1,121 research outputs found

    Tableaux Modulo Theories Using Superdeduction

    Full text link
    We propose a method that allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL. Finally, we describe another extension of Zenon with superdeduction, which is able to deal with any first order theory, and provide a benchmark coming from the TPTP library, which contains a large set of first order problems.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0117

    Linear-Logic Based Analysis of Constraint Handling Rules with Disjunction

    Full text link
    Constraint Handling Rules (CHR) is a declarative committed-choice programming language with a strong relationship to linear logic. Its generalization CHR with Disjunction (CHRv) is a multi-paradigm declarative programming language that allows the embedding of horn programs. We analyse the assets and the limitations of the classical declarative semantics of CHR before we motivate and develop a linear-logic declarative semantics for CHR and CHRv. We show how to apply the linear-logic semantics to decide program properties and to prove operational equivalence of CHRv programs across the boundaries of language paradigms

    Proof Certification in Zenon Modulo: When Achilles Uses Deduction Modulo to Outrun the Tortoise with Shorter Steps

    Get PDF
    International audienceWe present the certifying part of the Zenon Modulo automated theorem prover, which is an extension of the Zenon tableau-based first order automated theorem prover to deduction modulo. The theory of deduction modulo is an extension of predicate calculus, which allows us to rewrite terms as well as propositions, and which is well suited for proof search in axiomatic theories, as it turns axioms into rewrite rules. In addition, deduction modulo allows Zenon Modulo to compress proofs by making computations implicit in proofs. To certify these proofs, we use Dedukti, an external proof checker for the λΠ-calculus modulo, which can deal natively with proofs in deduction modulo. To assess our approach, we rely on some experimental results obtained on the benchmarks provided by the TPTP library

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Clausal Presentation of Theories in Deduction Modulo

    Get PDF
    International audienceResolution modulo is an extension of first-order resolution where axioms are replaced by rewrite rules, used to rewrite, or more generally narrow, clauses during the search. In the first version of this method, clauses were rewritten to arbitrary propositions, that needed to be dynamically transformed into clauses. This unpleasant feature can be eliminated when the rewrite system is clausal, i.e. when it transforms clauses to clauses. We show in this paper that how to transform any rewrite system into a clausal one, preserving the existence of cut free proof of any sequent

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542
    corecore