7 research outputs found

    Mathematical model for the impact of awareness on the dynamics of infectious diseases

    Get PDF
    This paper analyses an SIRS-type model for infectious diseases with account for behavioural changes associated with the simultaneous spread of awareness in the population. Two types of awareness are included into the model: private awareness associated with direct contacts between unaware and aware populations, and public information campaign. Stability analysis of different steady states in the model provides information about potential spread of disease in a population, and well as about how the disease dynamics is affected by the two types of awareness. Numerical simulations are performed to illustrate the behaviour of the system in different dynamical regimes

    Modelling the effects of awareness-based interventions to control the mosaic disease of Jatropha curcas

    Get PDF
    Plant diseases are responsible for substantial and sometimes devastating economic and societal costs and thus are a major limiting factor for stable and sustainable agricultural production. Diseases of crops are particular crippling in developing countries that are heavily dependent on agriculture for food security and income. Various techniques have been developed to reduce the negative impact of plant diseases and eliminate the associated parasites, but the success of these approaches strongly depends on population awareness and the degree of engagement with disease control and prevention programs. In this paper we derive and analyse a mathematical model of mosaic disease of Jatropha curcas, an important biofuel plant, with particular emphasis on the effects of interventions in the form of nutrients and insecticides, whose use depends on the level of population awareness. Two contributions to disease awareness are considered in the model: global awareness campaigns, and awareness from observing infected plants. All steady states of the model are found, and their stability is analysed in terms of system parameters. We identify parameter regions associated with eradication of disease, stable endemic infection, and periodic oscillations in the level of infection. Analytical results are supported by numerical simulations that illustrate the behaviour of the model in different dynamical regimes. Implications of theoretical results for practical implementation of disease control are discussed

    Harnessing Social Media in the Modelling of Pandemics-Challenges and Opportunities.

    Get PDF
    As COVID-19 spreads throughout the world without a straightforward treatment or widespread vaccine coverage in the near future, mathematical models of disease spread and of the potential impact of mitigation measures have been thrust into the limelight. With their popularity and ability to disseminate information relatively freely and rapidly, information from social media platforms offers a user-generated, spontaneous insight into users' minds that may capture beliefs, opinions, attitudes, intentions and behaviour towards outbreaks of infectious disease not obtainable elsewhere. The interactive, immersive nature of social media may reveal emergent behaviour that does not occur in engagement with traditional mass media or conventional surveys. In recognition of the dramatic shift to life online during the COVID-19 pandemic to mitigate disease spread and the increasing threat of further pandemics, we examine the challenges and opportunities inherent in the use of social media data in infectious disease modelling with particular focus on their inclusion in compartmental models

    Bayesian Modeling of Dynamic Behavioral Change During an Epidemic

    Full text link
    For many infectious disease outbreaks, the at-risk population changes their behavior in response to the outbreak severity, causing the transmission dynamics to change in real-time. Behavioral change is often ignored in epidemic modeling efforts, making these models less useful than they could be. We address this by introducing a novel class of data-driven epidemic models which characterize and accurately estimate behavioral change. Our proposed model allows time-varying transmission to be captured by the level of "alarm" in the population, with alarm specified as a function of the past epidemic trajectory. We investigate the estimability of the population alarm across a wide range of scenarios, applying both parametric functions and non-parametric functions using splines and Gaussian processes. The model is set in the data-augmented Bayesian framework to allow estimation on partially observed epidemic data. The benefit and utility of the proposed approach is illustrated through applications to data from real epidemics.Comment: 20 pages, 10 figure

    Awareness programs control infectious disease - multiple delay induced mathematical model

    Get PDF
    We propose and analyze a mathematical model to study the impact of awareness programs on an infectious disease outbreak. These programs induce behavioral changes in the population, which divide the susceptible class into two subclasses, aware susceptible and unaware susceptible. The system can have a disease-free equilibrium and an endemic equilibrium. The expression of the basic reproduction number and the conditions for the stability of the equilibria are derived. We further improve and study the model by introducing two time-delay factors, one for the time lag in memory fading of aware people and one for the delay between cases of disease occurring and mounting awareness programs. The delayed system has positive bounded solutions. We study various cases for the time delays and show that in general the system develops limit cycle oscillation through a Hopf bifurcation for increasing time delays. We show that under certain conditions on the parameters, the system is permanent. To verify our analytical findings, the numerical simulations on the model, using realistic parameters for Pneumococcus are performed

    Prevalence-based modeling approach of schistosomiasis : global stability analysis and integrated control assessment

    Get PDF
    A system of nonlinear differential equations is proposed to assess the effects of prevalence-dependent disease contact rate, pathogen’s shedding rates, and treatment rate on the dynamics of schistosomiasis in a general setting. The decomposition techniques by Vidyasagar and the theory of monotone systems are the main ingredients to deal completely with the global asymptotic analysis of the system. Precisely, a threshold quantity for the analysis is derived and the existence of a unique endemic equilibrium is shown. Irrespective of the initial conditions, we prove that the solutions converge either to the disease-free equilibrium or to the endemic equilibrium, depending on whether the derived threshold quantity is less or greater than one. We assess the role of an integrated control strategy driven by human behavior changes through the incorporation of prevalence-dependent increasing the prophylactic treatment and decreasing the contact rate functions, as well as the mechanical water sanitation and the biological elimination of snails. Because schistosomiasis is endemic, the aim is to mitigate the endemic level of the disease. In this regard, we show both theoretically and numerically that: the reduction of contact rate through avoidance of contaminated water, the enhancement of prophylactic treatment, the water sanitation, and the removal of snails can reduce the endemic level and, to an ideal extent, drive schistosomiasis to elimination.The University of Pretoria Senior Postdoctoral Program Grant.https://www.springer.com/journal/403142022-01-20hj2021Mathematics and Applied Mathematic
    corecore