8)

=

{
0, α= 0,

∞, α > 0,

for all α ∈ [0,∞) and all t ∈ [2,∞). In particular, for every t ∈ [2,∞) and ev-
ery α,C,h0 ∈ (0,∞) there exists a real number h ∈ (0, h0) such that ‖E[X(t)]−
E[Y h(t)]‖>C · hα.

The proof of Theorem 5.1 is deferred to the end of this section. To the best
of our knowledge, the SDE (5.3) is the first SDE with smooth coefficients in
the literature for which it has been established that the Euler–Maruyama
scheme converges in the strong and numerical weak sense without any ar-
bitrarily small rate of convergence. Using the results of Section 3, one can
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show that the SDE (5.3) is not locally Hölder continuous with respect to
the initial value. This is summarized in the next corollary of Lemma 3.3 in
Section 3.

Corollary 5.2. Let Xx : [0,∞)×Ω→R4, x ∈R4, be solution processes
of the SDE (5.3) with continuous sample paths and with Xx(0) = x for all
x ∈ R4. Then for every t ∈ (0,∞) the function R4 ∋ x 7→ E[Xx(t)] ∈ R4 is
not locally Hölder continuous.

Proof. Note that

‖E[X(0,0,Ĉ,2)(t)]−E[X(0,0,h+Ĉ,2)(t)]‖

≥ |E[X(0,0,Ĉ,2)
1 (t)−X

(0,0,h+Ĉ,2)
1 (t)]|

(5.9)

=

∣
∣
∣
∣

∫ t

0
exp

( −1

((2 + s)2 − 1)

)

E[1− cos(h · exp([W2(s)]
3))]ds

∣
∣
∣
∣

≥ exp

(

−1

3

)∫ t

0
(1−E[cos(h · exp([W2(s)]

3))])ds

for all h, t ∈ (0,∞). Combining this with Lemma 3.3 in Section 3 completes
the proof of Corollary 5.2. �

In the following, the size of the quantity ‖E[X(T )]− E[Y h(T )]‖ ∈ [0,∞)
is analyzed for sufficiently small h ∈ (0,∞) and thereby Theorem 5.1 is
established. To do so, we first establish a few auxiliary results. We begin with
an elementary estimate for the numerical integration of concave functions.

Lemma 5.3 (Numerical integration of concave functions). Let ⌊·⌋h :
[0,∞)→ [0,∞), h ∈ (0,∞), be given by (5.4), let b ∈ (0,∞) be a real number
and let ψ : [0, b]→ R be a continuously differentiable function with a nonin-
creasing derivative. Then

∫ b

0
(ψ(s)−ψ(⌊s⌋h))ds

(5.10)

≤ 1

2
[ψ′(0) · h2 + (ψ(⌊b⌋h − h)− ψ(0)) · h+ ψ′(⌊b⌋h) · (b− ⌊b⌋h)2]

for all h ∈ (0, b].

Proof. The fundamental theorem of calculus and monotonicity of ψ′

imply
∫ b

0
(ψ(s)−ψ(⌊s⌋h))ds
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=

∫ b

0

∫ s

⌊s⌋h
ψ′(u)duds≤

∫ b

0

∫ s

⌊s⌋h
ψ′(⌊s⌋h)duds(5.11)

=

∫ h

0

∫ s

⌊s⌋h
ψ′(⌊s⌋h)duds+

∫ ⌊b⌋h

h

∫ s

⌊s⌋h
ψ′(⌊s⌋h)duds

+

∫ b

⌊b⌋h

∫ s

⌊s⌋h
ψ′(⌊s⌋h)duds

= ψ′(0) · h
2

2
+
h2

2

(
∑

n∈N,nh<⌊b⌋h

ψ′(nh)

)

+ψ′(⌊b⌋h) ·
(b− ⌊b⌋h)2

2

≤ ψ′(0) · h
2

2
+
h

2

(
∑

n∈N,nh<⌊b⌋h

∫ nh

(n−1)h
ψ′(s)ds

)

+ψ′(⌊b⌋h) ·
(b− ⌊b⌋h)2

2

= ψ′(0) · h
2

2
+ (ψ(⌊b⌋h − h)−ψ(0)) · h

2

+ψ′(⌊b⌋h) ·
(b− ⌊b⌋h)2

2

for all h ∈ (0, b]. This finishes the proof of Lemma 5.3. �

Using Lemma 5.3, we establish in the next lemma a simple lower bound
for the numerical integration of the function 1(−1,1)(x) · exp(−1/(1 − x2)),

x ∈R, in the third component of µ :R4 →R4.

Lemma 5.4 [Numerical integration of the function 1(−1,1)(x) ·exp(−1/(1−
x2)), x ∈R]. Let ⌊·⌋h : [0,∞)→ [0,∞), h ∈ (0,∞), be given by (5.4). Then

h

20
≤
∫ ∞

0
1[0,1)(⌊s⌋h) · exp

(

− 1

1− ⌊s⌋2h

)

ds− Ĉ ≤ 2h(5.12)

for all h ∈ (0, 18 ].

Proof. First of all, observe that

d

dx
(e−1/(1−x2)) =

−2x · e−1/(1−x2)

(1− x2)2
and

(5.13)
d2

dx2
(e−1/(1−x2)) =

6 · e−1/(1−x2)

(1− x2)4

(

x4 − 1

3

)
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for all x ∈ (−1,1). We hence obtain that the function [0,3−1/4] ∋ s 7→
e−1/(1−s2) ∈R has a nonincreasing derivative. Applying Lemma 5.3 and us-

ing that the function [0,∞) ∋ s 7→ 1[0,1)(s) · e−1/(1−s2) ∈ R is nonincreasing

therefore results in

∫ ∞

0
1[0,1)(⌊s⌋h) · exp

( −1

(1− |⌊s⌋h|2)

)

ds−
∫ 1

0
exp

( −1

(1− s2)

)

ds

=

∫ ∞

0
1[0,1)(⌊s⌋h) · exp

( −1

(1− |⌊s⌋h|2)

)

− 1[0,1)(s) · exp
( −1

(1− s2)

)

︸ ︷︷ ︸

≥0

ds

≥
∫ 3−1/4

0
exp

( −1

(1− |⌊s⌋h|2)

)

− exp

( −1

(1− s2)

)

ds

≥ h

2
·
(

exp

( −1

(1− 02)

)

− exp

( −1

(1− |⌊3−1/4⌋h − h|2)

))

(5.14)

+
2 · ⌊3−1/4⌋h · e−1/(1−|⌊3−1/4⌋h|2)

[1− |⌊3−1/4⌋h|2]2
· (3

−1/4 − ⌊3−1/4⌋h)2
2

≥ h

2
·
(

e−1 − exp

( −1

(1− [3−1/4 − 2h]2)

))

≥ h

2
·
(

e−1 − exp

( −1

(1− [1/2]2)

))

= h · (e
−1 − e−4/3)

2
>

h

20

for all h ∈ (0, 18 ] where we used the estimate 3−1/4− 2h≥ 1
31/4

− 1
4 ≥ 1

2 for all

h ∈ (0, 18 ] in the penultimate inequality in (5.14). Moreover, note that (5.13)

implies that

∫ ∞

0
1[0,1)(⌊s⌋h) · exp

( −1

(1− |⌊s⌋h|2)

)

ds

−
∫ 1

0
exp

( −1

(1− s2)

)

ds

≤ h+

∫ 1

0

∣
∣
∣
∣
exp

( −1

(1− |⌊s⌋h|2)

)

− exp

( −1

(1− s2)

)∣
∣
∣
∣
ds

(5.15)

≤ h+ sup
x∈(0,1)

[
2x · e−1/(1−x2)

(1− x2)2

]

· h

= h+

[
2 · 3−1/4 · e−1/(1−3−1/2)

(1− 3−1/2)2

]

· h
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= h+

[
6

31/4 · (
√
3− 1)2 · e

√
3/(

√
3−1)

]

· h≤ 2h

for all h ∈ (0,∞). Combining (5.14) and (5.15) completes the proof of Lem-
ma 5.4. �

We are now ready to prove Theorem 5.1. Its proof uses Lemma 5.4 as well
as Lemma 3.3 in Section 3 above.

Proof of Theorem 5.1. First of all, note thatX1(t) =
∫ t
1 exp(

−1
(s2−1)

)ds,

P-a.s. for all t ∈ [1,∞). Combining this with (5.6) then shows that

E[X1(t)]−E[Y h
1 (t)]

=

∫ t

1
exp

(

− 1

s2 − 1

)

− 1(1,∞)(⌊s⌋h) · exp
(

− 1

⌊s⌋2h − 1

)

ds

︸ ︷︷ ︸

≥0

+

∫ t

1
1(1,∞)(⌊s⌋h)e−1/(⌊s⌋2h−1)

×E

[

1− cos

((∫ ∞

0
1[0,1)(⌊u⌋h)e−1/(1−⌊u⌋2h) du

−
∫ 1

0
e−1/(1−u2) du

)

eW2(⌊s⌋h)3
)]

ds

≥
∫ t

3/2
1(1,∞)(⌊s⌋h)e−1/(⌊s⌋2h−1)

×E

[

1− cos

((∫ ∞

0
1[0,1)(⌊u⌋h)e−1/(1−⌊u⌋2h) du

−
∫ 1

0
e−1/(1−u2) du

)

eW2(⌊s⌋h)3
)]

ds

for all t ∈ [32 ,∞) and all h ∈ (0,∞). The estimate ⌊s⌋h ≥ ⌊32⌋h ≥ 3
2 − h≥ 11

8

for all s ∈ [32 ,∞), h ∈ (0, 18 ] and Lemmas 5.4 and 3.3 therefore show that

E[X1(t)]−E[Y h
1 (t)]

≥ exp

(

− 1

121/64− 1

)

×
∫ v

3/2

E

[

1− cos

((∫ ∞

0

1[0,1)(⌊u⌋h)e−1/(1−|⌊u⌋h|
2) du−

∫ 1

0

e−1/(1−u2) du

)

︸ ︷︷ ︸

zh/20≤···≤2h due to Lemma 5.4
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× eW2(⌊s⌋h)
3

)]

ds

≥ e−64/57

×
∫ v

3/2

exp

( −8

⌊s⌋h

×
∣
∣
∣
∣
ln

(

π
/(

2

(∫ ∞

0

1[0,1)(⌊u⌋h) · e−1/(1−|⌊u⌋h|
2) du

−
∫ 1

0

e−1/(1−u2) du

)))∣
∣
∣
∣

2/3)

ds

≥ (v − 3/2)

4
· exp

(

−64

11

∣
∣
∣
∣
ln

(
10π

h

)∣
∣
∣
∣

2/3)

for all h ∈ (0,min{1
8 ,

π
4 exp(−v3/2)}], t ∈ [v,∞) and all v ∈ [32 ,∞). Hence, we

finally obtain that

E[X1(t)]−E[Y h
1 (t)]

(5.16)

≥ exp

(

− ln(8)− 64

11
|ln(10π)|2/3 − 64

11
|ln(h)|2/3

)

for all h ∈ (0, 1
22 ] and all t ∈ [2,∞). This completes the proof of Theorem 5.1.

�

In the next step, we illustrate the lower bound on the weak approxima-
tion error in Theorem 5.1 by a numerical simulation. More precisely, we
ran Monte Carlo simulations and approximatively calculated the quantity
‖E[X(T )] − E[Y T/N (T )]‖ for T = 2 and N ∈ {21,22, . . . ,229,230}. We ap-
proximated these differences of expectations with an average over 100,000
independent Monte Carlo realizations. Moreover, we discretized the inte-
grals X1(2) =

∫ 2
1 exp( −1

(s2−1)
)ds and X3(2) =

∫ 1
0 exp( −1

(1−s2)
)ds in the exact

solution with a uniform grid and mesh size 2
231

= 2−30. Figure 1 depicts the
resulting graph.

In addition to the weak approximation error ‖E[X(T )]−E[Y T/N (T )]‖ for
T = 2 and N ∈ {21,22, . . . ,229,230}, we also plotted the function

{21,22, . . . ,230} ∋N
(5.17)

7→ 1

15 · (ln(N))1/3
exp

(

− 1

2T

(

ln(N)− 1

2T
(ln(N))2/3

)2/3)

∈ (0,1]

(a function with order 0), the function {21,22, . . . ,230} ∋N 7→ 1
15·

√
N

∈ (0,1]

(order line 1
2 ) and the function {21,22, . . . ,230} ∋ N 7→ 1

15·N ∈ (0,1] (order
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Fig. 1. The norm ‖E[X(T )] − E[Y T/N (T )]‖ of the difference between the mean of the
solution of the SDE (5.3) and the mean of the Euler–Maruyama approximations (5.5)
for T = 2 and N ∈ {21,22, . . . ,229,230}. The function with convergence order 0 is given
by (5.17).

line 1) in Figure 1. In the standard literature in computational stochastics
(see, e.g., Kloeden and Platen [42]) the Euler–Maruyama scheme is shown to
converge in the numerically weak sense with order 1 if the coefficients of the
SDE are smooth and globally Lipschitz continuous (see Chapter 8 in Kloeden
and Platen [42] for the precise assumptions) and, therefore, the order line 1
is plotted in Figure 1. Moreover, the function with order 0 is included in
Figure 1 so that one can compare the graph visually with a function which
has convergence order 0. According to our simulations, the approximation
error for the mean E[X(2)] does not drop far below 1

100 even for N = 230 >
109 time discretizations. This indicates that calculating the mean E[X(T )]
with the Euler–Maruyama method up to a high precision requires a huge
computational effort. In particular, this suggests for applications that an
approximation cannot, in general, be assumed to be very close to the exact
value even after a very high computational effort.
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[32] Hörmander, L. (1990). The Analysis of Linear Partial Differential Operators. I:

Distribution Theory and Fourier Analysis, 2nd ed. Grundlehren der Mathema-
tischen Wissenschaften 256. Springer, Berlin. MR1065993

[33] Hu, Y. (1996). Semi-implicit Euler–Maruyama scheme for stiff stochastic equations.

In Stochastic Analysis and Related Topics, V (Silivri, 1994). Progress in Proba-
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